ON MULTI-HYPERCYCLIC ABELIAN SEMIGROUPS OF MATRICES ON \mathbb{R}^n

ADLENE AYADI and HABIB MARZOUGUI

Communicated by Nikolai K. Nikolski

ABSTRACT. Let *G* be an abelian semigroup of matrices on \mathbb{R}^n $(n \ge 1)$. We show that *G* is multi-hypercyclic if and only if it has a somewhere dense orbit. We also give a necessary and sufficient condition for a multi-hypercyclic semigroup *G* to be hypercyclic, in terms of the index of *G* corresponding to negative eigenvalues of elements of *G*. On the other hand, we prove that the closure $\overline{G(u)}$ of a somewhere dense orbit G(u), $u \in \mathbb{R}^n$, is invariant under multiplication by positive scalars; this answer a question raised by Feldman. We also prove that G^k is multi-hypercyclic for every $k \in \mathbb{N}^p$, $(p \in \mathbb{N})$ whenever *G* is multi-hypercyclic.

KEYWORDS: Hypercyclic, matrices, multi-hypercyclic, dense orbit, semigroup, abelian.

MSC (2010): 47A16.

1. INTRODUCTION

Let $M_n(\mathbb{R})$ be the set of all square matrices over \mathbb{R} of order $n \ge 1$ and $GL(n, \mathbb{R})$ the group of invertible matrices of $M_n(\mathbb{R})$. Let G be an abelian subsemigroup of $M_n(\mathbb{R})$. For a vector $v \in \mathbb{R}^n$, we consider the orbit of v through G: $G(v) = \{Av : A \in G\} \subset \mathbb{R}^n$. A subset $E \subset \mathbb{R}^n$ is called *G*-invariant if $A(E) \subset E$ for any $A \in G$. The orbit $G(v) \subset \mathbb{R}^n$ is dense (respectively somewhere dense) in \mathbb{R}^n if $\overline{G(v)} = \mathbb{R}^n$ (respectively $\overline{G(v)} \neq \emptyset$), where \overline{E} (respectively \mathring{E}) denotes the closure of a subset $E \subset \mathbb{R}^n$ (respectively the interior of a subset E). The semigroup G is called *hypercyclic* if there exists a vector $v \in \mathbb{R}^n$ such that G(v) is dense in \mathbb{R}^n . We say that G is *multi-hypercyclic* if there exist vectors $v_1, \ldots, v_p \in \mathbb{R}^n$ such that the union $G(v_1) \cup \cdots \cup G(v_p)$ is dense in \mathbb{R}^n . We refer the reader to the recent papers ([1], [3], [4], [8], [9], [12], [14]), [7], [11], [13] and books ([6], [10]) for a thorough account on hypercyclic operator on a Hilbert space is in fact hypercyclic. This conjecture was verified by Costakis [7] and later independently by Peris [13]. The same conjecture is extended to finitely generated abelian subsemigroups of $M_n(\mathbb{K})$ ($\mathbb{K} = \mathbb{R}$ or \mathbb{C}) ($n \ge 1$) by Feldman [9] and Javaheri [12]. In this direction, Feldman ([9], Corollary 5.8) proved that every multi-hypercyclic finitely generated abelian sub-semigroup of $M_n(\mathbb{C})$ $n \ge 1$ is hypercyclic.

In the real case, the situation is different. In this article we settle this conjecture for abelian sub-semigroups of $M_n(\mathbb{R})$. We give a complete characterization of such questions for the abelian case. On the other hand we give further results on hypercyclicity, in particular, we answer a question of Feldman in [9], question (7).

To state our main results, we need to introduce the following notations and definitions for the sequel. Write $\mathbb{N}_0 = \mathbb{N} \setminus \{0\}$. Let $n \in \mathbb{N}_0$ be fixed. For each m = 1, 2, ..., n, denote by:

(i) $\mathbb{T}_m(\mathbb{R})$ the set of matrices over \mathbb{R} of the form

(1.1)
$$\begin{bmatrix} \mu & & 0 \\ a_{2,1} & \ddots & \\ \vdots & \ddots & \ddots \\ a_{m,1} & \dots & a_{m,m-1} & \mu \end{bmatrix};$$

 $\mathbb{T}_n^+(\mathbb{R})$ the group of matrices over \mathbb{R} of the form (1.1) with $\mu > 0$.

(ii) \mathbb{S} the set of matrices of $M_2(\mathbb{R})$ of the form

$$\begin{bmatrix} a & -b \\ b & a \end{bmatrix} : a, b \in \mathbb{R}.$$

For each $1 \leq m \leq n/2$, denote by

(iii) $\mathbb{B}_m(\mathbb{R})$ the set of matrices of $M_{2m}(\mathbb{R})$ of the form

(1.2)
$$\begin{bmatrix} C & & & 0 \\ C_{2,1} & C & & \\ \vdots & \ddots & \ddots & \\ C_{m,1} & \dots & C_{m,m-1} & C \end{bmatrix} : C, C_{i,j} \in \mathbb{S}, 2 \leq i \leq m, 1 \leq j \leq m-1.$$

(iv) $\mathbb{B}_m^*(\mathbb{R}) := \mathbb{B}_m(\mathbb{R}) \cap \operatorname{GL}(2m,\mathbb{R})$ the group of matrices over \mathbb{R} of the form (1.2) with *C* invertible.

Let $r, s \in \mathbb{N}$ and

$$\eta = \begin{cases} (n_1, \dots, n_r; m_1, \dots, m_s) & \text{if } rs \neq 0, \\ (m_1, \dots, m_s) & \text{if } r = 0, \\ (n_1, \dots, n_r) & \text{if } s = 0, \end{cases}$$

be a sequence of positive integers such that

(1.3)
$$(n_1 + \dots + n_r) + 2(m_1 + \dots + m_s) = n.$$

In particular, we have $r + 2s \leq n$. Denote by

(v) $\mathcal{K}_{\eta,r,s}(\mathbb{R}) := \mathbb{T}_{n_1}(\mathbb{R}) \oplus \cdots \oplus \mathbb{T}_{n_r}(\mathbb{R}) \oplus \mathbb{B}_{m_1}(\mathbb{R}) \oplus \cdots \oplus \mathbb{B}_{m_s}(\mathbb{R}).$

In particular:

(a) If r = 1, s = 0, then $\mathcal{K}_{\eta,1,0}(\mathbb{R}) = \mathbb{T}_n(\mathbb{R})$ and $\eta = (n)$. (b) If r = 0, s = 1, then $\mathcal{K}_{\eta,0,1}(\mathbb{R}) = \mathbb{B}_m(\mathbb{R})$ and $\eta = (m), n = 2m$. (c) If r = 0, s > 1, then $\mathcal{K}_{\eta,0,s}(\mathbb{R}) = \mathbb{B}_{m_1}(\mathbb{R}) \oplus \cdots \oplus \mathbb{B}_{m_s}(\mathbb{R})$ and $\eta = (m_1, \dots, m_s)$.

(vi)
$$\mathcal{K}^*_{\eta,r,s}(\mathbb{R}) := \mathcal{K}_{\eta,r,s}(\mathbb{R}) \cap \operatorname{GL}(n, \mathbb{R}).$$

(vii) $\mathcal{K}^+_{\eta,r,s}(\mathbb{R}) := \mathbb{T}^+_{n_1}(\mathbb{R}) \oplus \cdots \oplus \mathbb{T}^+_{n_r}(\mathbb{R}) \oplus \mathbb{B}^*_{m_1}(\mathbb{R}) \oplus \cdots \oplus \mathbb{B}^*_{m_s}(\mathbb{R}).$

PROPOSITION 1.1 ([5]). Let G be an abelian sub-semigroup of $M_n(\mathbb{R})$. Then there exists a $P \in GL(n, \mathbb{R})$ such that $P^{-1}GP$ is an abelian sub-semigroup of $\mathcal{K}_{\eta,r,s}(\mathbb{R})$, where $\eta = (n_1, \ldots, n_r; m_1, \ldots, m_s) \in \mathbb{N}_0^{r+s}$ and $r, s \in \mathbb{N}$.

Let *G* be an abelian sub-semigroup of $M_n(\mathbb{R})$ and denote by $G^* = G \cap$ GL (n, \mathbb{R}) , it is a sub-semigroup of GL (n, \mathbb{R}) . We call $P^{-1}GP$ the *normal form* of *G*. For such a choice of matrix *P*, we let:

For every $M \in G^*$, one can write $\widetilde{M} := P^{-1}MP = \text{diag}(A_1, \ldots, A_r; B_1, \ldots, B_s) \in \mathcal{K}^*_{\eta,r,s}(\mathbb{R})$. Set $\widetilde{G}^* = P^{-1}G^*P$. Let μ_k be the eigenvalue of A_k , $k = 1, \ldots, r$, and define the *index* of \widetilde{G}^* to be

$$\operatorname{ind}(\widetilde{G}^*) := \begin{cases} 0 & \text{if } r = 0, \\ \begin{cases} 1 & \text{if exists } \widetilde{M} \in \widetilde{G}^* \text{ with } \mu_1 < 0, \\ 0 & \text{otherwise,} \\ \operatorname{card}\{k \in \{1, \dots, r\} : \exists \widetilde{M} \in \widetilde{G}^* \text{ with } \mu_k < 0, \mu_i > 0, \forall i \neq k\} & \text{if } r \notin \{0, 1\} \end{cases}$$

where card(E) denotes the number of elements of a subset *E* of \mathbb{N} . In particular,

(i) if $\widetilde{G}^* \subset \mathcal{K}^+_{\eta,r,s}(\mathbb{R})$ with $r \neq 0$ then $\operatorname{ind}(\widetilde{G}) = 0$; (ii) if $\widetilde{G}^* \subset \mathbb{B}^*_m(\mathbb{R})$, then $\operatorname{ind}(\widetilde{G}) = 0$ (since r = 0).

We define the *index* of *G* to be $ind(G) := ind(\tilde{G}^*)$. It is plain that this definition does not depend on *P*.

Our principal results can now be stated as follows:

THEOREM 1.2. Let G be an abelian sub-semigroup of $M_n(\mathbb{R})$, $n \in \mathbb{N}_0$. Then G is multi-hypercyclic if and only if it has a somewhere dense orbit.

COROLLARY 1.3. Let G be an abelian sub-semigroup of $M_n(\mathbb{R})$, $n \in \mathbb{N}_0$ and $P \in GL(n, \mathbb{R})$ such that $P^{-1}GP \subset \mathcal{K}_{\eta,r,s}(\mathbb{R})$. Assume that G is multi-hypercyclic. Then G is hypercyclic if and only if $\operatorname{ind}(G) = r$.

COROLLARY 1.4. Let G be an abelian sub-semigroup of $\mathbb{B}_n(\mathbb{R})$ $(n \in \mathbb{N}_0)$. Then G is multi-hypercyclic if and only if it is hypercyclic.

THEOREM 1.5. For every $r, s \in \mathbb{N}_0$ and $1 \leq q \leq r$, there exists an abelian subsemigroup of $\mathcal{K}^+_{\eta,r,s}(\mathbb{R})$ generated by (n - s + 1) matrices, which is 2^{*q*}-hypercyclic but not hypercyclic.

COROLLARY 1.6. For every $n \in \mathbb{N}_0$, there exists an abelian sub-semigroup of $GL(n, \mathbb{R})$ generated by (n + 1) diagonal matrices, which is 2^n -hypercyclic but not hypercyclic.

Note that Feldman [9] showed that there exists a semigroup generated by 2n matrices of \mathbb{R}^n which is 2^n -hypercyclic but not hypercyclic.

COROLLARY 1.7. $\mathcal{K}^+_{n,r,s}(\mathbb{R}), r \ge 1$, is 2^r -hypercyclic but not hypercyclic.

On the other hand, in [2], Ansari proved that if a linear operator T on a locally convex space is hypercyclic then T^k is also hypercyclic for every $k \ge 1$. It is there natural to ask if a similar result holds for a semigroup G. Recall that for $k = (k_1, \ldots, k_p) \in \mathbb{N}_0^p$, we denote by G^k the semigroup defined by

$$G^{k} = \{A_{1}^{k_{1}}, \dots, A_{p}^{k_{p}} : A_{1}, \dots, A_{p} \in G\}.$$

Feldman showed ([9], Corollary 5.8) that if an abelian finitely generated semigroup *G* of matrices over \mathbb{C} is hypercyclic then for any $k = (k_1, ..., k_p) \in \mathbb{N}_0^p, G^k$ is also hypercyclic. It is not always the case in the real case. Here for an abelian semigroup *G* of matrices over \mathbb{R} , we prove the following results:

THEOREM 1.8. Let G be an abelian sub-semigroup of $M_n(\mathbb{R})$, $n \in \mathbb{N}_0$.

(i) If G is multi-hypercyclic, then G^k is also multi-hypercyclic for any $k = (k_1, \ldots, k_p) \in \mathbb{N}_0^p$.

(ii) If for some $k = (k_1, ..., k_p) \in \mathbb{N}_0^p$, G^k is multi-hypercyclic, then G is also multi-hypercyclic.

COROLLARY 1.9. If *G* has a somewhere dense orbit then G^k has also a somewhere dense orbit for any $k = (k_1, \ldots, k_p) \in \mathbb{N}_0^p$.

COROLLARY 1.10. Let $k = (k_1, ..., k_p) \in \mathbb{N}_0^p$. Assume that G is hypercyclic. Then G^k is hypercyclic if and only if $\operatorname{ind}(G^k) = \operatorname{ind}(G)$.

COROLLARY 1.11. If G is hypercyclic, then G^k is hypercyclic for any p-tuple of odd integers $k = (k_1, \ldots, k_p) \in \mathbb{N}_0^p$.

This paper is organized as follows: In Section 2 we recall some results on hypercyclicity. Section 3 is devoted to the proof of Theorem 1.2, Corollaries 1.3 and 1.4. In Section 4 we prove Theorem 1.5, Corollaries 1.6 and 1.7. In Section 5, we prove Theorem 1.8, Corollaries 1.9, 1.10 and 1.11. In Section 6 we give some others results of independent interest, in particular we answer the question (7) of Feldman [9] for the space \mathbb{R}^n .

2. SOME RESULTS

Throughout the paper, we denote by $\mathcal{B}_0 = (e_1, \dots, e_n)$ the canonical basis of \mathbb{R}^n . Denote by:

(i) v^{T} the transpose of a vector $v \in \mathbb{R}^{n}$.

(ii) I_n the identity matrix on \mathbb{R}^n .

(iii) $u_0 = [e_{1,1}, \ldots, e_{r,1}; f_{1,1}, \ldots, f_{s,1}]^{\mathrm{T}} \in \mathbb{R}^n$ where $e_{k,1} = [1, 0, \ldots, 0]^{\mathrm{T}} \in \mathbb{R}^{n_k}$, $f_{l,1} = [1, 0, \ldots, 0]^{\mathrm{T}} \in \mathbb{R}^{2m_l}$, $k = 1, \ldots, r; l = 1, \ldots, s$.

Let *G* be an abelian sub-semigroup of $M_n(\mathbb{R})$ and $P \in GL(n, \mathbb{R})$ such that $P^{-1}GP \subset \mathcal{K}_{\eta,r,s}(\mathbb{R})$. Denote by:

(iv) $v_0 = Pu_0$.

(v)
$$\mathbf{g} := \exp^{-1}(G) \cap [P\mathcal{K}_{\eta,r,s}(\mathbb{R})P^{-1}]$$

(vi) $\mathbf{g}_{u} := \{Bu : B \in \mathbf{g}\}, u \in \mathbb{R}^{n}.$

In particular when $G \subset \mathcal{K}_{\eta,r,s}(\mathbb{R})$, $g = \exp^{-1}(G) \cap \mathcal{K}_{\eta,r,s}(\mathbb{R})$. Recall the following results that have been proved.

THEOREM 2.1 ([5]). Let G be an abelian sub-semigroup of $M_n(\mathbb{R})$. The following properties are equivalent:

(i) *G* has a somewhere dense orbit.

(ii) $G(v_0)$ is somewhere dense in \mathbb{R}^n .

(iii) g_{v_0} is an additive sub-semigroup, dense in \mathbb{R}^n .

THEOREM 2.2 ([5], Corollary 1.2). Let G be an abelian sub-semigroup of $M_n(\mathbb{R})$ and $P \in GL(n, \mathbb{R})$ such that $P^{-1}GP \subset \mathcal{K}_{\eta,r,s}(\mathbb{R})$ for some $0 \leq r, s \leq n$. The following properties are equivalent:

(i) G is hypercyclic.

(ii) $G(v_0)$ is dense in \mathbb{R}^n .

(iii) g_{v_0} is an additive sub-semigroup dense in \mathbb{R}^n and ind(G) = r.

3. PROOF OF THEOREM 1.2, COROLLARIES 1.3 AND 1.4

We let

$$U := \prod_{k=1}^{r} (\mathbb{R}^* \times \mathbb{R}^{n_k - 1}) \times \prod_{l=1}^{s} ((\mathbb{R}^2 \setminus \{(0, 0)\}) \times \mathbb{R}^{2m_l - 2}),$$

$$C_{u_0} = \prod_{k=1}^{r} (\mathbb{R}^*_+ \times \mathbb{R}^{n_k - 1}) \times \prod_{l=1}^{s} ((\mathbb{R}^2 \setminus \{(0, 0)\}) \times \mathbb{R}^{2m_l - 2}),$$

where u_0 is defined in (iii) in the beging of the section.

It is plain that *U* is open and dense in \mathbb{R}^n and that C_{u_0} is the connected component of *U* through u_0 .

Denote by:

(i) Γ the subgroup of $\mathcal{K}^*_{\eta,r,s}(\mathbb{R})$ generated by $(S_k)_{1 \leq k \leq r}$ given by

$$S_k := \operatorname{diag}(\varepsilon_{1,k}I_{n_1}, \ldots, \varepsilon_{r,k}I_{n_r}; I_{2m_1}, \ldots, I_{2m_s}) \in \mathcal{K}^*_{\eta,r,s}(\mathbb{R})$$

where

$$\varepsilon_{i,k} := \begin{cases} -1 & \text{if } i = k, \\ 1 & \text{if } i \neq k, 1 \leqslant i, k \leqslant r. \end{cases}$$

It is plain that $card(\Gamma) = 2^r$. The following lemma is easy to check.

LEMMA 3.1. Under the notation above, we have: (i) $S_k M = MS_k$, for every $M \in \mathcal{K}_{\eta,r,s}(\mathbb{R})$, k = 1, ..., r. (ii) $U = \bigcup_{S \in \Gamma} S(\mathcal{C}_{u_0})$ and the $S(\mathcal{C}_{u_0})$, $S \in \Gamma$ are pairwise disjoint. (iii) $S(\mathcal{C}_{u_0})$, $S \in \Gamma$ are the connected components of U.

LEMMA 3.2. Let G be an abelian sub-semigroup of $\mathcal{K}_{\eta,r,s}(\mathbb{R})$, $n \in \mathbb{N}_0$. Then $\operatorname{ind}(G) = r$ if and only if $G(u_0)$ meets all connected components of U.

Proof. If $\operatorname{ind}(G) = r$ then for every $k = 1, \ldots, r$ there exists $M^{(k)} \in G^*$ such that $\mu_{k,k} < 0$ and $\mu_{k,j} > 0$ if $j \neq k$, where $\mu_{k,j}$ is the eigenvalue of the j^{th} bloc of $M^{(k)}$. It follows that $S_k M^{(k)} \in \mathcal{K}^+_{\eta,r,s}(\mathbb{R})$. Let $S \in \Gamma$. As $S_k^{-1} = S_k$, $k = 1, \ldots, r$, one can write $S = (S_1)^{p_1} \cdots (S_r)^{p_r} \in \Gamma$ with $p_1, \ldots, p_r \in \mathbb{N}$. Set $M = (M^{(1)})^{p_1} \cdots (M^{(r)})^{p_r}$, then $M \in G^*$ and by Lemma 3.1(i), $SM = (S_1 M^{(1)})^{p_1} \cdots (S_r M^{(r)})^{p_r} \in \mathcal{K}^+_{\eta,r,s}(\mathbb{R})$, so $SMu_0 \in \mathcal{C}_{u_0}$. As $S^{-1} = S$, thus $Mu_0 \in S(\mathcal{C}_{u_0})$. By Lemma 3.1(ii), it follows that every connected component of U meets $G(u_0)$. Conversely, assume that for every $k = 1, \ldots, r$, the orbit $G(u_0)$ meets $S_k(\mathcal{C}_{u_0})$, so there is $M^{(k)} \in G$ such that $M^{(k)}u_0 \in S_k(\mathcal{C}_{u_0})$. Then $S_k M^{(k)}u_0 \in \mathcal{C}_{u_0}$, so $S_k M^{(k)} \in \mathcal{K}^+_{\eta,r,s}(\mathbb{R})$. It follows that for every $k = 1, \ldots, r$, $M^{(k)} \in G^*$ with $\mu_{k,k} < 0$ and $\mu_{k,j} > 0$ if $j \neq k$, where $\mu_{k,j}$ is the eigenvalue of the j^{th} bloc of $M^{(k)}$. Therefore $\operatorname{ind}(G) = r$. ■

LEMMA 3.3 ([5], Lemma 3.8). Let *G* be an abelian sub-semigroup of $\mathcal{K}_{\eta,r,s}(\mathbb{R})$, $n \in \mathbb{N}_0$. If $\overrightarrow{G(u_0)} \neq \emptyset$ then $\overline{G(u_0)} \cap \mathcal{C}_{u_0} = \mathcal{C}_{u_0}$.

Proof of Theorem 1.2. If *G* is multi-hypercyclic so there exist vectors $v_1, \ldots, v_p \in \mathbb{R}^n$ such that the union $\bigcup_{1 \leq i \leq p} G(v_i)$ is dense in \mathbb{R}^n . Hence there is some v_i such that $\overrightarrow{G(v_i)} \neq \emptyset$, that is $G(v_i)$ is somewhere dense. Conversely, suppose that

that $G(v_i) \neq \emptyset$, that is $G(v_i)$ is somewhere dense. Conversely, suppose that G has a somewhere dense orbit G(u) for some $u \in \mathbb{R}^n$. One can assume by Proposition 1.1 that $G \subset \mathcal{K}_{\eta,r,s}(\mathbb{R})$. By Theorem 2.1, $G(u_0)$ is somewhere dense. By Lemmas 3.1 and 3.3, it follows that:

$$U = \bigcup_{S \in \Gamma} S(\mathcal{C}_{u_0}) \subset \bigcup_{S \in \Gamma} S(\overline{G(u_0)}) \subset \bigcup_{S \in \Gamma} \overline{G(Su_0)}.$$

Since $\overline{U} = \mathbb{R}^n$ and Γ is finite, $\bigcup_{S \in \Gamma} \overline{G(Su_0)} = \mathbb{R}^n$ and so *G* is multi-hypercyclic. In fact, *G* is 2^{*r*}-hypercyclic since card(Γ) = 2^{*r*}.

Proof of Corollary 1.3. If *G* is multi-hypercyclic and ind(G) = r then by Theorem 1.2, *G* has a somewhere dense orbit and so *G* is hypercyclic by Theorems 2.1 and 2.2. Conversely, if *G* is hypercyclic then ind(G) = r by Theorem 2.2.

Proof of Corollary 1.4. This follows from Corollary 1.3 since in this case r = 0 and ind(G) = 0.

4. ABELIAN SEMIGROUPS THAT ARE MULTI-HYPERCYCLIC BUT NOT HYPERCYCLIC

We need the following lemma:

LEMMA 4.1 ([5], Lemma 5.3). Let G be an abelian sub-semigroup of $\mathcal{K}^*_{\eta,r,s}(\mathbb{R})$. Then $\overline{\overset{\circ}{G(u_0)}} \neq \emptyset$ if and only if $\overline{G^2(u_0)} \neq \emptyset$ where $G^2 = \{A^2 : A \in G\}$.

Proof of Theorem 1.5. In Theorem 1.7 of [5] we constructed for every $n \in \mathbb{N}_0$ and $1 \leq r, s \leq n$, a hypercyclic abelian sub-semigroup G_0 of $\mathcal{K}^*_{\eta,r,s}(\mathbb{R})$ generated by p = n - s + 1 matrices. Hence by Theorem 2.1, $\overline{G_0(u_0)} = \mathbb{R}^n$ and by Lemma 4.1, $\overset{\circ}{\overline{G_0^2(u_0)}} \neq \emptyset$. Set $G = G_0^2$. Then *G* is a sub-semigroup of $\mathcal{K}^+_{\eta,r,s}(\mathbb{R})$ having a somewhere dense orbit $G(u_0)$. Let A_1, \ldots, A_p generate *G*. Write $A_k =$ diag $(A_{k,1}, \ldots, A_{k,r}, \widetilde{A}_{k,1}, \ldots, \widetilde{A}_{k,s})$ $(1 \leq k \leq p)$ where $A_{k,i} \in \mathbb{T}^+_{n_i}(\mathbb{R})$ and $\widetilde{A}_{k,j} \in \mathbb{B}^*_{m_i}(\mathbb{R})$. For $1 \leq q \leq r$, denote by

$$B_k = \begin{cases} A_k & \text{if } k \in \{1, \dots, q\} \cup \{r+1, \dots, p\}, \\ S_k A_k & \text{if } q+1 \leqslant k \leqslant r, \end{cases}$$

and consider G_q the abelian semigroup generated by B_1, \ldots, B_p . Since $S_k^2 = I_n$, one has $G_q^2 = G^2$. By Lemma 4.1, $\overline{G_q^2(u_0)} \neq \emptyset$ and so $\overline{G_q(u_0)} \neq \emptyset$. It follows by Lemma 3.3 that

(4.1)
$$\overline{G_q(u_0)} \cap \mathcal{C}_{u_0} = \mathcal{C}_{u_0}.$$

For $1 \leq k \leq p$, write

$$B_k = \operatorname{diag}(B_{k,1}, \dots, B_{k,r}, \widetilde{B}_{k,1}, \dots, \widetilde{B}_{k,s}) \quad \text{and} \\ B_k^{(1)} = \operatorname{diag}(B_{k,q+1}, \dots, B_{k,r}, \widetilde{B}_{k,1}, \dots, \widetilde{B}_{k,s}).$$

Denote by $G_q^{(1)}$ the semigroup generated by

$$B_k^{(1)} = \operatorname{diag}(\varepsilon_{k,q+1}A_{k,q+1},\ldots,\varepsilon_{k,r}A_{k,r},\widetilde{A}_{k,1},\ldots,\widetilde{A}_{k,s}), 1 \leq k \leq p.$$

Then $G_q^{(1)}$ is an abelian sub-semigroup of $\mathcal{K}_{\eta',r-q,s}^*(\mathbb{R})$ where $\eta' = (n_{q+1}, \ldots, n_r; m_1, \ldots, m_s)$. Set $m = 2m_1 + \cdots + 2m_s$ and $n' = m + n_{q+1} + \cdots + n_r$. Denote by π_2 the projection on the second factor $\pi_2 : \mathbb{R}^{n-n'} \times \mathbb{R}^{n'} \longrightarrow \mathbb{R}^{n'}; x = (x_1, x_2) \longmapsto x_2$. Set $u_0^{(1)} = \pi_2(u_0)$. One has $G_q^{(1)}(u_0^{(1)}) = \pi_2(G_q(u_0))$. Since π_2 is an open map and $\overset{\circ}{\overline{G_q(u_0)}} \neq \emptyset$, it follows that $\overline{G_q^{(1)}(u_0^{(1)})} \neq \emptyset$. Moreover $\operatorname{ind}(G_q^{(1)}) = r-q$, so by Corollary 1.3, $G_q^{(1)}$ is hypercyclic and by Theorems 2.1 and 2.2, $\overline{G_q^{(1)}(u_0^{(1)})} = \mathbb{R}^{n'}$. Therefore by (4.1) one has:

(4.2)
$$\overline{G_q(u_0)} \cap \mathcal{C}'_{u_0} = \mathcal{C}'_{u_0}$$

where $C'_{u_0} = \prod_{k=1}^{q} (\mathbb{R}^*_+ \times \mathbb{R}^{n_k-1}) \times \mathbb{R}^{n'}$. Denote by Γ_q be the group generated by $S_1 \dots, S_q$, so card(Γ_q) = 2^{*q*}. By Lemma 3.1, $G_q(S(u_0)) = S(G_q(u_0))$ and we have

$$U = \bigcup_{S \in \Gamma} S(\mathcal{C}_{u_0}) \subset \bigcup_{S \in \Gamma_q} S(\mathcal{C}'_{u_0}).$$

Then by (4.2) one has:

$$U \subset \bigcup_{S \in \Gamma_q} S(\mathcal{C}'_{u_0}) = \bigcup_{S \in \Gamma_q} S(\overline{G_q(u_0)} \cap \mathcal{C}'_{u_0}) \subset \bigcup_{S \in \Gamma_q} \overline{G_q(S(u_0))}.$$

Since $\overline{U} = \mathbb{R}^n$, $\bigcup_{S \in \Gamma_q} \overline{G_q(S(u_0))} = \mathbb{R}^n$. Hence G_q is 2^q -hypercyclic. As $A_{k,j} \in \mathbb{T}_{n_j}^+(\mathbb{R})$ for every $1 \leq j \leq q$ then $G_q(u_0) \subset C'_{u_0}$ and therefore G_q is not hypercyclic. This completes the proof.

Proof of Corollary 1.6. By taking q = r = n in Theorem 1.5, so s = 0 and the corollary follows.

Proof of Corollary 1.7. It is plain that the group $\mathcal{K}^+_{\eta,r,s}(\mathbb{R})$ is not hypercyclic since any connected component of U is invariant by $\mathcal{K}^+_{\eta,r,s}(\mathbb{R})$. On the other hand, by Theorem 1.5 there exists an abelian sub-semigroup of $\mathcal{K}^+_{\eta,r,s}(\mathbb{R})$ which is 2^r -hypercyclic, therefore $\mathcal{K}^+_{\eta,r,s}(\mathbb{R})$ is also 2^r -hypercyclic.

5. PROOF OF THEOREM 1.8, COROLLARIES 1.9, 1.10 AND 1.11

Proof of Theorem 1.8. Let $k = (k_1, ..., k_p) \in \mathbb{N}_0^p$. One can assume that *G* is an abelian sub-semigroup of $\mathcal{K}_{\eta, r, s}(\mathbb{R})$.

(i) By Theorem 1.2, G has a somewhere dense orbit, then by Theorem 2.1, $\overset{\circ}{\overline{G(u_0)}} \neq \emptyset$ and by Lemma 3.3 $\overline{G(u_0)} \cap \mathcal{C}_{u_0} = \mathcal{C}_{u_0}$. For any multi-index $\ell =$ $(\ell_1, \ldots, \ell_p) \in \mathbb{N}^p$ there exists (by applying the division algorithm) $q_i \in \mathbb{N}$ and $0 \leq r_i < k_i$ such that $\ell_i = q_i k_i + r_i$, $i = 1, \ldots, p$. As *G* is abelian, thus

$$A_1^{\ell_1} \cdots A_p^{\ell_p} u_0 = (A_1^{k_1})^{q_1} \cdots (A_p^{k_p})^{q_p} A_1^{r_1} \cdots A_p^{r_p} u_0.$$

Hence

$$G(u_0) = \bigcup_{0 \leq r_i < k_i} G^k(A_1^{r_1} \cdots A_p^{r_p} u_0).$$

Therefore

$$\bigcup_{0\leqslant r_i< k_i}\overline{G^k(A_1^{r_1}\cdots A_p^{r_p}u_0)}\cap \mathcal{C}_{u_0}=\mathcal{C}_{u_0}.$$

Since C_{u_0} is open, we see that $\overline{G^k(A_1^{r_1} \cdots A_p^{r_p} u_0)} \neq \emptyset$ for some $0 \leq r_i < k_i$ where the interior is taken in C_{u_0} , hence in \mathbb{R}^n since C_{u_0} is open. We conclude that G^k has a somewhere dense orbit.

(ii) If G^k is multi-hypercyclic for some $k = (k_1, ..., k_p) \in \mathbb{N}_0^p$ then G^k has a somewhere dense orbit $G^k(u), u \in \mathbb{R}^n$. As $G^k(u) \subset G(u)$ then G(u) is somewhere dense. This proves the theorem.

Proof of Corollary 1.9. The proof results from Theorems 1.2 and 1.8.

Proof of Corollary 1.10. One can assume by Proposition 1.1 that *G* is an abelian sub-semigroup of $\mathcal{K}_{\eta,r,s}(\mathbb{R})$. Then $G^k \subset \mathcal{K}_{\eta,r,s}(\mathbb{R})$. If *G* is hypercyclic then $\operatorname{ind}(G) = r$ (Theorem 2.2) and G^k is multi-hypercyclic by Theorem 1.8. Thus by Corollary 1.3, G^k is hypercyclic if and only if $\operatorname{ind}(G^k) = r$.

Proof of Corollary 1.11. Since k_1, \ldots, k_p are odd, $ind(G^k) = ind(G)$ and so the fact that G^k is hypercyclic follows from Corollary 1.10.

6. FURTHER RESULTS ON HYPERCYCLICITY AND A QUESTION OF FELDMAN

THEOREM 6.1. Let G be an abelian sub-semigroup of $M_n(\mathbb{R})$ and $u \in \mathbb{R}^n$, then $\overline{G(u)} = \mathbb{R}^n$ if and only if $0 \in \overline{G(u)}$.

We need the following lemmas.

LEMMA 6.2. Let G be an abelian sub-semigroup of $\mathcal{K}_{\eta,r,s}(\mathbb{R})$. Then $\mathbb{R}^n \setminus U$ is a union of r + s, G-invariant vector subspaces of \mathbb{R}^n .

Proof. One has
$$\mathbb{R}^n \setminus U = \bigcup_{k=1}^r H_k \cup \bigcup_{l=1}^s \widetilde{H}_l$$
 where
 $H_k = \{u = (x_1, \dots, x_r, y_1, \dots, y_s), x_k \in \{0\} \times \mathbb{R}^{n_k - 1}\}$ and
 $\widetilde{H}_l = \{u = (x_1, \dots, x_r, y_1, \dots, y_s), y_l \in \{(0, 0)\} \times \mathbb{R}^{2m_l - 2}\}.$

Each vector space H_k (respectively \widetilde{H}_l) is *G*-invariant: indeed, if $u = (x_1, \ldots, x_r, y_1, \ldots, y_s) \in H_k$ (respectively $u \in \widetilde{H}_l$), so $x_k \in \{0\} \times \mathbb{R}^{n_k-1}$ (respectively $y_l \in \{(0,0)\} \times \mathbb{R}^{2m_l-2}$) and hence since $G \subset \mathcal{K}_{\eta,r,s}(\mathbb{R})$, it is plain that $G(u) \subset H_k$ (respectively $G(u) \subset \widetilde{H}_l$).

LEMMA 6.3 ([5], Proposition 4.1). Let G be an abelian sub-semigroup of $M_n(\mathbb{R})$ and $u \in \mathbb{R}^n$. Then G(u) is a somewhere dense orbit if and only if so is $G^*(u)$.

Denote by vect(*G*) the vector subspace of $M_n(\mathbb{R})$ generated by *G*.

LEMMA 6.4 ([5], Proposition 3.7). If G is an abelian sub-semigroup of $\mathcal{K}^*_{\eta,r,s}(\mathbb{R})$ having a somewhere dense orbit G(u) then for every $v \in U$, there exists $B \in \text{vect}(G) \cap GL(n, \mathbb{R})$ such that Bu = v.

Proof of Theorem 6.1. One can suppose that $G \subset \mathcal{K}_{\eta,r,s}(\mathbb{R})$ by Proposition 1.1. Assume that $0 \in \overline{G(u)}$. By Lemma 6.3, $\overline{G^*(u)} \neq \emptyset$. By Lemma 6.4, there exists $B \in \operatorname{vect}(G^*) \cap \operatorname{GL}(n, \mathbb{R})$ such that $Bu_0 = u$. Therefore $\overline{G(u)} = B(\overline{G(u_0)})$ and hence $0 \in \overline{G(u_0)}$. So there is an open ball $B_{(0,\varepsilon)}$ of radius $\varepsilon > 0$ centered at 0 such that $B_{(0,\varepsilon)} \subset \overline{G(u_0)}$. Hence $G(u_0)$ meets all connected components of U. So by Lemma 3.2, $\operatorname{ind}(G) = r$ and hence by Theorem 2.2, $\overline{G(u_0)} = \mathbb{R}^n$. It follows that $\overline{G(u)} = \mathbb{R}^n$, this completes the proof.

In [9], Feldman raised open questions, most of them answered (see Shkarin [14]). We are interested here in the seventh problem.

Question (7). If an orbit of a tuple T is somewhere dense, but not dense in a real locally convex space X, then is the closure of the orbit invariant under multiplication by positive scalars?

We answer positively this question that can be dealt with semigroups on \mathbb{R}^n .

PROPOSITION 6.5. Let G be an abelian sub-semigroup of $M_n(\mathbb{R})$ having a somewhere dense orbit G(u), $u \in \mathbb{R}^n$. Then for any real $\lambda > 0$, we have $\lambda \overline{G(u)} \subset \overline{G(u)}$, this means that $\overline{G(u)}$ is invariant under multiplication by positive scalars.

We need the following lemma.

LEMMA 6.6. If G is an abelian sub-semigroup of $\mathcal{K}_{\eta,r,s}(\mathbb{R})$ having a somewhere dense orbit G(u) ($u \in \mathbb{R}^n$), then G(u) is dense in every connected component of U meeting it.

Proof. By Lemma 6.3, $G^*(u)$ is somewhere dense and by Theorem 2.1, $G(u_0)$ is somewhere dense. So by Lemma 3.3, $G(u_0)$ is dense in C_{u_0} . Let V be a connected component of U meeting G(u), so there is $v \in V \cap G(u)$. By Lemma 6.4, there exists $B \in \text{vect}(G^*) \cap \text{GL}(n, \mathbb{R})$ such that $Bv = u_0$. So $G(v) = B^{-1}(G(u_0))$. This implies that G(v) is dense in $B^{-1}(C_{u_0}) = V$.

Proof of Proposition 6.5. The proof is done by induction on $n \ge 1$. For n = 1, *G* is a multiplicative semigroup of \mathbb{R} . Let $u \in \mathbb{R}$ so that G(u) is somewhere dense in \mathbb{R} . Here $U = \mathbb{R}^*$. By Lemma 6.6, G(u) is dense in each connected component of \mathbb{R}^* meeting it; that is $\overline{G(u)} \cap \mathcal{C} = \mathcal{C}$ where $\mathcal{C} = \mathbb{R}^*_+$ or $\mathcal{C} = \mathbb{R}^*_-$. Therefore $\overline{G(u)} \cap \mathbb{R}^* = \mathbb{R}^*$. Let $\lambda > 0$ be real. Since $\lambda C \subset C$ we see that $\lambda(\overline{G(u)} \cap$ \mathbb{R}^* $\subset G(u) \cap \mathbb{R}^*$. Hence if $0 \in G(u)$ then $\lambda G(u) = \lambda (G(u) \cap \mathbb{R}^*) \cup \{0\} \subset \{0\}$ $\overline{G(u)} \cup \{0\} = \overline{G(u)}$. If $0 \notin \overline{G(u)}$ then $\lambda \overline{G(u)} = \lambda(\overline{G(u)} \cap \mathbb{R}^*) \subset \overline{G(u)}$. In either case, $\lambda(\overline{G(u)}) \subset \overline{G(u)}$. Suppose the proposition is true until n-1, $(n \ge 2)$ and let *G* be an abelian sub-semigroup of $M_n(\mathbb{R})$. By Proposition 1.1, one can assume that $G \subset \mathcal{K}_{\eta,r,s}(\mathbb{R})$. By Lemma 6.6, G(u) is dense in each connected component of *U* meeting it. Hence $\overline{G(u)} \cap U = \bigcup_{j=1}^{p} C_j$ where C_j , j = 1, ..., p are the connected components of *U* meeting G(u). Let $\lambda > 0$ be real. Since $\lambda C_i \subset C_i$ for $1 \leq j \leq p$, we see that $\lambda(\overline{G(u)} \cap U) \subset \bigcup_{i=1}^{p} \mathcal{C}_{j} = \overline{G(u)} \cap U$. By Lemma 6.2, $\mathbb{R}^{n} \setminus U$ is a union of r + s *G*-invariant vector subspaces H_k and \widetilde{H}_l of \mathbb{R}^n . By applying the induction hypothesis to the restriction of G on each vector space H_k (respectively \widetilde{H}_l) of dimension n-1 (respectively n-2), we get $\lambda(\overline{G(u)} \cap H_k) \subset \overline{G(u)} \cap H_k$ and $\lambda(\overline{G(u)} \cap \widetilde{H}_l) \subset \overline{G(u)} \cap \widetilde{H}_l$: indeed, if $x \in \overline{G(u)} \cap H_k$ then $G(x) \subset H_k$ and $\lambda \overline{G(x)} \subset \overline{G(x)}$, in particular, $\lambda x \in \overline{G(x)} \subset \overline{G(u)} \cap H_k$. We conclude that $\lambda \overline{G(u)} \subset \overline{G(u)}$ $\overline{G(u)}$. The proof is complete.

REMARK 6.7. The Proposition 6.5 fails if *G* has nowhere dense orbit, as can be shown by taking any semigroup of S composed of rotations.

Acknowledgements. We are grateful to the referee for his/her helpful comments on this paper. This work is supported by the research unit: systèmes dynamiques et combinatoire 99UR15-15.

REFERENCES

- H. ABELS, A. MANOUSSOS, Topological generators of abelian Lie groups and hypercyclic finitely generated abelian semigroups of matrices, *Adv. Math.* 229(2012), 1862– 1872.
- [2] S.I. ANSARI, Hypercyclic and cyclic vectors, J. Funct. Anal. 128(1995), 374–383.
- [3] A. AYADI, H. MARZOUGUI, Dynamic of abelian subgroups of GL(*n*, ℂ): a structure theorem, *Geom. Dedicata* **116**(2005), 111–127.
- [4] A. AYADI, H. MARZOUGUI, Dense orbits for abelian subgroups of GL(n, C), in *Foliations 2005*, World Sci. Publ., Hackensack, NJ 2006, pp. 47–69.
- [5] A. AYADI, H. MARZOUGUI, Hypercyclic abelian semigroups of matrices on Rⁿ; arXiv: 1010.5915v1, 2010.

- [6] F. BAYART, E. MATHERON, *Dynamics of Linear Operators*, Cambridge Tracts in Math., vol. 179, Cambridge Univ. Press, Cambridge 2009.
- [7] G. COSTAKIS, On a conjecture of D. Herrero concerning hypercyclic operators, C. R. Math. Acad. Sci. Paris 330(2000), 179–182.
- [8] G. COSTAKIS, D. HADJILOUCAS, A. MANOUSSOS, Dynamics of tuples of matrices, Proc. Amer. Math. Soc. 137(2009), 1025–1034.
- [9] N.S. FELDMAN, Hypercyclic tuples of operators and somewhere dense orbits, *J. Math. Anal. Appl.* **346**(2008), 82–98.
- [10] K.G. GROSSE-HERDMANN, A. PERIS, *Linear Chaos*, Universitext, Springer, London 2011.
- [11] D.A. HERRERO, Hypercyclic operators and chaos, J. Operator Theory 28(1992), 93–103.
- [12] M. JAVAHERI, Semigroups of matrices with dense orbits, Dyn. Syst. 26(2011), 235–243.
- [13] A. PERIS, Multi-hypercyclic operators are hypercyclic, Math. Z. 236(2001), 779–786.
- [14] S. SHKARIN, Hypercyclic tuples of operators on \mathbb{C}^n and \mathbb{R}^n , *Linear Multilinear Algebra* **60**(2012), 885–896.

ADLENE AYADI, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE OF GAFSA, UNIVERSITY OF GAFSA, GAFSA, 2112, TUNISIA *E-mail address*: adlenesoo@yahoo.com

HABIB MARZOUGUI, DEPARTMENT OF MATHEMATICS, FACULTY OF SCIENCE OF BIZERTE, UNIVERSITY OF CARTHAGE, JARZOUNA, 7021, TUNISIA *E-mail address*: habib.marzougui@fsb.rnu.tn; hmarzoug@ictp.it

Received June 26, 2012; posted on June 1, 2014.