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ABSTRACT. We provide alternative proofs of two recent Grothendieck theo-
rems for jointly completely bounded bilinear forms, originally due to Pisier
and Shlyakhtenko (Grothendieck’s theorem for operator spaces, Invent. Math.
150(2002), 185–217) and Haagerup and Musat (The Effros-Ruan conjecture for
bilinear forms on C∗-algebras, Invent. Math. 174(2008), 139–163). Our proofs
are elementary and are inspired by the so-called embezzlement states in quan-
tum information theory. Moreover, our proofs lead to quantitative estimates.
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INTRODUCTION

Published in 1953, Grothendieck’s theorem [4], a non-trivial statement re-
garding bounded bilinear forms on L∞× L∞, had a major impact on Banach space
theory. A non-commutative extension of Grothendieck’s theorem to the setting
of bounded bilinear forms on C∗-algebras, already conjectured in [4], was first
proved by Pisier under some approximability assumption [10], and then in full
generality by Haagerup [5]. More recently, analogues of Grothendieck’s theo-
rem for jointly completely bounded bilinear forms were obtained by Pisier and
Shlyakhtenko [13] and by Haagerup and Musat [6]. The former holds for forms
defined on exact operator spaces (see also Section 18 of [12] for an alternative
proof by Pisier and de la Salle) and the latter holds for forms defined on arbi-
trary C∗-algebras. Such statements were earlier conjectured by Effros and Ruan
[3] and by Blecher [2]. We refer the reader to [12] for a comprehensive survey of
Grothendieck’s theorem and its extensions.

The purpose of this note is to give new, simpler (in our opinion), and more
quantitative proofs of these two recent results. The existing proofs crucially use
a kind of non-commutative probability space defined on type III von Neumann
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algebras and are somewhat elaborate. In contrast, our proof technique, based on
ideas originating in quantum information theory, is much more elementary and
explicit. Our proof also leads to more quantitative versions of these Grothendieck
theorems, which may be useful in some applications. (See [14] for an application
to quantum multiplayer games.)

Similarly to [6] and the proof by Pisier and de la Salle ([12], Section 18),
our proof is based on a transformation which reduces the question to one of the
better-understood non-commutative versions of Grothendieck’s theorem [5], [9].
Our transformation is much more concrete, and is described in detail in our main
theorem, stated next.

THEOREM 0.1. Let A,B be C∗-algebras, E ⊆ A, F ⊆ B operator spaces, and
u : E × F → C a bilinear form. Let d > 1 be an integer and Md the space of d × d
complex matrices. There exists a unit vector Φ ∈ Cd ⊗Cd, with associated bilinear form
φ defined on Md ×Md by φ(a, b) = 〈Φ, (a⊗ b)Φ〉, such that for any finite sequences
(xi)i in E, (yi)i in F, and positive reals (ti)i there exist finite sequences (x̃j)j in E⊗Md
and (ỹj)j in F⊗Md satisfying

∥∥∥∑
j

x̃j x̃∗j
∥∥∥ 6

∥∥∥∑
i

xix∗i
∥∥∥,

∥∥∥∑
j

x̃∗j x̃j

∥∥∥ 6
∥∥∥∑

i
t2
i x∗i xi

∥∥∥,

∥∥∥∑
j

ỹjỹ∗j
∥∥∥ 6

∥∥∥∑
i

t−2
i yiy∗i

∥∥∥,
∥∥∥∑

j
ỹ∗j ỹj

∥∥∥ 6
∥∥∥∑

i
y∗i yi

∥∥∥,(0.1)

and such that

(0.2)
∣∣∣∑

j
(u⊗ φ)(x̃j, ỹj)

∣∣∣ >
∣∣∣∑

i
u(xi, yi)

∣∣∣− C
ln(1 + maxi{ti, t−1

i })
1 + ln d ∑

i
|u(xi, yi)|,

where C > 0 is a universal constant.

We stress that both the vector Φ and the mapping (xi, yi, ti) 7→ (x̃j, ỹj) are
explicit. In particular, the vector Φ = Φd whose existence is promised in the the-
orem is known as the “embezzlement state” [15] in quantum information theory,
and is defined as

(0.3) Φd := Z−1/2
d

d

∑
i=1

1√
i
ei ⊗ ei ∈ Cd ⊗Cd,

where (ei) is the canonical basis of Cd and Zd =
d
∑

i=1
i−1 the proper normalization

constant. As an aside, we note that the name embezzlement comes from an in-
triguing property that such states possess: any entangled state can be “distilled”
from Φd (assuming d large enough) using local operations while keeping Φd es-
sentially intact. (The family of states Φd defined in (0.3) is not the only family
having this property, which is somewhat robust to the exact choice of coefficients
i−1/2 we adopted here.) This property implies, for instance, that in the definition
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FIGURE 1. L(
√

3) (left) and L(
√

2.4) (right) for d = 8.

of the jointly completely bounded norm (see (2.1)) it suffices to consider only eval-
uations of the amplified bilinear form on the states Φ. The construction of (x̃j, ỹj)
is also explicit, and relies on the construction of a family of d-dimensional “line”
matrices given in Claim 1.1 (see also Figure 1 for an illustration). It is the specific
interplay between these matrices and the state Φ that guarantees the validity of
(0.1) and (0.2).

ORGANIZATION OF THE PAPER. We present the proof of Theorem 0.1 in Section 1.
In Section 2 we apply the theorem to derive short proofs of the main results of
[6] (in Section 2.1) and of [13] (in Section 2.2). We also obtain new quantitative
estimates for both results.

1. PROOF OF THEOREM 0.1

The main tool in our proof of Theorem 0.1 is the construction of a special
family of “line” matrices (see Figure 1 for an illustration). We note that the choice
of these matrices can be shown to be optimal in a certain precise sense.

CLAIM 1.1. For any integer d > 1 there exists a collection of d× d matrices{
L(t)

}
t∈R+

, parametrized by the positive reals, satisfying the following condi-
tions:

(i) For all t > 0, L(t) has non-negative entries that sum to at most 1 in every
row, and to at most t2 in every column;

(ii) There exists a unit vector z ∈ Rd with non-negative entries such that for all
t > 0,

(
1− C

ln(1 + max(t, t−1))

1 + ln d

)
t 6 〈z, L(t)z〉 6 t,

where C > 0 is a universal constant. In fact, one can take the unit vector z =

Z−1/2
d (i−1/2)d

i=1, where Zd =
d
∑

i=1
1/i 6 1 +

d∫
1
(1/r)dr = 1 + ln d is the proper

normalization constant.

Proof. Let t be a positive real, and define L(t) by setting its (i, j)-th entry
L(t)i,j, for i, j ∈ {1, . . . , d}, to the length of the interval [i − 1, i) ∩ [(j− 1)t2, jt2).
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The first item in the claim clearly holds. For the second, we start with the upper
bound, which actually holds for any unit vector z and any L(t) satisfying the
constraints in the first item. Indeed, applying the Cauchy–Schwarz inequality,

|〈z, L(t)z〉| =
∣∣∣∑

i,j
L(t)i,jz∗i zj

∣∣∣ 6
(

∑
i,j

L(t)i,j|zi|2
)1/2(

∑
i,j

L(t)i,j|zj|2
)1/2

6 t.

It remains to prove the lower bound. Using the vector z appearing in the
statement of the claim,

〈z, L(t)z〉 = 1
Zd

d min(1,t2)∫

0

1√
dr/t2edre

dr >
1

Zd

d min(1,t2)∫

0

1√
(1 + r/t2)(1 + r)

dr

=
2t
Zd

(
ln
(√

d min(1, t2) + 1 +
√

d min(1, t2) + t2
)
− ln(t + 1)

)

> t
ln(2d min(1, t2) + (1 + t)2)− 2 ln(t + 1)

1 + ln d

> t
(

1− C
ln(1 + max(t, t−1))

1 + ln d

)
,

for some universal constant C > 0.

The matrices constructed in the previous claim let us show the following
lemma, which provides the key estimates required for the proof of Theorem 0.1.

LEMMA 1.2. For any integer d > 1 and real t > 0 there exists a sequence (Lr(t))r
of d2 matrices of dimensions d× d, satisfying the following conditions for all t > 0:

∑
r

Lr(t)Lr(t)∗ 6 Id and ∑
r

Lr(t)∗Lr(t) 6 t2 Id ,(1.1)

∣∣∣∑
r
〈Φ, (Lr(t)⊗ Lr(t))Φ〉 − t

∣∣∣ 6 Ct
ln(1 + max(t, t−1))

1 + ln d
,(1.2)

where C > 0 is a universal constant and Φ ∈ Cd ⊗Cd is the unit vector defined in (0.3).

Proof. Let (L(t))t∈R+
be the collection of matrices whose existence is

promised by Claim 1.1, z the corresponding vector, and note that Φ = ∑
i

ziei ⊗ ei,

where (ei) is the canonical basis of Cd. For 1 6 i, j 6 d define Li+(j−1)d(t) by set-
ting its (i, j)-th entry to (L(t)i,j)

1/2, and all other entries to 0. Then ∑
r

Lr(t)Lr(t)∗

is a diagonal matrix whose (i, i)-th entry is the sum of the entries in the i-th row of
L(t), while ∑

r
Lr(t)∗Lr(t) is diagonal with (j, j)-th entry the sum of the entries in

the j-th column of L(t). Hence the constraints (1.1) are satisfied as a consequence
of Claim 1.1(i). The condition (1.2) follows immediately from Claim 1.1(ii) by
noting that

∑
r
〈Φ, (Lr(t)⊗ Lr(t))Φ〉 = 〈z, L(t)z〉.
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Given Lemma 1.2, the proof of Theorem 0.1 is relatively straightforward,
and we give it below.

Proof of Theorem 0.1. Consider finite sequences (xi)i in E, (yi)i in F, positive
reals (ti)i, and let d be a positive integer. Let (Lr(ti))r>1 be the matrices con-
structed in Lemma 1.2. For each pair (i, r) define

x̃i,r := xi ⊗ Lr(ti) ∈ E⊗Md and ỹi,r := t−1
i yi ⊗ Lr(ti) ∈ F⊗Md.

The bounds in (1.1) directly lead to the following upper bounds:
∥∥∥∑

i,r
x̃i,r x̃∗i,r

∥∥∥ =
∥∥∥∑

i
∑

r
xix∗i ⊗ Lr(ti)Lr(ti)

∗
∥∥∥ 6

∥∥∥∑
i

xix∗i
∥∥∥,

∥∥∥∑
i,r

x̃∗i,r x̃i,r

∥∥∥ =
∥∥∥∑

i
∑

r
x∗i xi ⊗ Lr(ti)

∗Lr(ti)
∥∥∥ 6

∥∥∥∑
i

t2
i x∗i xi

∥∥∥, and

∥∥∥∑
i,r

ỹi,r ỹ∗i,r
∥∥∥ =

∥∥∥∑
i

∑
r

t−2
i yiy∗i ⊗ Lr(ti)Lr(ti)

∗
∥∥∥ 6

∥∥∥∑
i

t−2
i yiy∗i

∥∥∥,

∥∥∥∑
i,r

ỹ∗i,r ỹi,r

∥∥∥ =
∥∥∥∑

i
∑

r
t−2
i y∗i yi ⊗ Lr(ti)

∗Lr(ti)
∥∥∥ 6

∥∥∥∑
i

y∗i yi

∥∥∥,

proving (0.1). To conclude it remains to evaluate
∣∣∣∑

i,r
(u⊗ φ)(x̃i,r, ỹi,r)

∣∣∣ =
∣∣∣∑

i,r
t−1
i u(xi, yi)〈Φ, (Lr(ti)⊗ Lr(ti))Φ〉

∣∣∣

>
∣∣∣∑

i
u(xi, yi)

∣∣∣− C
ln(1 + maxi{ti, t−1

i })
1 + ln d ∑

i
|u(xi, yi)|,

where the inequality follows from (1.2).

2. TWO GROTHENDIECK THEOREMS

In this section we show how the main results of [6] and [13], as well as new
quantitative estimates, can be derived from Theorem 0.1. We first recall some
useful definitions and notation, and refer the reader to [11] for additional back-
ground on operator spaces.

NORMS ON BILINEAR FORMS. Let A, B be C∗-algebras, and E ⊆ A, F ⊆ B oper-
ator spaces. A bilinear form u : E× F → C is called jointly completely bounded if
the naturally associated map ũ : E → F∗ is completely bounded. In more detail,
we define

‖u‖jcb := sup
d
‖ud‖,(2.1)
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where for any integer d > 1, ud is the amplification

ud : E⊗min Md × F⊗min Md → Md ⊗min Md(
∑ ai ⊗ xi, ∑ bi ⊗ yi

)
7→∑

i,j
u(ai, bj)xi ⊗ yj.

For any unit vector Ω∈Cd⊗Cd we also consider an associated map uΩ
d , defined as

uΩ
d : E⊗min Md × F⊗min Md → C

(a, b) 7→ 〈Ω, ud(a, b)Ω〉.(2.2)

Clearly for any integer d and unit vector Ω it holds that

(2.3) ‖uΩ
d ‖jcb = ‖u‖jcb,

and in fact for any integer n we have ‖un‖ 6 ‖(uΩ
d )n‖ 6 ‖udn‖. We will also make

use of the notion of tracially bounded bilinear forms introduced by Itoh [8] (and in
a slightly different form by Blecher [1]). It can be defined by specializing Ω in
(2.2) to the vectors Ψ (known as the “maximally entangled states" in quantum
information theory),

(2.4) Ψd := d−1/2
d

∑
i=1

ei ⊗ ei ∈ Cd ⊗Cd.

In detail, a bilinear map u is said to be tracially bounded if the following supre-
mum is finite,

‖u‖tb :=sup
d
‖uΨ

d ‖=sup
∣∣∣∑

i,j
u(ai, bj)〈Ψ, (xi⊗yj)Ψ〉

∣∣∣=sup
∣∣∣∑

i,j
d−1Tr(xiyt

j)u(ai, bj)
∣∣∣,

where the supremum is taken over all integers d > 1 and ∑ ai ⊗ xi ∈ E⊗min Md,
∑ bi ⊗ yi ∈ F⊗min Md of norm at most 1. We clearly have ‖u‖ 6 ‖u‖tb 6 ‖u‖jcb.

GROTHENDIECK VALUES ASSOCIATED WITH BILINEAR FORMS. Grothendieck’s
theorem and its extensions can be stated in a number of essentially equivalent
ways. The formulations we use here are in the form of an inequality that involves
the following quantity:

(2.5) ‖u‖os := sup
∣∣∣∑

i
u(xi, yi)

∣∣∣,

where the supremum is taken over all finite sequences (xi)i in E, (yi)i in F, and
positive reals (ti)i satisfying the constraint

max
{∥∥∥∑

i
xix∗i

∥∥∥+
∥∥∥∑

i
t2
i x∗i xi

∥∥∥,
∥∥∥∑

i
t−2
i yiy∗i

∥∥∥+
∥∥∥∑

i
y∗i yi

∥∥∥
}
6 2.(2.6)

Note that we could equivalently use the constraint
∥∥∥∑

i
xix∗i

∥∥∥
1/2∥∥∥∑

i
y∗i yi

∥∥∥
1/2

+
∥∥∥∑

i
t2
i x∗i xi

∥∥∥
1/2∥∥∥∑

i
t−2
i yiy∗i

∥∥∥
1/2

6 2



ELEMENTARY ROOFS OF GROTHENDIECK THEOREMS FOR COMPLETELY BOUNDED NORMS 497

instead of (2.6). This is the way it appears in, e.g., Theorem 0.4 of [13]. If we fur-
ther restrict the coefficients (ti) to ti = 1 for all i, then we use ‖u‖nc to denote the
resulting supremum in (2.5). Clearly ‖u‖ 6 ‖u‖nc 6 ‖u‖os. Our choice of nor-
malization for the constraint (2.6) differs from the one adopted in [6], [13], where
the constant 2 on the right-hand side is replaced by an 1. With our normalization,
the following inequalities are easily seen to hold (see Appendix A.1 for the proof):

(2.7) ‖u‖tb 6 ‖u‖nc and ‖u‖jcb 6 ‖u‖os.

ROW AND COLUMN NORMS. In order to state our quantitative estimates, for any
operator space E ⊆ A we define a quantity η(E) as

η(E) := max
{

sup
(xi):‖∑i x∗i xi‖61

∥∥∥∑
i

xix∗i
∥∥∥

1/2
, sup
(xi):‖∑i xix∗i ‖61

∥∥∥∑
i

x∗i xi

∥∥∥
1/2}

.

In other words, η(E) is the maximum of the norms of the natural maps C ⊗min
E → R⊗min E and R⊗min E → C⊗min E (as maps between Banach spaces). It is
not hard to see that η(Mn) 6

√
n; see Claims A.2 and A.3 in Appendix A.2 for a

proof and for other upper bounds on η.

2.1. FORMS ON C∗-ALGEBRAS. In this section we prove the following corollary of
Theorem 0.1, reproving the main result of Haagerup and Musat [6] and obtaining
new quantitative estimates.

COROLLARY 2.1. Let A,B be C∗-algebras, and u : A× B → C a jointly com-
pletely bounded bilinear form. Then

(2.8) ‖u‖jcb 6 ‖u‖os 6 2‖u‖jcb.

Moreover, if η(A), η(B) are finite then for any ε > 0 and any d > (2η(A)η(B)/ε)C/ε,
where C > 0 is a universal constant,

(1− ε)‖u‖os 6 2‖uΦ
d ‖ 6 2‖ud‖.

To prove the corollary we will use Theorem 0.1 to perform a reduction to the
“non-commutative Grothendieck theorem” [5] which shows that an inequality
similar to (2.8) holds for the case of bounded forms defined on C∗-algebras.

THEOREM 2.2 (Non-commutative GT, [5]). Let A,B be C∗-algebras and u :
A×B → C a bounded bilinear form. Then

‖u‖nc 6 2‖u‖.
Proof of Corollary 2.1. The first inequality is (2.7). For the second inequality,

let ε > 0 and (xi, yi, ti)i finite sequences satisfying (2.6) and such that

(2.9)
∣∣∣∑

i
u(xi, yi)

∣∣∣ > (1− ε)‖u‖os.
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By Theorem 0.1 for any d there exists a unit vector Φ ∈ Cd ⊗Cd and sequences
(x̃j), (ỹj) such that

∣∣∣∑
j

uΦ
d (x̃j, ỹj)

∣∣∣ >
∣∣∣∑

i
u(xi, yi)

∣∣∣− C
ln(1 + maxi{ti, t−1

i })
1 + ln d ∑

i
|u(xi, yi)|

>
(

1− ε− C
ln(1 + maxi{ti, t−1

i })
1 + ln d

)
‖u‖os,

where for the second inequality we use (2.9) and observe that for any numbers
αi of modulus 1, (αixi, yi, ti) satisfies (2.6) and hence ∑

i
|u(xi, yi)| 6 ‖u‖os. By

choosing d >
(

1 + max
i
{ti, t−1

i }
)C/ε

we obtain

(1− 2ε)‖u‖os 6 ‖uΦ
d ‖nc 6 2‖uΦ

d ‖ 6 2‖u‖jcb,

where the first inequality holds since by (0.1) the (x̃i, ỹi, ti = 1) satisfy (2.6), the
second inequality follows from Theorem 2.2, and the third inequality follows
from (2.3). Letting ε→ 0 proves the second inequality in (2.8).

For the “moreover" part of the corollary, Claim 2.3 below (with E = A
and F = B) shows that we can choose the sequence (xi, yi, ti)i in a way that
max

i
{ti, t−1

i } 6 8η(A)η(B)/ε, which, together with the bound on d shown above,

leads to the estimate claimed in the corollary.

CLAIM 2.3. Let E ⊆ A, F ⊆ B be operator spaces such that η(E), η(F) < ∞.
For any u : E× F → C and any ε > 0 there exists (xi, yi, ti) satisfying (2.6) such
that max

i
{ti, t−1

i } 6 8η(E)η(F)/ε and

∣∣∣∑
i

u(xi, yi)
∣∣∣ > (1− ε)‖u‖os.

Proof. Let (xi, yi, ti) be a sequence satisfying the constraint (2.6) and such
that ∣∣∣∑

i
u(xi, yi)

∣∣∣ >
(

1− ε

2

)
‖u‖os.

Let T = 8η(E)η(F)/ε > 1, and define S1 = {i : ti > T} and S2 = {i : t−1
i > T}.

Note that S1 and S2 are disjoint, and let S = S1 ∪ S2. For every i ∈ S1 (respectively
i ∈ S2) let x̃i = Txi/(2η(E)) and ỹi = yi/(2η(F)) (respectively x̃i = xi/(2η(E))
and ỹi = Tyi/(2η(F))). We have

∥∥∥ ∑
i∈S1

x̃i x̃∗i
∥∥∥+

∥∥∥ ∑
i∈S1

x̃∗i x̃i

∥∥∥ 6 T2

2

∥∥∥ ∑
i∈S1

x∗i xi

∥∥∥ 6 1,

where for the first inequality we used the definition of η(E) to upper bound the
first term, and the second inequality follows from the constraint (2.6) and the
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definition of S1. Similarly,
∥∥∥ ∑

i∈S1

ỹi ỹ∗i
∥∥∥+

∥∥∥ ∑
i∈S1

ỹ∗i ỹi

∥∥∥ 6 1
2

∥∥∥ ∑
i∈S1

y∗i yi

∥∥∥ 6 1

by (2.6), and similar inequalities hold for S2. Together these bounds imply that
(x̃i, ỹi, t̃i = 1)i∈S satisfies (2.6). Hence it must be that

∣∣∣∑
i∈S

u(xi, yi)
∣∣∣ = 4

η(E)η(F)
T

∣∣∣∑
i∈S

u(x̃i, ỹi)
∣∣∣ 6 ε

2
‖u‖nc 6

ε

2
‖u‖os,

where the first inequality uses the definition of T. Hence
∣∣∣∑

i/∈S
u(xi, yi)

∣∣∣ >
∣∣∣∑

i
u(xi, yi)

∣∣∣− ε

2
‖u‖os > (1− ε)‖u‖os,

which proves the claim by restricting the initial sequence (xi, yi, ti) to those
i /∈ S.

2.2. FORMS ON EXACT OPERATOR SPACES. Our second corollary applies to com-
pletely bounded forms defined on operator spaces that are exact. This reproves
the main result of [13]. As before, we also obtain a new quantitative estimate. To
state the corollary, following Section 16 of [12] for a finite-dimensional operator
space E and integer n we define

exn(E) := inf{dcb(E, F) : F ⊆ Mn},

where dcb(E, F) is defined as the infimum of ‖v‖cb‖v−1‖cb over all isomorphisms
v : E→ F, and

ex(E) := sup
{

inf
n

exn(E1) : E1 ⊆ E, dim(E1) < ∞
}

.

COROLLARY 2.4. Let A,B be C∗-algebras, E ⊆ A, F ⊆ B operator spaces, and
u : E× F → C a jointly completely bounded bilinear form. Then

(2.10) ‖u‖jcb 6 ‖u‖os 6 4ex(E)ex(F)‖u‖jcb.

Moreover, if E, F are finite dimensional then for any ε > 0 and integers n > 1 and
d > (2η(E)η(F)/ε)C/ε, d′ > C′ε−2 ln(nd), where C, C′ > 0 are universal constants,

(1− ε)‖u‖os 6 4exn(E)exn(F)‖uΦ⊗Ψ
dd′ ‖ 6 4exn(E)exn(F)‖udd′‖,

where Φ = Φd, Ψ = Ψd′ are as defined in (0.3) and (2.4) respectively.

We note that the result from [13] is in fact slightly stronger, as it proves that
inequality (2.10) still holds for a variant of ‖u‖os in which the constraint (2.6) is
replaced by the potentially looser constraint

(2.11) max
{∥∥∥∑

i
xix∗i

∥∥∥
1/2

+
∥∥∥∑

i
t2
i x∗i xi

∥∥∥
1/2

,
∥∥∥∑

i
t−2
i yiy∗i

∥∥∥
1/2

+
∥∥∥∑

i
y∗i yi

∥∥∥
1/2}

62.



500 ODED REGEV AND THOMAS VIDICK

Corollary 2.4 (including the quantitative estimate) also holds in this stronger
form, as follows from a straightforward modification of the proof. The main ob-
servation is that Theorem 0.1 operates on each of the four terms in (2.6) separately,
and hence applies equally well to the modified constraint (2.11). For convenience
we prove the corollary in the form stated above.

To prove Corollary 2.4 we will use Theorem 0.1 to perform a reduction to a
Grothendieck inequality due to Junge and Pisier [9] which applies to the case of
tracially bounded bilinear forms. We state the main result in [9] as it appears in
Section 16 of [12] where an alternative proof is given (based on [7]). The “more-
over” part of the theorem follows from that alternative proof, and we include the
proof in Appendix A.3.

THEOREM 2.5 ([9]). For any tracially bounded bilinear form u : E× F → C on
exact operator spaces,

(2.12) ‖u‖nc 6 4ex(E)ex(F)‖u‖tb.

Moreover, if E, F are finite dimensional then for any ε > 0 and integers n > 1 and
d > 128ε−2 ln(8n/ε),

(1− ε)‖u‖nc 6 4exn(E)exn(F)‖uΨ
d ‖,

where Ψ = Ψd is as defined in (2.4).

As before, we note that the result from [9] is in fact slightly stronger and
proves that inequality (2.12) still holds for the variant of ‖u‖nc in which the con-
straint (2.6) is replaced by (2.11) (with ti = 1).

Proof of Corollary 2.4. The proof follows along the same lines as that of Corol-
lary 2.1. As before, the first inequality is (2.7). For the second inequality, let ε > 0
and (xi, yi, ti)i satisfying (2.6) and such that

∥∥∥∑
i

u(xi, yi)
∥∥∥ > (1− ε)‖u‖os.

As in the proof of Corollary 2.1, by Theorem 0.1 there exists sequences (x̃j), (ỹj),
and for any d a unit vector Φ ∈ Cd ⊗Cd such that

∣∣∣∑
j

uΦ
d (x̃j, ỹj)

∣∣∣ >
(

1− ε− C
ln(1 + maxi{ti, t−1

i })
1 + ln d

)
‖u‖os.

By choosing d >
(

1 + max
i
{ti, t−1

i }
)C/ε

, we obtain

(1− 2ε)‖u‖os 6 ‖uΦ
d ‖nc 6 4ex(E)ex(F)‖uΦ

d ‖tb 6 4ex(E)ex(F)‖u‖jcb,

where the first inequality holds since by (0.1) the (x̃i, ỹi, ti = 1) satisfy (2.6), the
second follows from applying Theorem 2.5 to uΦ

d : E⊗Md × F ⊗Md → C (and
using that for any d it holds that ex(E⊗Md) 6 ex(E), and similarly for F), and
the third inequality follows from (2.3). We complete the proof by letting ε→ 0.
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For the “moreover" part of the corollary, using the quantitative statement in
Theorem 2.5, for any d > 1, if d′ > 128ε−2 ln(8nd/ε) then

(1− ε)‖uΦ
d ‖nc 6 4exnd(E⊗Md)exnd(F⊗Md)‖uΦ⊗Ψ

dd′ ‖ 6 4exn(E)exn(F)‖uΦ⊗Ψ
dd′ ‖.

Claim 2.3 shows that we can choose the sequence (xi, yi, ti)i such that the bound
max

i
{ti, t−1

i } 6 8η(E)η(F)/ε holds. Together with the bound on d shown above,

we obtain the estimate claimed in the corollary.

APPENDIX A. OMITTED PROOFS

A.1. UPPER BOUNDS ON NORMS. Let A,B be C∗-algebras, E ⊆ A, F ⊆ B op-
erator spaces, and u : E × F → C a bilinear form. In this section we prove the
inequalities

‖u‖tb 6 ‖u‖nc and ‖u‖jcb 6 ‖u‖os,(A.1)

starting with the second one. Let ε > 0, and d > 1 an integer, Ω, Ω′ ∈ Cd ⊗Cd

unit vectors, a = ∑ ai⊗ xi ∈ E⊗Md, b = ∑ bi⊗ yi ∈ F⊗Md such that ‖a‖min 6 1,
‖b‖min 6 1, and

(A.2)
∣∣∣
〈

Ω,
(

∑
i,j

u(ai, bj)xi ⊗ yj

)
Ω′
〉∣∣∣ > (1− ε)‖ud‖.

Write Ω = ∑
i

λiei ⊗ fi, Ω′ = ∑
i

µigi ⊗ hi, for some orthonormal families {ei}, { fi},

{gi}, {hi} and positive reals λi, µi, and define ti,j := µj/λi,

x̃i,j := λi ∑
k
〈ei, xkgj〉ak and ỹi,j := µj ∑

k
〈 fi, ykhj〉bk.

Then ∥∥∥∑
i,j

x̃i,j x̃∗i,j
∥∥∥ =

∥∥∥∑
i,j

λ2
i

(
∑
k
〈ei, xkgj〉ak

)(
∑
k
〈gj, x∗k ei〉a∗k

)∥∥∥

6 ∑
i

λ2
i

∥∥∥
(

∑
k

ak ⊗ xk

)(
∑
k

ak ⊗ xk

)∗∥∥∥
min

= ‖a‖2
min 6 1.

Similar bounds can be proven for the three other terms appearing in (2.6), so
that (x̃i,j, ỹi,j, ti,j) satisfies the constraint (2.6). One immediately checks from the
definition that

∑
i,j

u(x̃i,j, ỹi,j) =
〈

Ω,
(

∑
i,j

u(ai, bj) · xi ⊗ yj

)
Ω′
〉

,

hence by (A.2) we have ‖u‖os > (1 − ε)‖ud‖. Taking the limit as ε → 0 and
d → ∞ proves the second inequality in (A.1). For the first it suffices to recall that
in the tracially bounded case Ω = Ω′ = Ψd, so λi = µj = d−1/2 for every i, j, and
therefore ti,j = 1.
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A.2. UPPER BOUNDS ON η.

CLAIM A.1. For any operator spaces E and F, η(E) 6 dcb(E, F)η(F).

Proof. For any ε > 0, let v : E → F be such that ‖v‖cb‖v−1‖cb 6 (1 +
ε)dcb(E, F), and we may assume without loss of generality that ‖v‖cb 6 (1 +
ε)dcb(E, F) and ‖v−1‖cb 6 1. Therefore, for any finite sequence (xi)i of elements
of E, we have (see, e.g., Exercise 1.3 in [11])

∥∥∥∑
i

x∗i xi

∥∥∥ 6
∥∥∥∑

i
v(xi)

∗v(xi)
∥∥∥ 6 η(F)2

∥∥∥∑
i

v(xi)v(xi)
∗
∥∥∥

6 η(F)2((1 + ε)dcb(E, F))2
∥∥∥∑

i
xix∗i

∥∥∥,

which together with a symmetric bound on
∥∥∥∑

i
xix∗i

∥∥∥ and taking the limit ε → 0

completes the proof.

CLAIM A.2. For any n > 1, η(Mn) 6
√

n. More generally, for any operator
space E for which exn(E) < ∞ we have η(E) 6

√
nexn(E).

Proof. For any finite sequence (xi) of elements of Mn, we have
∥∥∥∑

i
x∗i xi

∥∥∥ 6 Tr
(

∑
i

x∗i xi

)
= Tr

(
∑

i
xix∗i

)
6 n

∥∥∥∑
i

xix∗i
∥∥∥

which together with a symmetric bound on
∥∥∥∑

i
xix∗i

∥∥∥ proves the first part of the

claim. The second part follows easily from Claim A.1.

The following claim was communicated to us by Gilles Pisier (see [11] for
the definition of OH).

CLAIM A.3. The Hilbert operator space OH satisfies η(OH) = 1. As a re-
sult, η(E) 6

√
n for any operator space E of dimension n.

Proof. By Exercise 7.6 of [11], for any (xi)i in OH,

∥∥∥∑
i

x∗i xi

∥∥∥ =
∥∥∥∑

i
xix∗i

∥∥∥ =
(

∑
i,j
|〈xi, xj〉|2

)1/2
,

and so we get η(OH) = 1. The second part of the claim follows from Claim A.1
and the fact that dcb(E, OHn) 6

√
n for any n-dimensional operator space E (see

Corollary 7.7 in [11]).

A.3. QUANTITATIVE VERSION OF THEOREM 2.5. The following claim is a direct
consequence of the results in [7].
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CLAIM A.4. Let n > 1 be an integer, a1, . . . , ar ∈ Mn and 0 < γ 6 1 such
that ∥∥∥∑

j
a∗j aj

∥∥∥ 6 γ and
∥∥∥∑

j
aja∗j

∥∥∥ 6 1.

For any integer d, define

Sd := ∑
j

aj ⊗ Gj ∈ Mn ⊗Md,

where for each j, Gj is a d × d complex matrix with entries (Gj)k,` = (gjk` +

ihjk`)/
√

2, where {gjk`, hjk`} are distributed as independent real normal random
variables with mean 0 and variance 1/d. Then for any 0 < ε 6 1 and d >
32ε−2 ln(4n/ε),

E[‖Sd‖2] 6 (1 + ε)(
√

γ + 1)2.

Proof. Equation (0.1) from 0.5 Key Estimates in [7] states that for any 0 6
τ 6 min{d/(2γ), d/2} = d/2 it holds that

E[eτS∗d Sd ] 6 e(
√

γ+1)2τ+(γ+1)2τ2/d Id Mnd .

Taking the trace on both sides, we get

E[‖eτS∗d Sd‖] 6 E[Tr(eτS∗d Sd)] 6 nde(
√

γ+1)2τ+(γ+1)2τ2/d.

Using ‖eτS∗d Sd‖ = eτ‖SdS∗d‖ and concavity of the logarithm, for τ > 0

E[‖S∗dSd‖] 6 (
√

γ + 1)2 +
(γ + 1)2τ

d
+

ln(nd)
τ

.

By setting τ = εd/2 we get

(γ + 1)2τ

d
+

ln(nd)
τ

6 (
√

γ + 1)2 ε

2
+

2 ln(nd)
εd

6 ε(
√

γ + 1)2

provided d > (4/ε2) ln(nd), which is guaranteed by the lower bound on d placed
in the claim.

As an immediate corollary we obtain the following.

COROLLARY A.5. LetA be a C∗-algebra and E ⊆ A a finite-dimensional operator
space. Let (ai)i be a finite sequence of elements of E, d an integer, and γ, Sd be as in
Claim A.4. Then for any 0 < ε 6 1, integer n > 1 such that exn(E) < ∞, and
d > 32ε−2 ln(4n/ε),

E[‖Sd‖2] 6 (1 + ε)exn(E)2(
√

γ + 1)2.

Proof. By definition of exn(E), there exists a completely bounded isomor-
phism v : E → F ⊆ Mn such that ‖v‖cb‖v−1‖cb = exn(E), and we may assume
without loss of generality that ‖v‖cb = 1 and ‖v−1‖cb = exn(E). Since ‖v‖cb 6 1,
the elements v(ai) ∈ Mn satisfy (see, e.g., Exercise 1.3 in [11])
∥∥∥∑

i
v(ai)

∗v(ai)
∥∥∥ 6

∥∥∥∑
i

a∗i ai

∥∥∥ 6 γ and
∥∥∥∑

i
v(ai)v(ai)

∗
∥∥∥ 6

∥∥∥∑
i

aia∗i
∥∥∥ 6 1.
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Applying Claim A.4 to the v(ai), we obtain that for any ε > 0 and integer d >
32ε−2 ln(4n/ε),

E
[∥∥∥∑

i
v(ai)⊗ Gi

∥∥∥
2]

6 (1 + ε)(
√

γ + 1)2.

Using ‖v−1 ⊗ Id Md ‖ 6 ‖v
−1‖cb 6 exn(E) proves the corollary.

Using Corollary A.5, we can prove the quantitative part of Theorem 2.5.
Here we are essentially following the proof given in Section 16 of [12], but while
keeping track of the parameters.

Proof of Theorem 2.5 (quantitative part). We prove the quantitative part using
the original stronger form of Theorem 2.5, i.e., with the constraint (2.6) in the
definition of ‖u‖nc replaced by (2.11) (with ti = 1). Let (xi, yi)i be such that

∣∣∣∑
i

u(xi, yi)
∣∣∣ >

(
1− ε

2

)
‖u‖nc,

and the sequence (xi, yi, ti = 1)i satisfies the constraint (2.11). Let d be such that
d > 128ε−2 ln(8n/ε), and for every i let Gi be a d × d matrix with independent
entries distributed as in the statement of Claim A.4. Define

x = ∑
i

xi ⊗ Gi and y = ∑
i

yi ⊗ Gi,

where Gi denotes the entrywise complex conjugate, and note that by Corollary A.5
our choice of d together with the constraint (2.11) implies that

(A.3) E[‖x‖‖y‖] 6 (E[‖x‖2]E[‖y‖2])1/2 6 4exn(E)exn(F)
(

1 +
ε

2

)
.

We may also compute

|E[uΨ
d (x, y)]| =

∣∣∣E
[
∑
i,j

d−1Tr(GiG∗j )u(xi, yj)
]∣∣∣ =

∣∣∣∑
i

u(xi, yi)
∣∣∣ >

(
1− ε

2

)
‖u‖nc,

which using |uΨ
d (x, y)| 6 ‖uΨ

d ‖‖x‖‖y‖ for any x, y together with (A.3) completes
the proof.
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