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ABSTRACT. Let A be a unital separable simple C∗-algebra such that either
(i) A has real rank zero, strict comparison and cancellation of projec-

tions; or
(ii) A is TAI (tracially approximate interval).

Let ∆T : GL0(A) → Eu/T(K0(A)) be the universal determinant of de la
Harpe and Skandalis.

Then for all x ∈ GL0(A), ∆T(x) = 0 if and only if x is the product of 8
multiplicative commutators in GL0(A). We also have results for the unitary
case and other cases.
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1. INTRODUCTION

Let A be a unital C∗-algebra and let x ∈ A.

QUESTION. (1) When is x a finite sum of additive commutators? i.e., when
is x a sum of finitely many elements of the form ab− ba where a, b ∈ A?

(2) If x is invertible (unitary) when is x a finite product of multiplicative com-
mutators? I.e., when is x a product of finitely many elements of the form yzy−1z−1

where y, z ∈ A are invertible (respectively unitary) elements?

The first question has a long history, is connected to basic questions about
the structure of C∗-algebras, and is still a subject matter of recent papers. (E.g.,
see [2], [4], [5], [9] [10], [11], [12], [26], [27], and the references therein.)

In this paper, we focus on the second question. The first result in this direc-
tion is due to Brown and Pearcy who proved that every unitary operator on a sep-
arable infinite dimensional Hilbert space is a multiplicative commutator of uni-
taries, i.e., has the form vwv∗w∗ where v, w are unitary operators on the Hilbert
space ([3]). This was generalized by M. Broise who proved that a von Neumann
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factorM is not of finite type I if and only if every unitary operator inM is a finite
product of multiplicative commutators of unitaries ([1]).

In [10], Fack and de la Harpe proved that ifM is a type II1 factor and x ∈ M
is invertible, then x has Fuglede–Kadison determinant one if and only if x is a
finite product of multiplicative commutators, i.e., a finite product of elements of
the form yzy−1z−1 where y, z ∈ M are invertibles. (See Proposition 2.5. of [10].)

De la Harpe, Skandalis and Thomsen generalized the above results to classes
of C∗-algebras that are not necessarily von Neumann algebras. For a unital C∗-
algebra A, let GL0(A), U0(A) denote the connected component of the identity
of the invertible group of A and the connected component of the identity of the
unitary group of A respectively; let DGL0(A), DU0(A) denote the commutator
subgroups of GL0(A) and U0(A) respectively; and let ∆T denote the universal
determinant of A, introduced by de la Harpe and Skandalis in [14]. (More infor-
mation about ∆T and basic references can be found at the end of this introduc-
tion.) In Theorem 6.6 of [15], de la Harpe and Skandalis proved that ifA is a unital
simple infinite dimensional AF-algebra and x ∈ GL0(A), then ∆T(x) = 0 if and
only if x is the product of four multiplicative commutators in GL0(A). They have
a similar result for U0(A), whenA is simple AF ([15], Proposition 6.7). Moreover,
when A is simple AF, DGL0(A) and DU0(A) are both simple modulo their cen-
tres ([16]). Finally, when A is a unital simple properly infinite C∗-algebra, both
GL0(A) and U0(A) are perfect groups ([15], Theorem 7.5 and Propositon 7.7).

In [30], Thomsen generalized de la Harpe and Skandalis’ results to the class
of unital C∗-algebras A which have the following properties:

(i)A is an inductive limit where the building blocks have the formMn1(C(X1))
⊕Mn2(C(X2)) ⊕ · · · ⊕Mnk (C(Xk)) such that each Xj is a compact metric space
with covering dimension dim(Xj) 6 2 and H2(Xj,Z) = 0.

(ii) K0(A) has large denominators.

Henceforth, we will call the above class of C∗-algebras Thomsen’s class.
In Theorem 3.4 of [30], using fundamental results in classification theory

that Thomsen developed, it was proven that for a C∗-algebra A in Thomsen’s
class, for x ∈ GL0(A) (or x ∈ U0(A)), ∆T(x) = 0 if and only if x is a finite
product of commutators in GL0(A) (respectively in U0(A)). We note that these
results (unlike the result of, say, Theorem 6.6 of [15] which gives four) does not
give a bound on the number of commutators. Moreover, the argument itself does
not give such a bound. Finally, in Theorem 4.1 and Theorem 4.3 of [30], it was
proven that for a C∗-algebra A in Thomsen’s class, DGL0(A) and DU0(A) are
both simple modulo their centres.

In this paper, we generalize the results of [15] and [30] to the class of simple
TAI-algebras and the class of simple unital C∗-algebras with real rank zero, strict
comparison and cancellation of projections. (The definition of TAI-algebra is in
Definition 1.1.) These are large classes of C∗-algebras which have been important
in the classification program. (E.g., the C∗-algebras in [6] and [8] belong to these
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classes.) These classes also include the classes in [15] and [30] (in the simple finite
case). Our main result is the following: Let A be a unital simple separable C∗-
algebra such that either (a)A is TAI or (b)A has real rank zero, strict comparison
and cancellation of projections. Let x ∈ GL0(A). Then ∆T(x) = 0 if and only if x
is the product of eight multiplicative commutators in GL0(A). (See Theorem 3.5
and Theorem 4.2.) We note that unlike the (nonetheless interesting) results in [30],
there is a bound (eight) on the number of commutators. It is an open question
whether we can reduce the bound. We also have results in the unitary case. (See
also Theorem 2.18 and Theorem 4.1.)

The arguments in our paper extensively use techniques from classification
theory, including a difficult uniqueness theorem from the literature
(Theorem 2.10).

We end this section by giving some basic references and fixing some nota-
tion and definitions which we will use throughout this paper.

A basic reference for the de la Harpe–Skandalis determinant is [14]. A good
summary can also be found in [13]. A basic reference for TAI-algebras is [20].

We now fix some notation and definitions. We refer the reader to the ref-
erences given above for more details. For a unital C∗-algebra, A and for n ∈
{1, 2, . . .} ∪ {∞}, let Un(A), U0

n(A), GLn(A), GL0
n(A) be the unitary group, the

connected component of the identity of the unitary group, the group of invert-
ibles, and connected component of the identity of the group of invertibles re-
spectively of Mn(A). Oftentimes, we use U(A), U0(A), GL(A), GL0(A) to ab-
breviate U1(A), U0

1(A), GL1(A), GL0
1(A) respectively. Also, for a group G and for

x, y ∈ G, we let (x, y) denote the multiplicative commutator (x, y) =df xyx−1y−1.
We let DG denote the commutator subgroup of G, i.e., the subgroup of G gener-
ated by the multiplicative commutators (x, y) where x, y ∈ G. (E.g., DU0(A) is
the commutator subgroup of U0(A).)

For a Banach space E, a tracial continuous linear function τ : A → E, and
for a piecewise continuously differentiable curve ξ : [t0, t1] → GL0

∞(A), we let

∆̃τ(ξ) =df
1

2πi

t1∫
t0

τ(ξ ′(t)ξ(t)−1)dt ∈ E (Section 1 of [14]; see also Section 6 of [13]).

By Lemma 1(c) of [14] (also Lemma 10(iii) of [13]), ∆̃τ(ξ) depends only on the
homotopy class of ξ (with endpoints fixed). This (and a form of Bott periodic-
ity) then induces a group homomorphism ∆τ : GL0

∞(A) → E/τ(K0(A)) ([14],
Proposition 2; also [13], Theorem 13).

Let Eu denote the Banach space quotient of A by the closed linear span of
the additive commutators [a, b] =df ab− ba, a, b ∈ A, i.e., Eu =df A/[A,A]. Let
T : A → Eu denote the natural quotient map. (T is called the universal tracial
continuous linear map.) From the above, we have a group homomorphism ∆T :
GL0

∞(A) → Eu/T(K0(A)) which is called the universal de la Harpe–Skandalis de-
terminant. Throughout this paper, we will simply call ∆T the de la Harpe–Skandalis
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determinant. (We note that this determinant has been useful in classification the-
ory. See, for example, [21], [25].)

Next, for a unital C∗-algebra, we let T(A) denote the simplex of tracial states
on A.

We let T denote the unit circle of the complex plane; i.e., T =df {z ∈ C :
|z| = 1}.

Throughout this paper, we let INT denote the class of C∗-algebras of the

form
m⊕

j=1
Bj, where for each j, Bj

∼= Mnj or Bj
∼= Mnj(C[0, 1]) for some positive

integer nj.
The following notion is due to Lin:

DEFINITION 1.1. A unital simple C∗-algebra A is said to be tracially approx-
imate interval (TAI) if for any ε > 0, for any finite subset F ⊂ A, and for any
nonzero positive element a ∈ A+, there exists a projection p ∈ A and a C∗-
subalgebra I ∈ INT with 1I = p such that:

(i) 1− p is Murray–von Neumann equivalent to a projection in aAa.
(ii) ‖px− xp‖ < ε for all x ∈ F , and

(iii) pxp is within ε of an element of I , for all x ∈ F .

(In the above definition, “AI" abbreviates “approximately interval".)
Every simple unital TAI-algebra is quasidiagonal, has real rank at most one,

stable rank one, property (SP), and strict comparison (of projections by tracial
states). The K0 group of a simple unital TAI-algebra has weak unperforation and
the Riesz interpolation property. Many simple C∗-algebras are TAI; in particular
every simple unital AH-algebra with bounded dimension growth is TAI. (E.g.,
the algebras in [6] and [8] are TAI.) For these and other basic results about TAI-
algebras, we refer the reader to [20].

REMARK 1.1. By Corollary 3.3 of [20], for the C∗-algebra I in Definition 1.1,
the matrix sizes of the summands of I can be taken to be arbitrarily large; i.e.,
for every L > 1, we can find an I satisfying the conditions in Definition 1.1 such
that every irreducible representation of I has dimension greater than L (i.e., the
image of any irreducible representation of I has the form Mk with k > L).

In the results that follow, we will often state the result in general, but only
prove it in the infinite dimensional case.

2. THE TAI CASE

LEMMA 2.1. There exist two continuous functions v, w : (−π/2, π/2)→ SU(2)
such that, for all t ∈ (−π/2, π/2),

(v(t), w(t))=
[

eit 0
0 e−it

]
, ‖v(t)−1‖, ‖w(t)−1‖6 |eit−1|1/2, and v(0)=w(0)=1.
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The proof follows from Lemma 5.13 of [15]. (Note that that vj(0) = 1 for
j = 1, 2 follows from the inequalities.)

COROLLARY 2.2. Let α ∈ T.
Then there exist unitaries v, w ∈M2(C) such that

(v, w) =

[
α 0
0 α

]
.

If, in addition, |α− 1| <
√

2, then we may choose v, w so that

‖v− 1‖, ‖w− 1‖ 6 |α− 1|1/2.

Proof. If |α− 1| <
√

2 (i.e., the principal argument of α is in (−π/2, π/2)),
then the result follows from Lemma 2.1.

For general α ∈ T, we note that[
α 0
0 1

] [
0 1
1 0

] [
α 0
0 1

] [
0 1
1 0

]
=

[
α 0
0 α

]
.

We now fix a notation. Let X be a metric space and let S ⊆ X be a subset.
For every δ > 0, let N(S, δ) denote the δ-neighbourhood of S; i.e., N(S, δ) =df {t ∈
X : dist(t, S) < δ}.

LEMMA 2.3. Let θ : [0, 1]→ R be a continuous map.
Then there exists v1, w1, v2, w2, v3, w3, v4, w4 ∈ U(M2(C[0, 1])) such that, for all

s ∈ [0, 1],

(v1(s), w1(s))(v2(s), w2(s))(v3(s), w3(s))(v4(s), w4(s)) =

[
eiθ(s) 0

0 e−iθ(s)

]
.

Moreover, if there exists an open set G ⊆ [0, 1] such that θ(s) = 0 for all s ∈
[0, 1]− G, then for every δ > 0, we can choose the unitaries so that w1 = w3 =

[
0 1
1 0

]
,

and vk(s) = wj(s) = 1 for all s ∈ [0, 1]− N(G, δ) and for 1 6 k, j 6 n with j 6= 1, 3.

Proof. Let O1, O2, . . . , On be an open covering of [0, 1] such that for each j
with 1 6 j 6 n, there exists an angle θi so that θ(s) ∈ θj + [−π/4, π/4] for all
s ∈ Oj.

Since [0, 1] has covering dimension one, taking a refinement of the open
cover if necessary, we may assume that each point in [0, 1] is contained in at most
two of the Oj. Moreover, rearranging the Oj if necessary, we may assume that for
j, j′ such that |j− j′| > 2, Oj ∩Oj′ = ∅.

Let { f j}n
j=1 be a partition of unity for [0, 1] subordinate to {Oj}n

j=1.
We have that for 1 6 j 6 n, θ(s)− θj ∈ [−π/4, π/4] for all s ∈ Oj. Hence,

f j(s)(θ(s)− θj) ∈ [−π/4, π/4] for all s ∈ [0, 1]. Let v, w : (−π/2, π/2) → SU(2)
be the continuous functions from Lemma 2.1. Let ṽj(s) =df v( f j(s)(θ(s) − θj))
and w̃j(s) =df w( f j(s)(θ(s)− θj)) for s ∈ [0, 1]. Hence, by Lemma 2.1, we have
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for all s ∈ [0, 1],

(ṽj(s), w̃j(s)) =

[
ei f j(s)(θ(s)−θj) 0

0 e−i f j(s)(θ(s)−θj)

]
.

Note that for 1 6 j 6 n and for all s ∈ [0, 1],[
ei f j(s)θj 0

0 e−i f j(s)θj

]
=

([
ei f j(s)θj 0

0 1

]
,
[

0 1
1 0

])
.

Also, note that
n
∏
j=1

ei f j(s)θj ei f j(s)(θ(s)−θj) = eiθ(s) for all s ∈ [0, 1].

Thus, we can take v1 =df ∏
j odd

diag(ei f jθj , 1), w1 = w3 =df

[
0 1
1 0

]
. v2 =df

∏
j odd

ṽj, w2 =df ∏
j odd

w̃j, v3 =df ∏
j even

diag(ei f jθj , 1), v4 =df ∏
j even

ṽj, and w4 =df

∏
j even

w̃j.

Suppose, in addition, that G ⊆ [0, 1] is an open subset such that θ(s) = 0
for all s ∈ [0, 1]− G. Let δ > 0 be given. Let g : [0, 1] → [0, ∞) be a continuous
function with 0 6 g 6 1 such that (i) g(s) = 1 for all s ∈ G and (ii) g(s) = 0
for all s ∈ [0, 1]− N(G, δ/2). In the definitions of vj, ṽj, wj, w̃j (1 6 j 6 n) above,
replace every occurrence of f j with the (pointwise product) g f j (1 6 j 6 n). Then
vk(s) = wj(s) = 1, for all s ∈ [0, 1]− N(G, δ) and for 1 6 k, j 6 n with j 6= 1, 3.

LEMMA 2.4. Let φk : [0, 1]→ R (1 6 k 6 m) be continuous maps such that

φ1(s) 6 φ2(s) 6 φ3(s) 6 · · · 6 φm(s) and
m

∑
k=1

φk(s) = 0

for all s ∈ [0, 1].
Then we have the following:

(i) There exist vj, wj ∈ U0(Mm(C[0, 1])) (1 6 j 6 16) such that

diag(eiφ1 , eiφ2 , . . . , eiφm) =
16

∏
j=1

(vj, wj).

(Here,
16
∏
j=1

(vj, wj) = (v1, w1)(v2, w2) · · · (v16, w16).)

(ii) Suppose, in addition, that ran(φk) ⊂ (π/2, π/2) for 1 6 k 6 m. Then there
exist v1, w1, v2, w2, v3, w3, v4, w4 ∈ U0(Mm(C[0, 1])) such that

diag(eiφ1 , eiφ2 , . . . , eiφm) = (v1, w1)(v2, w2)(v3, w3)(v4, w4) and

‖vj − 1A‖, ‖wj − 1A‖ 6
√

2‖u− 1A‖1/2

for 1 6 j 6 4, where A =df Mm(C[0, 1]) and u =df diag(eiφ1 , eiφ2 , . . . , eiφm).
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Proof. The proof is a modification of the arguments of Lemma 2.7 and Lem-
ma 2.8 in [30], where we additionally use Lemma 2.1 and Lemma 2.3. (Indeed,
the proof of part (ii) is contained in the proof of Lemma 2.8. in [30].) We provide
the argument for the convenience of the reader.

If diag(eiφ1 , eiφ2 , . . . , eiφm) = 1A then we are done. Hence, let us assume that
diag(eiφ1 , eiφ2 , . . . , eiφm) 6= 1A.

Choose δ > 0 small enough so that δ < π/4, |eiδ − 1| < ‖u − 1‖ and
|e−iδ − 1| < ‖u− 1‖. Moreover, if ran(φj) ⊂ (−π/2, π/2) we require ran(φj)±
δ ⊂ (−π/2, π/2).

Firstly, note that for each s ∈ [0, 1], since
m
∑

k=1
φk(s) = 0, there is a permuta-

tion σ of {1, 2, . . . , m} (σ is dependent on s) such that, for 1 6 l 6 m,

φ1(s) 6
l

∑
k=1

φσ(k)(s) 6 φm(s).

Since [0, 1] is compact, let {Oj}n
j=1 be an open covering of [0, 1] and for 1 6

j 6 n, let xj ∈ U(Mm) be a permutation unitary and let σj be a permutation of
{1, 2, . . . , m} such that, for 1 6 l 6 m and for all s ∈ Oj,

xjdiag(φ1, φ2, . . . , φm)x∗j = diag(φσj(1), φσj(2), . . . , φσj(m)) and

φ1(s)− δ 6
l

∑
k=1

φσj(k)(s) 6 φm(s) + δ.

Let γ > 0 be given. Since [0, 1] has covering dimension one, taking refine-
ments, permuting and contracting the Ojs and contracting γ > 0 if necessary, we
may assume that if |j− j′| > 2 then N(Oj, γ) ∩ N(Oj′ , γ) = ∅.

Let { f j}n
j=1 be a partition of unity of [0, 1] subordinate to {Oj}n

j=1. For 1 6

j 6 n, let aj ∈Mm(C[0, 1]) be the self-adjoint element given by

aj =df f jdiag(φ1, φ2, . . . , φm)

and for 1 6 k 6 m, let

ψj,k =df f j

k

∑
l=1

φσj(l).

Hence,

diag(φ1, φ2, . . . , φm) =
n

∑
j=1

aj

and for 1 6 j 6 n,

(2.1) xjajx∗j =diag(ψj,1,−ψj,1, ψj,3,−ψj,3, . . .)+diag(0, ψj,2,−ψj,2, ψj,4,−ψj,4, . . .)

where the first diagonal ends with zero if m is odd, and the second diagonal ends
with zero if m is even.

We consider the two cases in the statement of the lemma.
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Case 1 or part (ii). Suppose that ran(φk) ⊂ (−π/2, π/2) for 1 6 k 6 m.
By (2.1) and by Lemma 2.1, we have that for 1 6 j 6 n and 1 6 l 6 2, there

exist unitaries vj,l , wj,l ∈Mm(C[0, 1]) such that

x∗j diag(eiψj,1 , e−iψj,1 , eiψj,3 , e−iψj,3 , . . .)xj = (vj,1, wj,1),

x∗j diag(1, eiψj,2 , e−iψj,2 , eiψj,4 , e−iψj,4 , . . .)xj = (vj,2, wj,2),

and for l = 1, 2,

vj,l(s) = wj,l(s) = 1,

for all s ∈ [0, 1]−Oj. Moreover, by Lemma 2.1 and by our choice of δ, for 1 6 j 6
n and l = 1, 2,

‖vj,l − 1‖

6 max{|ei(φ1(s)−δ) − 1|1/2, |ei(φm(s)+δ) − 1|1/2 : s ∈ Oj}

6 max{|eiφ1(s)(e−iδ−1)|+|eiφ1(s)−1|, |eiφm(s)(eiδ−1)|+|eiφm(s)−1| : s ∈ Oj}1/2

6
√

2‖u− 1‖1/2.

Similarly,
‖wj,l − 1‖ 6

√
2‖u− 1‖1/2.

Now let v1 =df ∏
j odd

vj,1, w1 =df ∏
j odd

wj,1, v2 =df ∏
j even

vj,1, w2 =df ∏
j even

wj,1,

v3 =df ∏
j odd

vj,2, w3 =df ∏
j odd

wj,2, v4 =df ∏
j even

vj,2, w4 =df ∏
j even

wj,2.

Then for 1 6 l 6 4, ‖vl − 1‖ 6
√

2‖u− 1‖1/2 and ‖wl − 1‖ 6
√

2‖u− 1‖1/2.
Also, as required,

u =
4

∏
l=1

(vl , wl).

Case 2 or part (i). General case.
The proof for this case is the same as that of Case 1, except that we replace

Lemma 2.1 with Lemma 2.3 and we get sixteen commutators (instead of four).
(We also do not get a norm estimate for the unitaries that make up the commuta-
tors.)

LEMMA 2.5. Let φk : [0, 1] → R (1 6 k 6 m) be continuous maps such that, for
all s ∈ [0, 1],

φ1(s) 6 φ2(s) 6 φ3(s) 6 · · · 6 φm(s) and
m

∑
k=1

φk(s) = 0.

Then there exist xj, yj ∈ GL0(Mm(C[0, 1])) (1 6 j 6 4) such that

diag(eφ1 , eφ2 , . . . , eφm) =
4

∏
j=1

(xj, yj) and ‖xj − 1A‖, ‖yj − 1A‖ 6 2‖z− 1A‖1/2
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for 1 6 j 6 4, where A =df Mm(C[0, 1]) and z =df diag(eφ1 , eφ2 , . . . , eφm).

The proof is essentially the same as Lemma 2.7 of [30]. Alternatively, the
proof is the same as Lemma 2.4 part (ii), but with Lemma 2.1 replaced with
Lemma 2.6 of [30].

Recall the definitions of “TAI" and “INT" from the end of the Introduction.

LEMMA 2.6. Let A be a unital separable simple TAI-algebra and let {cn}∞
n=1 be a

countable dense subset of the closed unit ball of A.
Let {In}∞

n=1 be a sequence of C∗-subalgebras of A, with In ∈ INT for all n and
let {pn}∞

n=1 be a sequence of projections in A with 1In = pn for all n > 1 such that for
all n > 1, the following hold:

(i) τ(1− pn) < 1/n for all τ ∈ T(A),
(ii) ‖pnck − ck pn‖ < 1/n for all k 6 n, and

(iii) pnck pn is within 1/n of an element of In for all k 6 n.
Suppose that a ∈ A is an element such that |τ(a)| < ε for all τ ∈ A. For all n > 1, let
an ∈ In such that ‖pmapm − am‖ → 0 as m→ ∞.

Then there exists N > 1 such that for all n > N, for all τ ∈ T(In), |τ(an)| < ε.

Proof. Firstly, since the map T(A)→ C : τ 7→ τ(a) is a continuous function
on the compact set T(A), let 0 6 δ < ε be such that δ = max{|τ(a)| : τ ∈ T(A)};
i.e., |τ(a)| 6 δ < ε for all τ ∈ T(A).

Suppose, to the contrary, that {nl}∞
l=1 is a subsequence of the positive inte-

gers and for all l > 1, τl ∈ T(Inl ) is such that |τl(anl )| > ε.

Let
∞
∏
l=1
Inl and

⊕
∑

l=1

∞

Inl be the (l∞) direct product and (c0) direct sum respec-

tively. For each k > 1, τk induces an element τ̃k ∈ T(∏∞
l=1 Inl ) in the following

manner: for {bl}∞
l=1 ∈

∞
∏
l=1
Inl , τ̃k({bl}∞

l=1) =df τk(bk).

Since T(∏∞
l=1 Inl ) is compact, {τ̃l}∞

l=1 must have a converging subnet {τ̃lα}.

Suppose that lim
α

τ̃lα = µ ∈ T(∏∞
l=1 Inl ). Note that

∞
∑⊕
l=1
Inl is contained in the

kernel of µ. Hence, µ naturally induces a trace in T(
∞
∏
l=1
Inl /

∞
∑⊕
l=1
Inl ), which we

also denote by “µ".

Let Φ : A →
∞
∏
l=1
Inl /

∞
∑⊕
l=1
Inl be the unital ∗-embedding that is defined as

follows:
Let d ∈ A be given. Then

Φ(d) =df [{dl}∞
l=1]

where dl ∈ Inl for all l > 1, ‖pnl dpnl − dl‖ → 0 as l → ∞, and [{dl}∞
l=1] is the

equivalence class of {dl}∞
l=1 in

∞
∏
l=1
Inl /

∞
∑⊕
l=1
Inl . (It is clear that Φ is a well-defined
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unital ∗-homomorphism; in particular, Φ(d) is independent of the choice of the
sequence {dl} with the above properties.)

Then µ ◦Φ ∈ T(A). Then |µ ◦Φ(a)| = |µ([{al}∞
l=1])| = lim

α
|τ̃lα({al}∞

l=1)| =
lim

α
|τlα(alα)| > ε. This contradicts our assumption that |τ(a)| 6 δ < ε for all

τ ∈ T(A).

The next lemma is a straightforward computation.

LEMMA 2.7. Let n ∈ Z+ ∪ {∞}. Let A be a unital C∗-algebra, let V be a Banach
space and let τ : A → V be a tracial continuous linear map. Let ξ : [t0, t1] → GL0

n(A)
(or U0

n(A)) be a piecewise continuously differentiable curve with ξ(t0) = 1.
For every ε > 0, there exists δ > 0 such that the following hold:
If x ∈ GL0

n(A) (respectively U0
n(A)) is such that ‖x − ξ(t1)‖ < δ, then there

exists a piecewise continuously differentiable curve η : [t0, t1] → GL0
n(A) (respectively

U0
n(A)) with η(t0) = 1 and η(t1) = x such that

‖∆̃τ(ξ)− ∆̃τ(η)‖ < ε.

For a unital C∗-algebraA, recall that Eu is the Banach space quotient Eu =df
A/[A,A]. Viewing Eu as a metric group (with metric induced by the norm),
T(K0(A)) ⊆ Eu is a (not necessarily closed) topological subgroup of Eu. The
metric on Eu induces a pseudometric d on the quotient group Eu/T(K0(A)); i.e.,
for all a, b ∈ Eu,

d([a], [b]) =df inf{‖a− b + c‖ : c ∈ T(K0(A))},

where ‖ · ‖ is the norm on Eu and [a], [b] are the equivalence classes of a, b (respec-
tively) in Eu/T(K0(A)).

LEMMA 2.8. Let A be a unital C∗-algebra and let d be the pseudometric on
Eu/T(K0(A)) induced by the metric (or norm) on Eu. Let y ∈ GL0

∞(A) (respectively
U0

∞(A)) be such that ∆T(y) = 0.
Then for every ε > 0, there exists δ > 0 such that if x ∈ GL0

∞(A) (respectively
U0

∞(A)) is such that ‖x− y‖ < δ then

d(∆T(y), 0) < ε.

Proof. Since ∆T(y) = 0, there exists a piecewise continuously differentiable
curve ξ : [0, 1]→ GL0

∞(A) (U0
∞(A) respectively) such that ξ(0) = 1, ξ(1) = y and

∆̃T(ξ) = 0. Now apply Lemma 2.7.

Next, we consider some results about the closure of the commutator sub-
group. For a topological group G, recall that DG is the commutator subgroup of
G and DG is its closure. For a unital C∗-algebra A, DU(A) and DU0(A) will be
the closures in the norm topology.

LEMMA 2.9. Let A be a unital separable simple TAI-algebra. For every ε > 0,
there exists δ > 0 such that for every self-adjoint element a ∈ A with |τ(a)| < δ for all
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τ ∈ T(A),

dist(ei2πa, DU0(A)) =df inf{‖ei2πa − u‖ : u ∈ DU0(A)} < ε.

Proof. This follows from [31] which gives a topological group isomorphism:

Φ : U0(A)/DU0(A)→ Aff(T(A))/T(K0(A)).
The map Φ is the map induced by the de la Harpe–Skandalis determinant (with
universal trace). Note that for a self-adjoint a ∈ A, Φ([ei2πa]) = a+ T(K0(A)).

We will need a uniqueness result of Lin’s. Towards this, we fix some no-
tation. For a unital C∗-algebra A and for a unitary u ∈ U(A), let u denote the
image of u in U(A)/DU(A). For u, v ∈ U(A)/DU(A), let

dist(u, v) =df inf{‖x− y‖ : x, y ∈ U(A) and x = u, y = v}.
It follows that

dist(u, v) = inf{‖uv∗ − x‖ : x ∈ DU(A)} = dist(uv∗, DU(A)).
IfA, B are unital C∗-algebras and φ : A → B is a unital ∗-homomorphism, then φ

brings U(A) to U(B), and brings DU(A) to DU(B). Hence, φ induces a topologi-
cal group homomorphism φ‡ : U(A)/DU(A)→ U(B)/DU(B). Also, φ induces
a map [φ] : K(A) → K(B). (Here, K is total K-theory. See, for example, Defi-
nition 5.8.13. of [18].) Finally, if X is a compact metric space and τ ∈ T(C(X))
(tracial state) then, by the Riesz representation theorem, τ induces a Borel proba-
bility measure µτ on X.

The following is a result of Lin in [23]. (Also, a generalized version, with
the space X being an arbitrary compact metric space, can be found in [24].)

THEOREM 2.10. Let X be a compact metric space such that either X is a finite
CW-complex with dimension no more than one or X = [0, 1]n (n-cube) or X = Tn

(n-torus). Let ε > 0, let F ⊂ C(X) be a finite subset and let F : (0, 1) → (0, 1) be a
nondecreasing map. Then there exist η > 0, δ > 0, a finite subset G ⊂ C(X), a finite
subset P ⊂ K(C(X)) and a finite subset U ⊂ U(M∞(C(X))) satisfying the following:

Suppose thatA is a unital separable simple TAI-algebra and φ, ψ : C(X)→ A are
two unital ∗-homomorphisms such that:

µτ◦φ(Os) > F(s)

for all s > η, for all open balls Os in X with radius s and all τ ∈ T(A);
|τ ◦ φ(g)− τ ◦ ψ(g)| < δ

for all g ∈ G and all τ ∈ T(A); and

[φ]|P = [ψ]|P and dist(φ‡(z), ψ‡(z)) < δ

for all z ∈ U .
Then there exists a unitary u ∈ A such that, for all f ∈ F ,

‖φ( f )− uψ( f )u∗‖ < ε.
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The proof follows from Theorem 10.8 of [23].

LEMMA 2.11. Let A be a unital C∗-algebra. Let x ∈ GL0(A) have polar decom-
position x = u|x|. (So u is a unitary and |x| is a positive invertible.)

Suppose that ∆T(x) = 0.
Then ∆T(u) = ∆T(|x|) = 0. Moreover, τ(Log(|x|)) = 0 for all τ ∈ T(A).
The proof follows from the (short) argument of Proposition 2 d) in[14].
LetA, B be C∗-algebras and let φ : A → B be a ∗-homomorphism. Then for

every n > 1, the map Mn(A) → Mn(B) : [ai,j] 7→ [φ(ai,j)] is a ∗-homomorphism,
which will also denote by “φ".

LEMMA 2.12. Let A be a unital separable simple TAI-algebra.
(i) If u ∈ U0(A) is a unitary such that ∆T(u) = 0, then for every ε > 0, there exist

unitaries xj, yj ∈ U0(A), 1 6 j 6 18, such that∥∥∥u−
18

∏
j=1

(xj, yj)
∥∥∥ < ε.

(Here,
18
∏
j=1

(xj, yj) = (x1, y1)(x2, y2) · · · (x18, y18).)

(ii) If x ∈ GL0(A) is an invertible such that ∆T(x) = 0, then for every ε > 0, there
exist invertibles xj, yj ∈ GL0(A), 1 6 j 6 24, such that∥∥∥x−

24

∏
j=1

(xj, yj)
∥∥∥ < ε.

Proof. We prove part (i). The proof of part (ii) is similar.
Let X ⊆ T be the compact subset given by

X =df {t ∈ T : |t− 1| 6 2‖u− 1‖}.
(Note that 1 ∈ X, and X is either T or homeomorphic to [0, 1].)

Let ε > 0 be given. Contracting ε if necessary, we may assume that 0 < ε <
1/10 and that ε > 0 is small enough so that for every unitary v ∈ A, if ‖u− v‖ < ε
then sp(v) ⊆ X.

Let δ1 > 0 be such that for all self-adjoint elements c, c′ ∈ A if ‖c− c′‖ < δ1

then ‖ei2πc − ei2πc′‖ < ε/10. We may assume that δ1 < ε/10. Plug δ1/10 (for ε)
into Lemma 2.8 to get δ2 > 0. We may assume that δ2 < ε/10.

By Theorem 3.3 of [22], there exists a self-adjoint element a ∈ A such that

(2.2) ‖u− ei2πa‖ < δ2.

By our choice of δ2, we must have that

d(∆T(ei2πa), 0) < δ1/10

where d is the pseudometric on Aff(T(A))/K0(A) induced by the (uniform) met-
ric on Aff(T(A)).
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Since ∆T(ei2πa) = [a] (where [a] is the equivalence class of a in
Aff(T(A))/K0(A)), there exist projections q, r ∈ M∞(A) such that, for all τ ∈
T(A),

(2.3) |τ(a)− τ(q) + τ(r)| < δ1

10
.

Let F : (0, 1) → (0, 1) be the nondecreasing map given by F(t) =df t/10 for
all t ∈ (0, 1). Let F ⊂ C(X) be a finite subset that contains the identity function
h(t) =df t (t ∈ X).

Plug X, ε/10 (for ε), F and F into Theorem 2.10 to get η1 > 0, δ3 > 0, a
finite subset G ⊂ C(X), a finite subset P ⊂ K(C(X)) and a finite subset U ⊂
U(M∞(C(X)) satisfying the conclusions of Theorem 2.10.

Note that X is closed under complex conjugates. Hence, let S =df
{1, t1, t1, t2, t2, . . . , tN , tN} ⊂ X be a finite collection of 2N + 1 distinct points and
η2 > 0 such that for all s > η1 for all open balls Os in X with radius s,

(2.4) card(Os ∩ S)
1− η2

2N + 1
> F(s),

where card(Os ∩ S) is the cardinality of Os ∩ S.
Let Φ : C(X)→ A be the unital ∗-homomorphism given by Φ(h) =df ei2πa,

where h ∈ C(X) is the identity map (i.e., h(t) = t for all t ∈ X). Note that by
our assumption on ε and by (2.2), the spectrum of ei2πa is contained in X; so Φ is
well-defined. Let N1 > 1 be an integer so that U ⊂ MN1(C(X)). Let M1 > 1 be
an integer and let F1 ⊂MN1(A) be a finite set of self-adjoint elements so that for
all v ∈ U , there exist self–adjoint elements av,1, av,2, . . . , av,M1 ∈ F1 (repetitions
allowed) so that Φ(v) = ei2πav,1ei2πav,2 · · · ei2πav,M1 . (Note that K1(Φ) = 0.)

Choose δ4 > 0 such that if u1, u2, . . . , uM1 ∈ U(MN1(A)) are unitaries
such that dist(uj, DU(MN1(A))) < δ4 for 1 6 j 6 M1 then dist(u1u2 · · · uM1 ,
DU(MN1(A))) < δ3/10. We may assume that δ4 < δ3/10.

Plug δ4/10 (for ε) and MN1(A) (for A) into Lemma 2.9 to get δ5 > 0.
Choose integer N2 > 1 such that 1/N2 < η2/10. Also choose N3 > 1 such

that N3 > max{‖b‖ : b ∈ G ∪ F1}.
Since A is TAI and by Lemma 2.6 and Remark 1.1, let p ∈ A be a projection

and let I ∈ INT be a C∗-subalgebra of A with 1I = p such that the following
hold:

(a) τ(1A − p) < min{δ3/(10(1 + N3)), δ5/(10(1 + N3)), η2/(10(1 + N3))} for
all τ ∈ T(A).

(b) Each summand in I has matrix size at least N2(2N+1). (Equivalently,
every irreducible represention of I has image with the form Mn with n>N2(2N+
1).)

(c) There exists a1 ∈ I such that ‖a − ((1− p)a(1− p) + a1)‖ < δ1/10 and
‖ei2πa − ei2π((1−p)a(1−p)+a1)‖ < ε/10.



354 P.W. NG

(d) There exist projections q′, r′ ∈ M∞(I) such that |τ(a1)− τ(q′) + τ(r′)| <
δ1/10 for all τ ∈ T(I).

(e) Let ψ0 : C(X)→ (1− p)A(1− p) be the unital ∗-homomorphism given by
ψ0(h) =df (1− p)ei2π(1−p)a(1−p)(1− p), where h ∈ C(X) is the identity map (i.e.,
h(t) = t for all t ∈ X). (Note that by (2.2), by (c) and our assumptions on ε, p can
be chosen so that the spectrum of ei2π(1−p)a(1−p) is contained in X; so the map ψ0
is well-defined.)

Then for all v ∈ U ,

‖ψ0(v)− (1− p)ei2π(1−p)av,1(1−p)ei2π(1−p)av,2(1−p) · · · ei2π(1−p)av,M1 (1−p)(1− p)‖

<
δ3

10
.

(Here, we identify 1A − p with (1A − p)⊗ 1MN1
∈MN1(A).)

We denote the above statements by “(∗)".
Since I ∈ INT, let us suppose, to simplify notation, that I has the form

I =
N4⊕
j=1

Mmj(C[0, 1])

where N4 > 1. The proof for the other cases are similar.
We now construct two unital ∗-homomorphisms φ1, φ2 : C(X)→ A.
By (∗), we have that for 1 6 j 6 N4, mj > N2(2N + 1). For each j, let

ψj : C(X)→Mmj(C[0, 1]) be the (finite rank) unital ∗-homomorphism given by

ψj( f ) =df diag( f (1), f (t1), f (t1), f (t2), f (t2), . . . ., f (tN), f (tN), f (1), f (t1),

f (t1), f (t2), f (t2), . . . , f (tN), f (tN), f (1), f (t1), f (t1), . . .)

for all f ∈ C(X), where the tail of the diagonal either has the form “. . . f (tl), f (tl))"
or has the form “. . . f (tl), f (tl), f (1))".

Let h ∈ C(X) be the identity function, i.e., h(t) = t for all t ∈ X.
We define the unital ∗-homomorphisms φ1, φ2 : C(X)→ A in the following

manner:

φ1(h) =df ψ0(h)⊕
N4⊕
j=1

ψj(h) and φ2(h) =df (1− p)⊕
N4⊕
j=1

ψj(h).

From (∗), (2.4) and our choices of N2, N3 and η2, we have the following
statements:

(i) µτ◦φ2(Os) > F(s) for all s > η1, for all open balls Os ∈ X

with radius s and for all τ ∈ T(A).
(ii) |τ ◦ φ1( f )− τ ◦ φ2( f )| < δ3/2 for all f ∈ G and for all τ ∈ T(A).

(2.5)
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Next, since X is either T or homeomorphic to [0, 1] and since the image of h
(under both φ1 and φ2) is contained in U0(A),

(2.6) K(φ1) = K(φ2).

Finally, from (∗)(a), we have that |τ((1− p)b(1− p))| < δ5/10 for all b ∈ F1
and for all τ ∈ T(MN1(A)). It follows, from the definition of δ5 and Lemma 2.9,
that dist(ei2π(1−p)b(1−p), DU(MN1(A))) < δ4/10 for all b ∈ F1. From the defini-
tion of δ4 and the definition of F1, it follows that for all v ∈ U ,

dist(ei2π(1−p)av,1(1−p)ei2π(1−p)av,2(1−p) · · · ei2π(1−p)av,M1 (1−p), DU(MN1(A))) <
δ3

10
.

From this and (∗)(e), we have that for all v ∈ U ,

(2.7) dist(ψ0(v)⊕ p, DU(MN1(A))) <
δ3

5
.

Also, (1 − p)φ2(MN1(C(X)))(1 − p) ⊆ MN1(C(1 − p)) . Hence, for all v ∈
U , there exists self–adjoint c ∈ MN1(C(1 − p)) with ‖c‖ 6 1 such that (1 −
p)φ2(v)(1− p)⊕ p = ei2πc. Note that this and (∗)(a) implies that |τ(c)| < δ5/10
for all τ ∈ T(MN1(A)). From this, the definition of δ5 and since δ4 < δ3/10, we
have that for all v ∈ U , dist((1 − p)φ2(v)(1 − p) ⊕ p, DU(MN1(A))) < δ3/10.
From this, the definitions of φ1, φ2 and (2.7), we have that for all v ∈ U ,

(2.8) dist(φ‡
1(v), φ

‡
2(v)) < δ3.

From (2.5), (2.6), (2.8) and from Theorem 2.10, there exists a unitary w ∈ A
such that for all f ∈ F ,

‖φ1( f )− wφ2( f )w∗‖ < ε

10
.

Since the identity function h (i.e., h(t) =df t for all t ∈ X) is an element of F ,
it follows that∥∥∥((1− p)ei2π(1−p)a(1−p)(1− p)⊕

N4⊕
j=1

ψj(h)
)
−w

(
(1− p)⊕

N4⊕
j=1

ψj(h)
)

w∗
∥∥∥ <

ε

10
.

From this and Corollary 2.2, there exist unitaries x1, y1, x2, y2 ∈ A such that∥∥∥(x1, y1)−
(
(1− p)ei2π(1−p)a(1−p)(1− p)⊕

N4⊕
j=1

ψj(h)
)∥∥∥ <

ε

10
and(2.9)

(x2, y2) = (1− p)⊕
N4⊕
j=1

ψj(h).(2.10)

By Lemma 1.9 of [29], there exist real-valued continuous functions θj,k :
[0, 1] → R (1 6 j 6 N4, 1 6 k 6 mj), and there exist pairwise orthogonal
minimal projections pj,k ∈ Mmj(C[0, 1]) (again 1 6 j 6 N4, 1 6 k 6 mj) with
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mj

∑
k=1

pj,k = 1Mmj (C[0,1]) for 1 6 j 6 N4 such that (a) θj,1 6 θj,2 6 · · · 6 θj,mj for

1 6 j 6 N4 and (b)
N4
∑

j=1

mj

∑
k=1

θj,k pj,k is approximately unitarily equivalent to a1 in

I . Note that the spectrum of I is Î =
N4⊔
j=1

̂Mmj(C[0, 1]) =
N4⊔
j=1

[0, 1]; and so, for all

s ∈ Î , the spectrum of a1(s) is {θj,k(s) : 1 6 j 6 N4 and 1 6 k 6 mj}.

Hence, replacing
N4
∑

j=1

mj

∑
k=1

θj,k pj,k by a unitarly equivalent (in I) self-adjoint

element if necessary, we may assume that

(2.11)
∥∥∥a1 −

N4

∑
j=1

mj

∑
k=1

θj,k pj,k

∥∥∥ <
δ1

10
.

(Note that a unitary equivalence is the same as simultaneously replacing the pro-
jections pj,k by unitarily equivalent projections, with the same unitary for all the
projections. In particular, the eigenvalue functions θj,k stay the same.)

Moreover, by (∗)(d) and our assumptions on θj,k, pj,k, for all τ ∈ T(I),

(2.12)
∣∣∣τ( N4

∑
j=1

mj

∑
k=1

θj,k pj,k

)
− τ(q′) + τ(r′)

∣∣∣ < δ1

10
.

Let g : Î =
N4⊔
j=1

̂Mmj(C[0, 1]) → R be the continuous function defined as

follows:
For s ∈ ̂Mmj(C[0, 1]) ∼= [0, 1],

g(s) =df (1/mj)

mj

∑
k=1

θj,k(s)− (1/mj)Tr(q′(s)) + (1/mj)Tr(r′(s)),

where Tr is the (nonnormalized) trace on M∞. (Note that q′, r′ must, by definition
of M∞(I), sit in some big matrix algebra over I .)

Hence, g1I ∈ I is a self-adjoint element, and by (2.12),

‖g1I‖ <
δ1

10
and(2.13)

τ
( N4

∑
j=1

mj

∑
k=1

θj,k pj,k

)
− τ(q′) + τ(r′)− τ(g1I ) = 0(2.14)

for all τ ∈ T(I).

For 1 6 j 6 N4, fix τj ∈ T(Mmj(C[0, 1])). Let a2 =df

N4
∑

j=1

mj

∑
k=1

θj,k pj,k − g1I and

let a2 =
N4
∑

j=1
a2,j, where a2,j ∈Mmj(C[0, 1]) for 1 6 j 6 N4.
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Let q′ =
N4
∑

j=1
qj and r′ =

N4
∑

j=1
rj where for 1 6 j 6 N4, qj, rj ∈M∞ ⊗Mmj(C[0, 1]) are

projections. Suppose that, for 1 6 j 6 N4, qj,rj are the sums of Lj and L′j minimal
projections in M∞⊗Mmj(C[0, 1]) respectively. To simplify notation, let us assume

that L′j > Lj for 1 6 j 6 N4. Then for 1 6 j 6 N4, e
i2π(a2,j+(L′j−Lj)pj,mj

)
= ei2πa2,j

and hence,

(2.15) e
i2π(a2+∑

N4
j=1(L′j−Lj)pj,mj

)
= ei2πa2 .

Let a3 =df a2 +
N4
∑

j=1
(L′j − Lj)pj,mj ∈ I . By (2.14), we have that τ(a3) = 0

for all τ ∈ T(I). Hence, by Lemma 2.4(i) and by Lemma 1.9 of [29], there exist
unitaries x3, y3, x4, y4, . . . , x18, y18 in A such that

(2.16) ‖ei2πa3 − (x3, y3)(x4, y4) · · · (x18, y18)‖ <
ε

10
.

(Actually, for 3 6 j 6 18, pxj p, pyj p ∈ I , xj = pxj p⊕ (1− p) and yj = pyj p⊕
(1− p).)

From the definition of δ1 and by (2.11), (2.13), (2.15) and (2.16),∥∥∥ei2πa1 −
18

∏
j=3

(xj, yj)
∥∥∥ <

ε

5
.

From this, (2.2), (∗) statement (c), (2.9) and (2.10), we have that∥∥∥u−
18

∏
j=1

(xj, yj)
∥∥∥ < ε.

We now prove part (ii). Say that x = u|x| is the polar decomposition of x.
Then by Lemma 2.11, ∆T(u) = ∆T(|x|) = 0.

By part (i), let xj, yj ∈ U0(A) be unitaries such that

(2.17)
∥∥∥u−

18

∏
j=1

(xj, yj)
∥∥∥ <

ε

2
.

Hence, to complete the proof, it suffices to prove the following claim:

Claim. There exist invertibles xj, yj ∈ GL0(A), 19 6 j 6 24, such that∥∥∥|x| − 24

∏
j=19

(xj, yj)
∥∥∥ <

ε

2
.

Sketch of proof of the Claim. The proof of the Claim is very similar to the proof
of part (i) of this lemma. The main differences are the following:

(i) Since |x| > 0, |x| automatically has the form |x| = ea where a ∈ Asa.
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(ii) Set X=df [−2‖a‖, 2‖a‖]. The set S will have the form S = {0, t1,−t1, t2,−t2,
. . . , tN ,−tN}. (Of course, at some point, one would need to exponentiate the
images of corresponding maps C(X)→ A.)

(iii) In the proof of part (i), replace Corollary 2.2 and Lemma 2.4 with Lemma 2.6
in [30] and (this paper) Lemma 2.5 respectively.

(iv) In the proof of part (i), replace every occurrence of ∆T(|x|) = 0 and every
occurrence of equation (2.3) with the condition τ(Log(|x|) = 0 for all τ ∈ T(A).
(See Lemma 2.11.)

End of sketch of proof of the Claim and of the lemma.

LEMMA 2.13. Let A be a unital separable simple TAI-algebra.
(i) Suppose that u ∈ U0(A) is a unitary such that ∆T(u) = 0. Then for every

ε > 0, there exist unitaries xj, yj ∈ U0(A), with 1 6 j 6 20, and there exists a self-
adjoint element a ∈ A such that, for all τ ∈ T(A),

u =
( 20

∏
j=1

(xj, yj)
)

ei2πa ‖a‖ < ε and τ(a) = 0.

(ii) Suppose that x ∈ GL0(A) is an invertible such that ∆T(x) = 0. Then for every
ε > 0, there exist invertibles xj, yj ∈ GL0(A), with 1 6 j 6 26, and there exists an
element d ∈ A such that, for all τ ∈ T(A),

u =
( 26

∏
j=1

(xj, yj)
)

ed ‖d‖ < ε and τ(d) = 0.

Proof. We firstly prove part (i). The proof of part (ii) is similar.
Choose an integer N > 10 such that if c1, c2, c3 ∈ A are self-adjoint ele-

ments such that ‖cj‖ < 1/N for 1 6 j 6 3 then ‖ei2πc1ei2πc2ei2πc3 − 1‖ < 1 and
(1/2π)‖Log(ei2πc1ei2πc2ei2πc3)‖ < ε.

Choose a δ > 0, with δ < 1, such that for any unitary v ∈ A, if ‖v− 1‖ < δ
then (1/2π)‖Log(v)‖ < 1/(2N).

By Lemma 2.12 part (i), there exist unitaries xj, yj ∈ U0(A) with 1 6 j 6 18
and there exists a unitary w ∈ U0(A) such that

(2.18) u = (x1, y1)(x2, y2) · · · (x18, y18)w

and ‖w− 1‖ < δ.
By our choice of δ, there exists a self-adjoint element b ∈ A with ‖b‖ <

1/(2N) such that w = ei2πb. Since ∆T(w) = 0, there exist projections p0, q0 ∈
M∞(A) such that

τ(b)− τ(p0) + τ(q0) = 0

for all τ ∈ T(A).
Since A is simple TAI and since ‖b‖ < 1/(2N), we can replace p0, q0 by

projections p, q ∈ A with τ(p), τ(q) < 1/(2N) and

τ(b)− τ(p) + τ(q) = 0
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for all τ ∈ T(A).
Since τ(p), τ(q) < 1/(2N) for all τ ∈ T(A) and since A has strict compar-

ison, there exist pairwise orthogonal projections p1, p2, . . . , pN , q1, q2, . . . , qN ∈ A
such that pj ∼ p and qj ∼ q for 1 6 j 6 N. Hence, for all τ ∈ T(A),

(2.19) τ(b)− τ
( 1

N

N

∑
j=1

pj

)
+ τ

( 1
N

N

∑
j=1

qj

)
= 0.

We have that

ei2πb = ei2π(1/N)∑N
j=1 pj e−i2π(1/N)∑N

j=1 qj(2.20)

· (e−i2π(1/N)∑N
j=1 pj ei2π(1/N)∑N

j=1 qj ei2πb).

By Lemma 2.1 of [30], there exist unitaries x19, y19, x20, y20 ∈ U0(A) such
that

ei2π(1/N)∑N
j=1 pj = (x19, y19) and(2.21)

e−i2π(1/N)∑N
j=1 qj = (x20, y20).(2.22)

Also, by our choice of N, there exists a self-adjoint element a ∈ A such that

(2.23) ei2πa = e−i2π(1/N)∑N
j=1 pj ei2π(1/N)∑N

j=1 qj ei2πb.

Moreover, ‖a‖ < ε; by Lemma 3(b) of [14], (2.23) and (2.19),

τ(a) = τ(b)− τ
( 1

N

N

∑
j=1

pj

)
+ τ

( 1
N

N

∑
j=1

qj

)
= 0

for all τ ∈ T(A). Finally, by (2.18), (2.20), (2.21), (2.22) and (2.23),

u = (x1, y1)(x2, y2)(x3, y3) · · · (x20, y20)ei2πa.

The proof of part (ii) is very similar to the proof of part (i). The main differ-
ence is that we replace Lemma 2.12 part (i) with Lemma 2.12 part (ii).

LEMMA 2.14. Let A be a unital separable simple TAI-algebra.
(i) Suppose that ux ∈ U0(A) is a unitary with ‖u− 1‖ <

√
2/100 and τ(Log(u))

= 0 for all τ ∈ T(A). Then for every ε > 0, there exist unitaries xj, yj, z ∈ U0(A),
1 6 j 6 6, such that

u =
( 6

∏
j=1

(xj, yj)
)

z ‖z− 1‖ < ε, τ(Log(z)) = 0

for all τ ∈ T(A), and

‖xj − 1‖, ‖yj − 1‖ < 2
√

2‖u− 1‖1/2

for 1 6 j 6 6.
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(ii) Suppose that x∈GL0(A) is an invertible with ‖x−1‖<1/1000 and τ(Log(x))
= 0 for all τ ∈ T(A). Then for every ε > 0, there exist invertibles xj, yj, z ∈ GL0(A),
1 6 j 6 12, such that

x =
( 12

∏
j=1

(xj, yj)
)

z ‖z− 1‖ < ε, τ(Log(z)) = 0

for all τ ∈ T(A), and

‖xj − 1‖, ‖yj − 1‖ < 24‖x− 1‖1/2

for 1 6 j 6 12.

Proof. The argument of (i) is a variation on the argument of Lemma 2.12(i),
where we need to control the norm distance to the unit of the operators that make
up the commutators. We go through the proof for the convenience of the reader.

Let X ⊆ T be the compact subset given by

X =df {t ∈ T : |t− 1| 6 2‖u− 1‖}.

(Note that 1 ∈ X and X is homeomorphic to [0, 1].)
Let ε > 0 be given. Contracting ε if necessary, we may assume that 0 <

ε < min{1/100, ‖u− 1‖} and that ε > 0 is small enough so that for every unitary
v ∈ A, if ‖u− v‖ < ε then sp(v) ⊆ X.

Since ‖u− 1‖ <
√

2/10, a =df (1/(i2π))Log(u) ∈ Asa and

(2.24) u = ei2πa.

Hence, τ(a) = 0 for all τ ∈ T(A). Also, sp(a) ⊂ (−π/2, π/2).
Let δ1 > 0 be such that for all self-adjoint elements c, c′ ∈ A if ‖c− c′‖ < δ1

then ‖ei2πc − ei2πc′‖ < ε/10. We may assume that δ1 < ε/10 and that for all
0 < δ′1 6 δ1, (δ′1 + sp(a)) ∪ (−δ′1 + sp(a)) ⊂ (−π/2, π/2).

Let F : (0, 1) → (0, 1) be the nondecreasing map given by F(t) =df t/10 for
all t ∈ (0, 1). Let F ⊂ C(X) be a finite subset that contains the identity function
h(t) =df t (t ∈ X).

Plug X, ε/10 (for ε), F and F into Theorem 2.10 to get η1 > 0, δ3 > 0, a
finite subset G ⊂ C(X), a finite subset P ⊂ K(C(X)) and a finite subset U ⊂
U(M∞(C(X))) satisfying the conclusions of Theorem 2.10.

Note that X is closed under complex conjugates. Hence, let S=df {1, t1, t1, t2,
t2, . . . , tN , tN} ⊂ X be a finite collection of 2N + 1 distinct points and η2 > 0 such
that for all s > η1 for all open balls Os in X with radius s,

(2.25) card(Os ∩ S)
1− η2

2N + 1
> F(s),

where card(Os ∩ S) is the cardinality of Os ∩ S.
Let Φ : C(X) → A be the unital ∗-homomorphism given by Φ(h) =df

ei2πa = u, where h ∈ C(X) is the identity map (i.e., h(t) = t for all t ∈ X).
Note that the spectrum of u = ei2πa is contained in X; so Φ is well-defined. Let
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N1 > 1 be an integer so that U ⊂MN1(C(X)). Note that since X is homeomorphic
to [0, 1], every unitary in MN1(C(X)) can be approximated arbitrarily close by
exponentials. Hence, let F1 ⊂ MN1(A) be a finite set of self-adjoint elements so
that for all v ∈ U , there exists a self–adjoint element av ∈ F1 so that ‖Φ(v) −
ei2πav‖ < δ3/10.

Plug δ3/10 (for ε) and MN1(A) (for A) into Lemma 2.9 to get δ4 > 0.
Choose integer N2 > 1 such that 1/N2 < η2/10. Also choose N3 > 1 such

that N3 > max{‖b‖ : b ∈ G ∪ F1}.
Since A is TAI and by Lemma 2.6 and Remark 1.1, let p ∈ A be a projection

and let I ∈ INT be a C∗-subalgebra of A with 1I = p such that the following
hold:

(a) τ(1A − p) < min{δ3/(10(1 + N3)), δ4/(10(1 + N3)), η2/(10(1 + N3))} for
all τ ∈ T(A).

(b) Each summand in I has matrix size at least N2(2N + 1). (Equivalently, ev-
ery irreducible represention of I has image with the form Mn with n > N2(2N +
1).)

(c) There exists a1 ∈ I such that ‖a − ((1− p)a(1− p) + a1)‖ < δ1/10 and
‖ei2πa− ei2π((1−p)a(1−p)+a1)‖ < ε/10. Note that for 0 < δ′1 6 δ1, sp(a1)∪ (δ′1/10+
sp(a1)) ∪ (−δ′1/10 + sp(a1)) ⊂ (−π/2, π/2).

(d) |τ(a1)| < δ1/10 for all τ ∈ T(I).
(e) Let ψ0 : C(X)→ (1− p)A(1− p) be the unital ∗-homomorphism given by

ψ0(h) =df (1− p)ei2π(1−p)a(1−p)(1− p), where h ∈ C(X) is the identity map (i.e.,
h(t) = t for all t ∈ X). (Note that by (2.24), by (c) and our assumptions on ε, p can
be chosen so that the spectrum of ei2π(1−p)a(1−p) is contained in X; so the map ψ0
is well-defined.)

Then for all v ∈ U ,

‖ψ0(v)− (1− p)ei2π(1−p)av(1−p)(1− p)‖ < δ3

10
.

(Here, we identify 1A − p with (1A − p)⊗ 1MN1
∈MN1(A).)

We denote the above statements by “(∗)".
Since I ∈ INT, let us suppose, to simplify notation, that I has the form

I =
N4⊕
j=1

Mmj(C[0, 1])

where N4 > 1. The proofs for the other cases are similar.
We now construct two unital ∗-homomorphisms φ1, φ2 : C(X)→ A.
By (∗), we have that for 1 6 j 6 N4, mj > N2(2N + 1). For each j, let

ψj : C(X)→Mmj(C[0, 1]) be the (finite rank) unital ∗-homomorphism given by

ψj( f ) =df diag( f (1), f (t1), f (t1), f (t2), f (t2), . . . , f (tN), f (tN), f (1), f (t1),

f (t1), f (t2), f (t2), . . . , f (tN), f (tN), f (1), f (t1), f (t1), . . .)
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for all f ∈ C(X), where the tail of the diagonal either has the form “. . . f (tl), f (tl))"
or has the form “. . . f (tl), f (tl), f (1))".

Let h ∈ C(X) be the identity function, i.e., h(t) = t for all t ∈ X.
We define the unital ∗-homomorphisms φ1, φ2 : C(X)→ A in the following

manner:

φ1(h) =df ψ0(h)⊕
N4⊕
j=1

ψj(h) and φ2(h) =df (1− p)⊕
N4⊕
j=1

ψj(h).

From (∗), (2.25) and our choices of N2, N3 and η2, we have the following
statements:

(i) µτ◦φ2(Os) > F(s) for all s > η1, for all open balls Os ∈ X

with radius s and for all τ ∈ T(A).
(ii) |τ ◦ φ1( f )− τ ◦ φ2( f )| < δ3/2 for all f ∈ G and for all τ ∈ T(A).

(2.26)

Next, since X is homeomorphic to [0, 1] and since the image of h (under both
φ1 and φ2) is contained in U0(A),

(2.27) K(φ1) = K(φ2).

Finally, from (∗)(a), we have that |τ((1− p)b(1− p))| < δ4/10 for all b ∈ F1
and for all τ ∈ T(MN1(A)). It follows, from the definition of δ4 and Lemma 2.9,
that dist(ei2π(1−p)b(1−p), DU(MN1(A))) < δ3/10 for all b ∈ F1. From this and
(∗)(e), we have that for all v ∈ U ,

(2.28) dist(ψ0(v)⊕ p, DU(MN1(A))) <
δ3

5
.

Also, (1 − p)φ2(MN1(C(X)))(1 − p) ⊆ MN1(C(1 − p)) . Hence, for all v ∈
U , there exists self–adjoint c ∈ MN1(C(1 − p)) with ‖c‖ 6 1 such that (1 −
p)φ2(v)(1− p)⊕ p = ei2πc. Note that this and (∗)(a) implies that |τ(c)| < δ4/10
for all τ ∈ T(MN1(A)). From this and the definition of δ4, we have that for all
v ∈ U , dist((1− p)φ2(v)(1− p)⊕ p, DU(MN1(A))) < δ3/10. From this, the defi-
nitions of φ1, φ2 and (2.28), we have that for all v ∈ U ,

(2.29) dist(φ‡
1(v), φ

‡
2(v)) < δ3.

From (2.26), (2.27), (2.29) and from Theorem 2.10, there exists a unitary w ∈
A such that for all f ∈ F ,

‖φ1( f )− wφ2( f )w∗‖ < ε

10
.

Since the identity function h (i.e., h(t) =df t for all t ∈ X) is an element of F ,
it follows that∥∥∥((1− p)ei2π(1−p)a(1−p)(1− p)⊕

N4⊕
j=1

ψj(h)
)
−w

(
(1− p)⊕

N4⊕
j=1

ψj(h)
)

w∗
∥∥∥ <

ε

10
.
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From this and Corollary 2.2, there exist unitaries x1, y1, x2, y2 ∈ A such that

∥∥∥(x1, y1)−
(
(1− p)ei2π(1−p)a(1−p)(1− p)⊕

N4⊕
j=1

ψj(h)
)∥∥∥ <

ε

10
and(2.30)

(x2, y2) = (1− p)⊕
N4⊕
j=1

ψj(h).(2.31)

Moreover, since |t− 1| 6 2‖u− 1‖ <
√

2 for all t ∈ X, it follows, by Corollary 2.2,
that ‖xj − 1‖, ‖yj − 1‖ 6

√
2‖u− 1‖1/2 for j = 1, 2.

Finally, by inspection (and the definition of X), we see that there exist b1, b2∈
Asa with (xj, yj) = ei2πbj , ‖bj‖ < 1, τ(bj) = 0 for all τ ∈ T(A), and ‖ei2πbj − 1‖ 6
2‖u− 1‖ 6

√
2/50, for j = 1, 2.

By Lemma 1.9 of [29], there exist real-valued continuous functions θj,k :
[0, 1] → R (1 6 j 6 N4, 1 6 k 6 mj), and there exist pairwise orthogonal
minimal projections pj,k ∈ Mmj(C[0, 1]) (again 1 6 j 6 N4, 1 6 k 6 mj) with
mj

∑
k=1

pj,k = 1Mmj (C[0,1]) for 1 6 j 6 N4 such that (a) θj,1 6 θj,2 6 · · · 6 θj,mj for

1 6 j 6 N4 and (b)
N4
∑

j=1

mj

∑
k=1

θj,k pj,k is approximately unitarily equivalent to a1 in

I . Note that the spectrum of I is Î =
N4⊔
j=1

̂Mmj(C[0, 1]) =
N4⊔
j=1

[0, 1]; and so, for all

s ∈ Î , the spectrum of a1(s) is {θj,k(s) : 1 6 j 6 N4 and 1 6 k 6 mj}.

Hence, replacing
N4
∑

j=1

mj

∑
k=1

θj,k pj,k by a unitary equivalent (in I) self-adjoint

element if necessary, we may assume that

(2.32)
∥∥∥a1 −

N4

∑
j=1

mj

∑
k=1

θj,k pj,k

∥∥∥ <
δ1

10
.

(Note that a unitary equivalence is the same as simultaneously replacing the pro-
jections pj,k by unitarily equivalent projections, with the same unitary for all the
projections. In particular, the eigenvalue functions θj,k stay the same.)

Moreover, by (∗)(d) and our assumptions on θj,k, pj,k, for all τ ∈ T(I),

(2.33)
∣∣∣τ( N4

∑
j=1

mj

∑
k=1

θj,k pj,k

)∣∣∣ < δ1

10
.

Let g : Î =
N4⊔
j=1

̂Mmj(C[0, 1]) → R be the continuous function defined as

follows:
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For s ∈ ̂Mmj(C[0, 1]) ∼= [0, 1],

g(s) =df
1

mj

mj

∑
k=1

θj,k(s).

Hence, g1I ∈ I is a self-adjoint element, and by (2.33), for all τ ∈ T(I),

‖g1I‖ <
δ1

10
and(2.34)

τ
( N4

∑
j=1

mj

∑
k=1

θj,k pj,k

)
− τ(g1I ) = 0.(2.35)

Let a2 =df

N4
∑

j=1

mj

∑
k=1

θj,k pj,k − g1I . By (∗)(c) and (2.34), sp(a2) ⊂ (−π/2, π/2).

Also, by (2.35), we have that τ(a2) = 0 for all τ ∈ T(I).
Hence, by Lemma 2.4(ii) (and by conjugating with an appropriate permuta-

tion unitary if necessary) there exist unitaries x3, y3, x4, y4, x5, y5, x6, y6 in A such
that

(2.36) ei2πa2 = (x3, y3)(x4, y4)(x5, y5)(x6, y6)

and for 3 6 j 6 6, ‖xj − 1‖ 6
√

2‖ei2πa2 − 1‖1/2. Note that by the defini-
tion of δ1 and our assumptions on ε, ‖ei2πa2 − 1‖ 6 ‖ei2πa2 − ei2πa1‖+ ‖ei2πa1 −
1‖ 6 ε/10+ ‖ei2π((1−p)a(1−p))+a1)− 1‖ 6 (1/10)‖u− 1‖+ ‖ei2π((1−p)a(1−p))+a1)−
ei2πa‖+‖ei2πa − 1‖ 6 (1/10)‖u− 1‖+ ε/10 + ‖u− 1‖ 6 2‖u− 1‖.

Hence, ‖ei2πa2 − 1‖ 6
√

2/50 and ‖xj − 1‖ 6 2‖u− 1‖1/2. Similarly, ‖yj −
1‖ 6 2‖u− 1‖1/2 for 3 6 j 6 6.

From the definitions of a2 and δ1,∥∥∥ei2πa1 −
6

∏
j=3

(xj, yj)
∥∥∥ <

ε

5
.

From this, (2.24), (∗) statement (c), (2.30) and (2.31), we have that∥∥∥u−
6

∏
j=1

(xj, yj)
∥∥∥ < ε

and ‖xj − 1‖, ‖yj − 1‖ 6 2
√

2‖u− 1‖1/2 for 1 6 j 6 6.

Hence, u =
( 6

∏
j=1

(xj, yj)
)

z where z ∈ U0(A) and ‖z − 1‖ < ε (which is

< 1/100 by our hypotheses on ε). Hence, ei2πa = ei2πb1ei2πb2ei2πa2 z. But (1−
‖ei2πb1 − 1‖)(1 − ‖ei2πb2 − 1‖)(1 − ‖ei2πa2 − 1‖)(1 − ‖z − 1‖) > (1 −

√
2/50)3

(99/100) > 1/2. Hence, by Lemma 3(b) of [14], τ(a) = τ(b1) + τ(b2) + τ(a2) +
(1/(2πi))τ(Log(z)) for all τ ∈ T(A). Hence, τ(Log(z)) = 0 for all τ ∈ T(A).

Next, we sketch the proof of (ii).
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Let x = u|x| be the polar decomposition of x. Since ‖x − 1‖ < 1/1000,
‖|x| − 1‖ < 2001/1000000 and ‖u− 1‖ < 3001/1000000 <

√
2/100.

Also, by Lemma 2.11, ∆T(|x|) = ∆T(u) = 0, and τ(Log(|x|)) = 0 for all
τ ∈ T(A). Hence, by Lemma 3(b) of [14], τ(Log(u)) = 0 for all τ ∈ T(A).

Hence, by (i), there exist unitaries x′j, y′j, v ∈ U0(A), 1 6 j 6 6, such that

u =
( 6

∏
j=1

(x′j, y′j)
)

v, ‖v− 1‖ < min{ε/10, 1/100}, τ(Log(v)) = 0

for all τ ∈ T(A), and

‖x′j − 1‖, ‖y′j − 1‖ < 2
√

2‖u− 1‖1/2 6 4
√

2‖x− 1‖1/2

for 1 6 j 6 6.

Claim. There exist invertibles xj, yj, z′ ∈ GL0(A), 7 6 j 6 12, such that

|x| =
( 12

∏
j=7

(xj, yj)
)

z′, ‖z′ − 1‖ < min{ε/10, 1/100}, τ(Log(z′)) = 0

for all τ ∈ T(A), and

‖xj − 1‖, ‖yj − 1‖ < 8‖|x| − 1‖1/2

for 7 6 j 6 12.

Sketch of proof of Claim.
The proof is similar to the proof of (i) (also similar to the proof of Lem-

ma 2.12). Here are the main differences:

(1) Since |x| > 0, |x| has the form |x| = ea where a ∈ Asa. Choose δ0 > 0 so that
|e‖a‖+δ0 − 1|, |e−‖a‖−δ0 − 1| 6 2‖ea − 1‖. Then take X =df [−‖a‖ − δ0, ‖a‖+ δ0].
(At some point, one would need to exponentiate the images of corresponding
maps C(X)→ A.)

(2) In the proof of (i), Corollary 2.2 and Lemma 2.4 (ii) should be replaced with
Lemma 2.6 of [30] and (this paper) Lemma 2.5 respectively.

End of sketch of proof of the Claim.
Note that from the Claim, it follows that for 7 6 j 6 12,

‖xj − 1‖ 6 24‖x− 1‖1/2 and ‖yj − 1‖ 6 24‖x− 1‖1/2.

From the above, we have that

x = u|x| =
( 6

∏
j=1

(x′j, y′j)
)

v
( 12

∏
j=7

(xj, yj)
)

z′ =
( 6

∏
j=1

(x′j, y′j)
)( 12

∏
j=7

(vxjv∗, vyjv∗)
)

vz′.

Let z =df vz′. Then ‖z − 1‖ < ε. Also, (1 − ‖v − 1‖)(1 − ‖z′ − 1‖) >
(99/100)2 > 1/2. Hence, by Lemma 3(b) of [14], τ(Log(z)) = τ(Log(v)) +
τ(Log(z′)) = 0 for all τ ∈ T(A).
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Next, towards the proof of Theorem 2.18, we slightly reword Lemma 5.17 of
[15] for the case of interest:

LEMMA 2.15. Let A be a unital C∗-algebra with cancellation of projections and
two projections p, q ∈ A with p + q = 1 and u ∈ A a partial isometry such that
u∗u = p and uu∗ 6 q.

Say that x ∈ U0(A) with x− 1 ∈ pAp and ‖x− 1‖ < 1. Then there exist v, w ∈
U0(A) and y ∈ U0(A) with y− 1 ∈ qAq such that x = (v, w)y, ‖y− 1‖ = ‖x− 1‖,
max{‖v− 1‖, ‖w− 1‖} 6 ‖x− 1‖1/2, and T(Log(y)) = T(Log(x)).

Proof. This follows immediately from the statement of Lemma 5.17 in [15],
taking qyq =df uxu∗+ q− uu∗ and noting that y is unitarily equivalent to x. (Here
cancellation is used.)

REMARK 2.16. In the proof of Theorem 2.18, we will repeatedly use Lem-
ma 2.15, and Proposition 5.18 of [15]. We note that in the latter, if the C∗-algebraA
is infinite dimensional simple TAI, and if the starting unitary x satisfies ‖x− 1‖ <
1/4 then all the unitaries and partial unitaries in the statement are in the con-
nected component of the identity. This follows immediately from the statement
of Proposition 5.18 in [15], and from the assumption that A is simple TAI.

Next, Theorem 2.18 will also require a lemma concerning the existence of
projections in simple nonelementary TAI-algebras. Since no extra effort is re-
quired, we also prove it for the case of simple real rank zero C∗-algebras with
strict comparison and cancellation. The next lemma generalizes Lemma 3.6 of
[9]. (See also Proposition 6.1 of [15] (the proof) and Lemma 1.7 of [30].)

LEMMA 2.17. Let A be a unital separable simple nonelementary C∗-algebra such
that either

(i) A is TAI, or
(ii) A has real rank zero, strict comparison and cancellation.

Then there exist projections pn, qn, rn in A (n > 1) such that the following hold:
(a) p1 + q1 + r1 = 1A.
(b) pn � qn � rn (n > 1).
(c) rn ⊥ rm for n 6= m.
(d) rn = pn+1 + qn+1 (n > 1).

Proof. Firstly, we show that A is weakly divisible; i.e., for every nonzero
projection p ∈ A, for all n > 2, there is a unital embedding of Mn ⊕Mn+1 into
pAp.

If A has real rank zero then A is weakly divisible by Proposition 5.3 of [28].
Suppose that A is TAI. Then A has the ordered K0 group of a simple uni-

tal real rank zero C∗-algebra (see Theorem 4.8 of [20] and Theorem 4.18 of [7]).
Hence, since simple infinite dimensional nonelementary real rank zero C∗-alge-
bras are weakly divisible ([28], Proposition 5.3), A is weakly divisible.

Whichever the case, we have that A is weakly divisible.
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We now inductively construct the projections pn, qn, rn (n > 1).
Basis step n = 1.
Since A is weakly divisible, there is a unital embedding of φ : M2 ⊕M3 →

A. Let {ei,j}16i,j62 and { fk,l}16k,l63 be systems of matrix units for M2 and M3
respectively. Let r1 ∈ A be the projection that is given by r1 =df φ(e1,1) + φ( f1,1).
Then clearly

2[r1] < [1A] < 3[r1]

in (K0(A), K0(A)+).
Hence, 2τ(r1) < 1 < 3τ(r1) for all τ ∈ T(A). Hence,

(2.37) 0 <
τ(r1)

2
<

1− τ(r1)

2
< τ(r1)

for all τ ∈ T(A). Find an integer N > 2 such that

(2.38)
1
N

< inf
{

τ(r1)−
1− τ(r1)

2
: τ ∈ T(A)

}
.

(This integer exists since the map τ 7→ τ(r1) is a continuous function on the
compact set T(A).)

Since A is weakly divisible, let φ1 : M2N ⊕M2N+1 → (1− r1)A(1− r1) be a
unital embedding. Let {e1,i,j}16i,j62N and { f1,k,l}16k,l62N+1 be systems of matrix
units for M2N and M2N+1 respectively.

Let p1 =df
N
∑

j=1
(φ1(e1,j,j) + φ1( f1,j,j)). Let q1 =df 1− r1 − p1. Then p1 + q1 +

r1 = 1A; and by (2.37), (2.38) and the definitions of p1 and q1, τ(p1) < τ(q1) <
τ(r1) for all τ ∈ T(A). Hence, by strict comparison (see Theorem 4.7 of [20] for
the TAI case), p1 � q1 � r1.

Induction step. Say that pk, qk, rk have been constructed for k 6 n. We now
construct pn+1, qn+1, rn+1.

Let r′ ∈ A be the projection given by r′ =df
n−1
∑

j=1
rj. (By induction hypothesis,

the addends are pairwise orthogonal.)
By induction hypothesis, we have that

2[rn] < [1− r′] < 3[rn]

in (K0(A), K0(A)+). Hence,

[rn] < [1− r′ − rn] 6 2[rn],

and thus, for all τ ∈ T(A),

(2.39)
τ(rn)

2
<

τ(1− r′ − rn)

2
.

Choose an integer M > 2 so that

(2.40)
1
M

< inf
{τ(1− r′ − rn)− τ(rn)

2
: τ ∈ T(A)

}
.
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(This integer exists since that maps τ 7→ τ(r′) and τ 7→ τ(rn) are continuous
functions on the compact set T(A).)

Since A is weakly divisible, there is a unital embedding φ2 : M2M ⊕M2M+1
→ (1− r′ − rn)A(1− r′ − rn). Let {e2,i,j}16i,j62M, { f2,k,l}16k,l62M+1 be systems of
matrix units for M2M, M2M+1 respectively.

Let rn+1 ∈ A be the projection that is given by rn+1 =df
M
∑

j=1
(φ2(e2,j,j) +

φ2( f2,j,j)).
Clearly, for k 6 n,

rn+1 ⊥ rk.

Also, in (K0(A), K0(A)+),

2[rn+1] < [1− r′ − rn] < 3[rn+1].

Moreover, by (2.39), (2.40) and the definition of rn+1, we have that

(2.41)
τ(rn)

2
< τ(rn+1)

for all τ ∈ T(A). Hence, let L > 2 be an integer such that

(2.42)
1
L
< inf

{
τ(rn+1)−

τ(rn)

2
: τ ∈ T(A)

}
.

Since A is weakly divisible, there exists a unital embedding φ3 : M2L ⊕
M2L+1 → rnArn. Let {e3,i,j}16i,j62L and { f3,k,l}16k,l62L+1 be systems of matrix
units for M2L and M2L+1 respectively.

Let pn+1, qn+1 ∈ A be the projections given by pn+1 =df
L
∑

j=1
(φ3(e3,j,j) +

φ3( f3,j,j)) and qn+1 =df rn − pn+1. Then clearly,

rn = pn+1 + qn+1 and pn+1 � qn+1.

Finally, by (2.41), (2.42) and the definition of qn+1, we have that

qn+1 � rn+1.

This completes the inductive construction of pn, qn, rn for n > 1.

THEOREM 2.18. Let A be a unital separable simple TAI-algebra.
(i) Suppose that u ∈ U0(A) is a unitary such that ∆T(u) = 0. Then there exist

unitaries xj, yj ∈ U0(A), 1 6 j 6 34, such that

u =
34

∏
j=1

(xj, yj).
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(ii) Suppose that x ∈ GL0(A) is an invertible such that ∆T(x) = 0. Then there exist
invertibles xj, yj ∈ GL0(A), 1 6 j 6 46, such that

x =
46

∏
j=1

(xj, yj).

Proof. The proof is a modification of the arguments of [15] (see also [30]),
subtituting our lemmas in the appropriate places. (It is also the multiplicative
version of Thierry Fack’s result in [9] for additive commutators.) For the conve-
nience of the reader, we provide the proof.

By Lemma 2.17, there exist projections pn, qn, rn (n > 1) inAwhich have the
following properties:

(i) p1 + q1 + r1 = 1.
(ii) pn � qn � rn, n > 1.

(iii) rm ⊥ rn when m 6= n.
(iv) rn = pn+1 + qn+1, n > 1.

By Lemma 2.13(i), there exist 20 commutators Cj (1 6 j 6 20) in U0(A) and
a ∈ Asa with ‖ei2πa − 1‖ < 1/51200 and τ(a) = 0 for all τ ∈ T(A) such that

u =
( 20

∏
j=1

Cj

)
ei2πa. By Lemma 5.18 of [15] (and also Remark 2.16) to ei2πa, there

exist commutators C21, C22 in U0(A) and a unitary x′0 ∈ U0(A) such that u =( 22
∏
j=1

Cj

)
x′0, x′0− 1 ∈ (q1 + r1)A(q1 + r1), ‖x′0− 1‖ < 1/6400 and T(Log(x′0)) = 0.

By applying Lemma 5.18 of [15] to x′0, there exist commutators C23, C24 in U0(A)

and a unitary x0 ∈ U0(A) such that u =
( 24

∏
j=1

Cj

)
x0, x0 − 1 ∈ r1Ar1, ‖x0 − 1‖ <

1/800 and T(Log(x0)) = 0.
Following the argument of Proposition 6.1 of [15], we now construct (by

induction) unitaries xn, yj
n, zj

n (n > 1, 1 6 j 6 9) in U0(A) with x1 = x0 such that
the following hold:

(i) ‖xn − 1‖ < 1/(100n2), T(Log(xn)) = 0 and xn − 1 ∈ rnArn.

(ii) ‖yj
n − 1‖, ‖zj

n − 1‖ < 2/n (1 6 j 6 9.

(iii) yj
n − 1, zj

n − 1 ∈ rnArn (1 6 j 6 8).(2.43)

(iv) y9
n − 1, z9

n − 1 ∈ (rn + rn+1)A(rn + rn+1).

(v) xn =
( 9

∏
j=1

(yj
n, zj

n)
)

xn+1.

Suppose that the unitaries {xm}n
m=1, {yj

m}n−1
m=1, {zj

m}n−1
m=1 (1 6 j 6 9) have

already been constructed with x1 = x0.
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Apply Lemma 2.14(i) to xn + rn − 1 to get x′n, yj
n, zj

n ∈ U0(A) (1 6 j 6 6)
such that, for 1 6 j 6 6, the following hold:

xn =
( 6

∏
j=1

(yj
n, zj

n)
)

x′n, x′n − 1 ∈ rnArn, ‖x′n − 1‖ < 1
51200(n + 1)2 ,

T(Log(x′n)) = 0, yj
n − 1, zj

n − 1 ∈ rnArn, ‖yj
n − 1‖, ‖zj

n − 1‖ < 2
n

.

Apply Lemma 5.18 of [15] to pn+1, qn+1 and x′n + rn − 1 ∈ U0(rnArn).
(Recall that since A is TAI, A is K1-injective; hence, x′n ∈ U0(A) implies that
x′n + rn − 1 ∈ U0(rnArn).) We then get x′′n , yj

n, zj
n ∈ U0(A) (j = 7, 8) such that, for

j = 7, 8, the following hold:

xn =
( 8

∏
j=1

(yj
n, zj

n)
)

x′′n , x′′n − 1 ∈ qn+1Aqn+1, ‖x′′n − 1‖ < 1
6400(n + 1)2 ,

T(Log(x′′n)) = 0, yj
n − 1, zj

n − 1 ∈ rnArn, ‖yj
n − 1‖, ‖zj

n − 1‖ < 2
n

.

Now apply Lemma 2.15 to qn+1, rn+1 and x′′n + qn+1 + rn+1 − 1 ∈ (qn+1 +
rn+1)A(qn+1 + rn+1) to get xn+1, y9

n, z9
n ∈ U0(A) such that the following hold:

xn =
( 9

∏
j=1

(yj
n, zj

n)
)

xn+1, xn+1 − 1 ∈ rn+1Arn+1, ‖xn+1 − 1‖ < 1
6400(n + 1)2 ,

y9
n − 1, z9

n − 1 ∈ (qn+1 + rn+1)A(qn+1 + rn+1), ‖y9
n − 1‖, ‖z9

n − 1‖ < 2
n

.

This completes the inductive construction of the sequences in (2.43).
Observe that since x′′n − 1 ∈ qn+1Aqn+1 and xn+1 − 1 ∈ rn+1Arn+1 (and

x′′n = (y9
n, z9

n)xn+1), we must have that (y9
n, z9

n)− 1 ∈ rnArn + rn+1Arn+1.
We now modify the sequences in (2.43).
Let y9

0 =df z9
0 =df 1 and for n > 1,

ỹj
n =df (y9

n−1, z9
n−1)y

j
n(y9

n−1, z9
n−1)

∗, z̃j
n =df (y9

n−1, z9
n−1)z

j
n(y9

n−1, z9
n−1)

∗

for 1 6 j 6 9.
From the observation above, we have that ỹj

n − 1, z̃j
n − 1 ∈ rnArn for 1 6

j 6 8 and ỹ9
n − 1, z̃9

n − 1 ∈ (rn + rn+1)A(rn + rn+1).
As a consequence, for 1 6 j 6 8, the unitaries yj

n, zj
n, ỹj

n, z̃j
n commute with

the unitaries yk
m, zk

m, ỹk
m, z̃k

m for 1 6 k 6 8 and m 6= n, and also for k = 9 and m /∈
{n− 1, n, n + 1}. One then can prove (by induction) the following two relations:

x1 =
[( n

∏
k=1

ỹ1
k ,

n

∏
k=1

z̃1
k

)
· · ·
( n

∏
k=1

ỹ8
k ,

n

∏
k=1

z̃8
k

) n

∏
k=1

(y9
k , z9

k)
]

xn+1, and

2n

∏
k=1

(y9
k , z9

k) =
( n

∏
k=1

ỹ9
2k−1,

n

∏
k=1

z̃9
2k−1

)( n

∏
k=1

y9
2k,

n

∏
k=1

z9
2k

)
.
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For all n > 1, let yj
n =df

2n
∏

k=1
ỹj

k and zj
n =df

2n
∏

k=1
z̃j

k (1 6 j 6 8), y9
n =df

n
∏

k=1
ỹ9

2k−1,

z9
n =df

n
∏

k=1
z̃9

2k−1, y10
n =df

n
∏

k=1
y9

2k, and z10
n =df

n
∏

k=1
z9

2k.

Clearly, as n → ∞, the sequences {yj
n}, {z

j
n} converge in A to, say, yj

∞, zj
∞

respectively (1 6 j 6 10). Also, xn+1 → 1 as n → ∞. Hence, we have that

x1 =
10
∏
j=1

(yj
∞, zj

∞). Combining this with the above, we have that

u =
( 24

∏
k=1

Ck

)( 10

∏
j=1

(yj
∞, zj

∞)
)

;

i.e., u is the product of 34 commutators in U0(A).
The proof of (ii) is the same as the proof of (i), except that Lemma 2.13(i),

Lemma 2.14(i), Lemma 2.15, and Lemma 5.18 of [15] are replaced with Lem-
ma 2.13(ii), Lemma 2.14(ii), Lemma 5.11 of [15] and Lemma 5.1 of [15] respec-
tively.

We note that the above argument is an improvement on the (nonetheless im-
portant and interesting) argument of [30] in that there are uniform upper bounds
(namely 34 and 46 for the two cases) for the number of commutators. (The proof
in [30] itself does not give any upper bound and, conceivably, the number of com-
mutators (in the argument) could get arbitrarily large depending on the unitary
or invertible chosen.) The argument in [15] gives an upper bound (iv) for invert-
ibles, but no explicit upper bound for unitaries — though the proof should lead
to one.

It is an open question whether the number of commutators can be reduced.
In the next section, we will show that for the invertible case, the number

(presently 34) of multiplicative commutators can be reduced to 8.

3. REDUCING THE NUMBER OF COMMUTATORS

LEMMA 3.1. LetA be a unital C∗-algebra and p, q ∈ A projections with p+q=1.
Say that x ∈ GL0(A) is such that pxp, qxq are invertible and

‖qxp(pxp)−1 pxq‖ < 1
‖(qxq)−1‖ .

Then there exist

s =
[

p 0
qsp q

]
, t =

[
p ptq
0 q

]
, d =

[
pdp 0

0 qdq

]
in GL0(A) such that x = std. Moreover, we have the following:

(i) If x is a positive invertible, then pdp and qdq are positive invertibles.
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(ii) dist(pdp, U0(pAp)) = dist(pxp, U0(pAp)) and dist(qdq, U0(qAq))
6 dist(qxq, U0(qAq)) + ‖qxp(pxp)−1 pxq‖.

The proof is exactly the same as that of Lemma 5.8 in [15].

LEMMA 3.2. Let A be a unital simple separable C∗-algebra such that either
(i) A is a TAI-algebra, or

(ii) A has real rank zero, strict comparison and cancellation of projections.
Let x ∈ A be either a positive invertible or dist(x, U0(A)) < 1/10. Then for

every nonzero projection r ∈ A with r 6= 1, there exists a projection p ∈ A with p ∼ r
such that pxp and (1− p)x(1− p) are invertible and

‖(1− p)xp(pxp)−1 px(1− p)‖ < 1
‖((1− p)x(1− p))−1‖ .

Moreover, in the case where dist(x, U0(A)) < 1/10, for every ε > 0, we can choose p
so that

‖(1− p)xp(pxp)−1 px(1− p)‖ 6 (dist(x, U0(A)) + ε)2√
1− (21/10)(dist(x, U0(A)) + ε)

and dist(pxp, U0(pAp)), dist((1 − p)x(1 − p), U0((1 − p)A(1 − p)))
6 dist(x, U0(A)) + ε. (Note that the last quantity is bounded above by 1/10, when
ε is small enough.)

Proof. Let us first assume that A is unital simple infinite-dimensional and
TAI. We will prove the case where dist(x, U0(A)) < 1/10.

Let u ∈ U0(A) be such that ‖x − u‖ < 1/10. We may assume that ε <
1/10− ‖x− u‖.

Firstly, multiplying u (and also x) by a scalar in T if necessary, we may
assume that 1 ∈ sp(u). (Note that all relevant statements and inequalities are
preserved under such a multiplication.)

Choose δ > 0 such that if c, d ∈ Asa with ‖c− d‖ < δ then ‖ei2πc − ei2πd‖ <
ε/100. We may assume that δ < ε/100 and that if α ∈ R and |α| < δ then
|ei2πα − 1| < ε/100 < 1/100.

By Theorem 3.3 of [22], let a ∈ A be a self-adjoint element such that ‖u−
ei2πa‖ < ε/100. Since 1 ∈ sp(u), we may assume that 0 ∈ sp(a).

Let f ∈ (−∞, ∞)→ [0, 1] be a continuous function such that

f (α)

{
> 0 α ∈ (−δ/10, δ/10),
= 0 α /∈ (−δ/10, δ/10).

Since 0 ∈ sp(a), f (a) 6= 0. Hence, since A has (SP) (see Theorem 3.2 of [20]),
let e ∈ A be a nonzero projection such that e ∈ Her( f (a)). Moreover, since A
is simple TAI and r 6= 1, we may choose e so that e ≺ 1 − r. (Note that A is
weakly divisible (see the argument for the existence of {pn, qn, rn} in the proof
of Theorem 2.18) and has strict comparison (see Theorem 4.7 of [20]).) Hence, let
r′ ∈ Her(1− e) be a projection such that r′ ∼ r.
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Also, ‖(1− e)a(1− e) − a‖ = ‖ − ea − ae + eae‖ 6 ‖eχ(−δ/10,δ/10)(a)a‖ +
‖aχ(−δ/10,δ/10)(a)e‖+ ‖eχ(−δ/10,δ/10)(a)ae‖ < 3δ/10. Hence,

‖u− ei2π(1−e)a(1−e)‖ 6 ‖u− ei2πa‖+ ‖ei2πa− ei2π(1−e)a(1−e)‖ < ε

100
+

ε

100
=

ε

50
.

SinceA is TAI, Her(1− r) is TAI, and there exist a projection p′ ∈ Her(1− e)
and a C∗-subalgebra B ⊂ Her(1 − e) with B ∈ INT such that p′ � e, 1B =
1− e− p′, unitaries u1 ∈ U0(p′Ap′), u2 ∈ U0(B) and projectons r′′ ∈ Her(p′),
r′′′ ∈ B such that

‖(1− e)ei2π(1−e)a(1−e)(1− e)− (u1⊕ u2)‖ <
ε

100
and ‖r′ − (r′′ ⊕ r′′′)‖ < ε

100
.

Note that ‖x−(e⊕ u1⊕ u2)‖6‖x−u‖+‖u−ei2π(1−e)a(1−e)‖+‖ei2π(1−e)a(1−e)

−(e ⊕ u1 ⊕ u2)‖ < ‖x − u‖ + ε/50 + ε/100 = ‖x − u‖ + 3ε/100 < 1/10. We
denote this computation by “(∗)".

For simplicity, let us assume that B ∼= MN(C[0, 1]).
Since r′′6p′� e, let p′′6 e be a projection such that p′′∼ r′′. Also, by Lem-

ma 1.9 of [29], there exist pairwise orthogonal minimal projections p1, p2, . . . , pN
∈ MN(C[0, 1]) and continuous functions g1, g2, . . . , gN : [0, 1] → T such that∥∥∥u2 −

N
∑

j=1
gj pj

∥∥∥ < ε/100.

Suppose that r′′′ is the sum of M minimal projections in B (where M 6 N).

Then take p =df p′′ +
M
∑

j=1
pj. Clearly, p ∼ r.

By (∗),
∥∥∥pxp−

(
p′′ +

M
∑

j=1
gj pj

)∥∥∥ 6 ‖pxp− p(e⊕ u1 ⊕ u2)p‖+
∥∥∥p(e⊕ u1 ⊕

u2)p−
(

p′′ +
M
∑

j=1
gj pj

)∥∥∥ < ‖x − u‖+ 3ε/100 + 0 < 1/10. We note in particular

that since p′′+
M
∑

j=1
gj pj is in U0(pAp), pxp is invertible and dist(pxp, U0(pAp)) <

1/10.

By (∗),
∥∥∥(1− p)x(1− p)−

(
(e− p′′)⊕ u1 ⊕

N
∑

j=M+1
gj pj

)∥∥∥ 6 ‖(1− p)x(1−

p)− (1− p)(e⊕ u1 ⊕ u2)(1− p)‖+
∥∥∥(1− p)(e⊕ u1 ⊕ u2)(1− p)−

(
(e− p′′)⊕

u1 ⊕
N
∑

j=M+1
gj pj

)∥∥∥ < ‖x− u‖+ 3ε/100 + 0 < 1/10. Note in particular that since

(e− p′′)⊕ u1⊕
N
∑

j=M+1
gj pj is in U0((1− p)A(1− p)), (1− p)x(1− p) is invertible

and dist((1− p)x(1− p), U0((1− p)A(1− p))) < 1/10.
Note that since u, ε are arbitrary, the computations in the previous two para-

graphs actually show that for every ε > 0, we can choose p so that dist(pxp,
U0(pAp)), dist((1− p)x(1− p), U0((1− p)A(1− p))) 6 dist(x, U0(A)) + ε.
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To simplify notation, let u3 =df p′′ +
M
∑

j=1
gj pj. Then ‖(pxp)∗pxp − 1‖ =

‖(pxp)∗pxp− (pxp)∗u3‖+ ‖(pxp)∗u3−u∗3u3‖ 6 ‖(pxp)∗‖‖pxp−u3‖+ ‖(pxp)∗

−u∗3‖ < (1 + 1/10)(1/10) + 1/10 = 21/100. Hence, sp((pxp)∗pxp) ⊂ (1 −
21/100, 1 + 21/100). Hence, ‖((pxp)∗pxp)−1‖ < 1/(1 − 21/100) = 100/79.
Hence, ‖(pxp)−1‖ 6 10/

√
79. By a similar argument, ‖((1− p)x(1− p))−1‖ 6

10/
√

79.
Note that (∗) and the computation in the previous paragraph actually shows

that ‖(pxp)∗pxp − 1‖ 6 (21/10)‖pxp − pu3 p‖ 6 (21/10)(‖x − u‖ + 3ε/100).
Since u was arbitrary, for every ε > 0, we can choose p so that sp((pxp)∗pxp)⊂
(1−(21/10)(dist(x, U0(A))+ε), 1+(21/10)(dist(x, U0(A))+ε)). Hence, for every
ε>0, we can choose p so that ‖(pxp)−1‖61/

√
1−(21/10)(dist(x, U0(A))+ε).

Next, ‖px(1− p)‖ 6 ‖px(1− p) − pu(1− p)‖ + ‖pu(1− p) − p(e ⊕ u1 ⊕
u2)(1− p)‖+ ‖p(e⊕ u1 ⊕ u2)(1− p)‖ < 1/10 + 3ε/100 + 0 < 1/10 + 3/1000 =
103/1000. Similarly, ‖(1− p)xp‖ < 103/1000. Hence, ‖(1− p)xp‖‖px(1− p)‖ <
10609/1000000 < 79/100 6 1

‖(pxp)−1‖‖((1−p)x(1−p))−1‖ . Hence,

‖(1− p)xp(pxp)−1 px(1− p)‖ < 1
‖((1− p)x(1− p))−1‖ .

Since u, ε are arbitrary, the computation of the previous paragraph also
yields that for every ε > 0, we can choose p so that ‖px(1− p)‖, ‖(1− p)xp‖ 6
dist(x, U0(A)) + ε. Hence, for every ε > 0, we can choose p so that

‖(1− p)xp(pxp)−1 px(1− p)‖ 6 (dist(x, U0(A)) + ε)2√
1− (21/10)(dist(x, U0(A)) + ε)

.

The proof for the case where x is a positive invertible is similar (and easier).
For the case where A has real rank zero, strict comparison and cancellation,

one uses that if y is positive invertible or unitary in U0(A) then y can be approx-
imated (arbitrarily close in norm) by positive invertibles with finite spectrum or
unitaries with finite spectrum, respectively. (See, for example, [17].) One also
uses that A has strict comparison and the Riesz property.

LEMMA 3.3. Let A be a unital separable simple C∗-algebra such that either
(i) A is TAI, or

(ii) A has real rank zero, strict comparison and cancellation of projections.
Let x ∈ A be a unitary in U0(A) or a positive invertible. Then there exist pairwise

orthogonal projections p1, p2, . . . , p93 ∈ A with
93
∑

j=1
pj = 1A and pj ∼ pk for 1 6 j, k 6

47 or 48 6 j, k 6 93, and elements s, t, d ∈ GL(A) such that the following hold:
(a) s is lower triangular: s = 1 + ∑

j>k
pjspk.

(b) t is upper triangular: t = 1 + ∑
j<k

pjtpk.
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(c) d is diagonal: d = ∑
j

pjdpj.

(d) x = std.
Moreover, (if x ∈ U0(A)) we can choose the projections pj so that for 1 6 j 6 93,

pjdpj ∈ GL0(pjApj) (in U0(pjApj) respectively).

Proof. Since A is weakly divisible (see the second paragraph in the proof of
Theorem 2.18), there exist nonzero projections p, q ∈ A such that 47[p] + 46[q] =
[1A].

The rest of the proof is similar to Lemma 6.4 of [15], except that we use (this
paper) Lemma 3.1 and Lemma 3.2 instead of Lemma 6.3 in [15]. For the case
where x is a unitary, in order to make the induction work, we additionally need
to use the norm estimates in Lemmas 3.1 and 3.2, which require ε to be sufficiently
small (at each step of the induction). By inspection, taking ε = 1/101000 (for all
the steps) will suffice.

LEMMA 3.4. Let A be a unital simple separable C∗-algebra such that either
(i) A is a TAI-algebra, or

(ii) A has real rank zero, strict comparison and cancellation of projections.
Let x ∈ A be either a unitary in U0(A) or a positive invertible element. Then there

exist pairwise orthogonal and pairwise (Murray–von Neumann) equivalent projections
q1, q2, . . . , q46 ∈ A and elements x1, y1, x2, y2, z ∈ GL(A) with

x = (x1, y1)(x2, y2)z and z− 1 ∈ q1Aq1.

For the proof, the argument is exactly the same as Lemma 6.5 of [15], but
where we use Lemma 3.3 instead of Lemma 6.4 in [15].

THEOREM 3.5. Let A be a unital simple separable TAI-algebra. Let x ∈ GL0(A)
be such that ∆T(x) = 0. Then there exist xj, yj ∈ GL0(A), 1 6 j 6 8, such that

x =
8

∏
j=1

(xj, yj).

If, in addition, x is a unitary (in U0(A)) or a positive invertible, then there exist
xj, yj ∈ GL0(A) (not necessarily unitary or positive), 1 6 j 6 4, such that

x =
4

∏
j=1

(xj, yj).

Proof. In the case where x is either a unitary (in the connected component
of the identity) or a positive invertible, the proof is exactly the same as Theo-
rem 6.6 of [15], except that Lemma 6.5 of [15] is replaced with Lemma 3.4; and
also, Proposition 6.1 of [15] is replaced with Theorem 2.18.

Now for the general case. If x ∈ GL0(A) is arbitrary, let x = u|x| be the
polar decomposition of x. Then by Lemma 2.11, ∆T(u) = ∆T(|x|) = 0. Then,
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by the cases for unitaries and positive invertibles, u and |x| are both the prod-
uct of 4 multiplicative commutators. Hence, x is the product of 8 multiplicative
commutators, as required.

4. THE REAL RANK ZERO CASE

THEOREM 4.1. Let A be a unital simple separable C∗-algebra with real rank zero,
strict comparison, and cancellation of projections.

(i) Suppose that u ∈ U0(A) is a unitary such that ∆T(u) = 0. Then there exist
unitaries xj, yj ∈ U0(A), 1 6 j 6 34, such that

u =
34

∏
j=1

(xj, yj).

(ii) Suppose that x ∈ GL0(A) is an invertible such that ∆T(x) = 0. Then there exist
invertibles xj, yj ∈ GL0(A), 1 6 j 6 46, such that

x =
46

∏
j=1

(xj, yj).

Proof. The proof of this theorem is very similar to the proof of Theorem 2.18.
Firstly, by [19], there exists a unital simple AH-algebra C with bounded di-

mension growth and real rank zero and a unital ∗-homomorphism Φ : C → A
such that Φ is an isomorphism at the level of the K-theory invariant; i.e., we have
the following:

(i) The following induced map is an isomorphism of ordered groups with
unit:

K∗(Φ) : (K0(C), K0(C)+, K1(C), [1C ])→ (K0(A), K0(A)+, K1(A), [1A]).

(ii) The induced map T(Φ) : T(A)→ T(C) is an affine homeomorphism.
Replacing C with Φ(C) if necessary, we may assume that C is a unital C∗-

subalgebra of A. We denote the above statements by “(+)".
The proof (both parts (i) and (ii)) is exactly the same as the argument leading

up to Theorem 2.18. In particular, one needs prove analogues to Lemma 2.12,
Lemma 2.13 and Lemma 2.14 as well as the argument of Theorem 2.18 itself.

Here are the main additional ingredients:

(iii) Since A has real rank zero, if u ∈ U0(A), then u can be approximated by
unitaries with finite spectrum ([17]). More precisely, for every δ2 > 0, there exists
a self-adjoint element a ∈ A, with finite spectrum, such that

‖u− ei2πa‖ < δ2.

(E.g., the above statement replaces the statement (2.2) from Lemma 2.12.) Note
also that by (+) statement (i) (and since A has cancellation of projections), there
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exists a unitary z ∈ A such that zaz∗ ∈ C and hence, zei2πaz∗ = ei2πzaz∗ ∈ C. We
then work with ei2πzaz∗ inside C, which is TAI.

(iv) If x ∈ GL0(A) is a positive invertible, then, since A has real rank zero, x
can be approximated arbitrarily close by positive invertibles with finite spectrum.
Once more, by (+) statement (i) (and since A has cancellation), these positive
invertibles are unitarily equivalent to positive invertibles in C, and we work in C,
which is TAI.

The reduction of commutators argument goes through with essentially no
change.

THEOREM 4.2. Let A be a unital separable simple C∗-algebra with real rank zero,
strict comparison and cancellation of projections. Let x ∈ GL0(A) such that ∆T(x) = 0.
Then there exist xj, yj ∈ GL0(A), 1 6 j 6 8, such that

x =
8

∏
j=1

(xj, yj).

If, in addition, x is a unitary (in U0(A)) or a positive invertible, then there exist
xj, yj ∈ GL0(A) (not necessarily unitary or positive), 1 6 j 6 4, such that

x =
4

∏
j=1

(xj, yj).

Proof. The proof is exactly the same as the proof of Theorem 3.5, except that
Theorem 2.18 is replaced with Theorem 4.1. Note that all the preliminary lemmas
leading up to Theorem 3.5 include the real rank zero case.
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