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ABSTRACT. Let A and B be unital separable simple amenable C*-algebras
which satisfy the universal coefficient theorem. Suppose that A and B are Z-
stable and are of rationally tracial rank no more than one. We prove the follow-
ing: Suppose that ¢,¢ : A — B are unital *-monomorphisms. There exists a
sequence of unitaries {u,} C B such that nlgrc}o wip(a)u, = p(a) foralla € A,
if and only if [¢p] = [¢] inKL(A,B), ¢; = y; and ¢+ = ¥, where ¢y, p; :
Aff(T(A)) — Aff(T(B)) and ¢F, ¢t : U(A)/CU(A) — U(B)/CU(B) are the
induced maps (where T(A) and T(B) are the tracial state spaces of A and
B, and CU(A) and CU(B) are the closures of the commutator subgroups of
the unitary groups of A and B, respectively). We also show that this holds
if A is a rationally AH-algebra which is not necessarily simple. Moreover,
for any strictly positive unit-preserving x € KL(A, B), any continuous affine
map A : Aff(T(A)) — Aff(T(B)) and any continuous group homomorphism
v : U(A)/CU(A) — U(B)/CU(B) which are compatible, we also show that
there is a unital homomorphism ¢ : A — B so that ([¢], ¢, ¢F) = (x,A,7), at
least in the case that K; (A) is a free group.
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1. INTRODUCTION

Let X and Y be two compact Hausdorff spaces, and denote by C(X) (or
C(Y)) the C*-algebra of complex-valued continuous functions on X (or Y). Any
continuous map A : Y — X induces a homomorphism ¢ from the commutative
C*-algebra C(X) into the commutative C*-algebra C(Y) by ¢(f) = fo A, and
any homomorphism from C(X) to C(Y) arises this way (in this paper, by homo-
morphisms or isomorphisms between C*-algebras, we mean *-homomorphisms
or *-isomorphisms). It should be noted that, by the Gelfand—-Naimark theorem,
every unital commutative C*-algebra has the form C(X) as above.
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For non-commutative C*-algebras, one also studies homomorphisms. Let
A and B be two unital C*-algebras and let ¢, ¢ : A — B be two homomorphisms.
A fundamental problem in the study of C*-algebras is to determine when ¢ and
1 are (approximately) unitarily equivalent.

The last two decades saw a rapid development of classification of amenable
C*-algebras, or otherwise known the Elliott program. For instance, all unital sim-
ple AH-algebras with slow dimension growth are classified by their Elliott in-
variant [4]. In fact, the class of classifiable simple C*-algebras includes all unital
separable amenable simple C*-algebras with the tracial rank at most one which
satisfy the universal coefficient theorem (the UCT) (see [11]). One of the crucial
problems in the Elliott program is the so-called uniqueness theorem which usu-
ally asserts that two monomorphisms are approximately unitarily equivalent if
they induce the same K-theory related maps under certain assumptions on C*-
algebras involved.

Recently, W. Winter’s method [33] greatly advances the Elliott classifica-
tion program. The class of amenable separable simple C*-algebras that can be
classified by the Elliott invariant has been enlarged so that it contains simple C*-
algebras which no longer are assumed to have finite tracial rank. In fact, with [18]],
[20], [23] and [33], the classifiable C*-algebras now include any unital separable
simple Z-stable C*-algebra A satisfying the UCT such that A ® U has the tracial
rank no more than one for some UHF-algebra U (it has recently been shown, for
example, A ® U has tracial rank at most one for all UHF-algebras U of infinite
type, if A ® C has tracial rank at most one for one of infinite dimensional uni-
tal simple AF-algebra (see [26])). This class of C*-algebras is strictly larger than
the class of AH-algebras without dimension growth. For example, it contains the
Jiang—Su algebra Z itself which is projectionless and all simple unital inductive
limits of so-called generalized dimension drop algebras (see [16]).

Recall that the Elliott invariant for a stably finite unital simple separable
C*-algebra A is

Ell(A) := ((Ko(A), Ko(A)+, [14], T(A)), K1 (A)),

where (Ko(A),Ko(A)+,[14],T(A)) is the quadruple consisting of the Ko-group,
its positive cone, the order unit and tracial simplex together with their canonical
pairing, and K; (A) is the K;-group.

Denote by C the class of all unital simple C*-algebras A for which A ® U
has tracial rank no more than one for some UHF-algebra U of infinite type.

Suppose that A and B are two unital separable amenable C*-algebras in C
which satisfy the UCT. The classification theorem in [18] states that if the Elliott
invariants of A and B are isomorphic, i.e.,

Ell(A) = ElI(B).

However, the question when two isomorphisms are approximately unitar-
ily equivalent was still left open.
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A more general question is: for any two such C*-algebras A and B, and, for
any two homomorphisms ¢, : A — B, when are they approximately unitarily
equivalent?

If ¢ and 1p are approximately unitarily equivalent, then one must have

[9] = [y] inKL(A, B) and ¢; = ¢y,

where ¢y, s : Aff(T(A)) — Aff(T(B)) are the affine maps induced by ¢ and v,
respectively. Moreover, as shown in [19], one also has

q>i — 1!)1,

where ¢, : U(A)/CU(A) — U(B)/CU(B) are homomorphisms induced by
¢, ¥, and CU(A) and CU(B) are the closures of the commutator subgroups of the
unitary groups of A and B, respectively.

In this paper, we will show that the above conditions are also sufficient,
that is, the maps ¢ and i are approximately unitarily equivalent if and only if
[¢] = [¥]in KL(A, B), ¢ = ¢, and ¢F = ¢+,

Not surprisingly, the proof of this uniqueness theorem is based on the meth-
ods developed in the proof of the classification result mentioned above, which
can be found in [13]], [15]], [18], [19] and [23]. Most technical tools are developed
in those papers, either directly or implicitly.

In the present paper, we will collect them and then assemble them into pro-
duction. It should be noted that the above-mentioned uniqueness theorem still
holds in a more general setting where the source algebra A is not necessary in the
class C. For example, it is still valid for all AH-algebras A which are not necessar-
ily simple. In particular, A could be just C(X) for any compact metric space X.

In that situation, the first version of this kind of uniqueness theorem was
proved in [6], where A = C(X) and B is a unital simple C*-algebra with the
unique tracial state and with real rank zero, stable rank one and weakly unperfo-
rated Ko(B).

Then, in [10], it was shown that, if A = C(X) for some compact metric
space X and B is a unital simple C*-algebra with tracial rank zero, then any unital
monomorphisms ¢ and ¢ from A to B are approximately unitarily equivalent if
and only if [¢] = [¢] in KL(A, B) and ¢; = ;. This result was then generalized
to the case that B has tracial rank no more than one with the additional condition
¢t =t in [21].

From this point of view, the main result in this paper may also be regarded
as a further generalization of these uniqueness theorems. In fact, in this paper,
we also allow the source algebra A to be any unital C*-algebra such that A @ U
is a unital AH-algebra for all UHF-algebra U of infinite type. One should also re-
alize that these uniqueness theorems have a common root: The Brown-Douglas—
Fillmore theorem for essentially normal operators. One version of it can be stated
as follows: Two monomorphisms ¢, : C(X) — B(H)/K — the Calkin algebra,
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which is a unital simple C*-algebra with real rank zero — are unitarily equivalent
if and only if [¢] = [¢] in KK(C(X),B(H)/K).

As this research was under way, we learned that H. Matui was conducting
his own investigation on the same problems. In fact, he proved the same unique-
ness theorems mentioned under the assumption that B ® U has tracial rank zero.
Moreover, he actually showed the same result holds if the assumption that B @ U
has tracial rank zero is weaken to be that B ® U has real rank zero, stable rank
one and weakly unperforated Ko(B ® U), at least for the case that quasi-traces
are traces and there are only finitely many of extremal tracial states.

In [24], it is shown that, for any partially ordered simple weakly unperfo-
rated rationally Riesz group Gp with order unit u, any countable abelian group
G1, any metrizable Choquet simple S, and any surjective affine continuous map
r:S — Su(Gp) (the state space of Gy) which preserves extremal points, there ex-
ists one (and only one up to isomorphism) unital separable simple amenable C*-
algebra A € C which satisfies the UCT so that Ell(A) = (Gy, (Go)+,u, G1,S,7).

Then a natural question is: Given two unital separable simple amenable C*-
algebras A, B € C which satisfy the UCT, and a homomorphism I from Ell(A) to
Ell(B), does there exist a unital homomorphism ¢ : A — B which induces I'? We
will give an answer to this question. Related to the uniqueness theorem discussed
earlier and also related to the question above, one may also ask the following:
Given an element x € KL(A, B) which preserves the unit and order, an affine
map A : Aff(T(A)) — Aff(T(B)) and a homomorphism y : U(A)/CU(A) —
U(B)/CU(B) which are compatible, does there exist a unital homomorphism ¢ :
A — Bso that [p] =k, ¢; = A and ¢F = ? We will, at least, partially answer this
question.

2. PRELIMINARIES

2.1. Let A be a unital stably finite C*-algebra. Denote by T(A) the simplex
of tracial states of A and denote by Aff(T(A)) the space of all real affine contin-
uous functions on T(A). Suppose that T € T(A) is a tracial state. We will also
denote by 7 the trace T ® Tr on My (A) = A ® M (C) (for every integer k > 1),
where Tr is the standard trace on My (C). A trace 7 is faithful if T(a) > 0 for any
a € A4\ {0}. Denote by T¢(A) the convex subset of T(A) consisting of all faithful
tracial states. Note that T¢(A) = T(A) when A is simple.

Denote by M« (A) the set |J My(A), where M (A) is regarded as a C*-
k=1

subalgebra of My 1(A) by the embedding a — (§79).

For any projection p € M (A), the restriction T — 7(p) defines a positive
affine function on T(A). This induces a canonical positive homomorphism py4 :
Ko(A) — Aff(T(A)).
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Denote by U(A) the unitary group of A, and denote by U (A ), the connected
component of U(A) containing the identity. Let C be another unital C*-algebra
and let ¢ : C — A be a unital *-homomorphism. Denote by ¢ : T(A) — T(C)
the continuous affine map induced by ¢, i.e.,

¢r(7)(c) = Tod(c)
forall c € Cand T € T(A). Denote by ¢; : Aff(T(C)) — Aff(T(A)) the map
defined by

¢:(f)(7) = f(¢r(7)) forallT € T(A).

DEFINITION 2.2. Let A be a unital C*-algebra. Denote by CU(A) the closure
of the subgroup generated by commutators of U(A). If u € U(A), its image in the
quotient U(A)/CU(A) will be denoted by 7. Let B be another unital C*-algebra
and let ¢ : A — B be a unital homomorphism . It is clear that ¢ maps CU(A)
into CU(B). Let ¢t denote the induced homomorphism from U(A)/CU(A) into
U(B)/CU(B).

Letn > 1be any integer. Denote by U, (A) the unitary group of M, (A), and
denote by CU(A), the closure of commutator subgroup of U,(A). Regard U,(A) as
a subgroup of Uy, 11(A) via the embedding u — (4 9) and denote by U (A) the
union of all Uy, (A).

Consider the union CUw(A) := JCU,(A). It is then a normal subgroup of

n
U (A), and the quotient U(A)e/ClUs(A) is in fact isomorphic to the inductive
limit of U, (A)/CU,(A) (as abelian groups). We will use ¢t for the homomor-
phism induced by ¢ from Ue(A)/ClUx(A) into Ueo(B) /Cl(B).

DEFINITION 2.3. Let A be a unital C*-algebra, and let u € U(A)p. Let
u(t) € C([0,1], A) be a piecewise-smooth path of unitaries such that #(0) = u
and u(1) = 1. Then the de la Harpe-Skandalis determinant of u(t) is defined by

1
Det(u(t))(1) = ﬁ /T(dt;(tt)u(t)*)dt forall T € T(A),

which induces a homomorphism
Det: U(A)y — Aff(T(A))/pa(Ko(A)).
The determinant Det can be extended to a map from U (A)g into
AF(T(A))/pa(KoA)).

It is easy to see that the determinant vanishes on the closure of commutator sub-
group of Uw (A). In fact, by a result of K. Thomsen ([31]), the closure of the com-
mutator subgroup is exactly the kernel of this map, that is, it induces an isomor-
phism Det : U (A)o/CUs(A) — Aff(T(A))/pa(Ko(A)).

Moreover, by [31]], one has the following short exact sequence

21) 0= Aff(T(A))/pa(Ko(A))—Us(A)/Cls(A) 2K (A) = 0
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which splits (with the embedding of Aff(T(A))/pa(Ko(A)) induced by (Det)~1).
We will fix a splitting map s : K1(A) = Uw(A)/CUw(A). The notation IT and
s1 will be used late without further warning.

For each 77 € s1(K;(A)), select and fix one element u, € |J M, (A) such

n=1

that 77, = u. Denote this set by U.(A).

In the case that A has tracial rank at most one (see below), by Corol-
lary 3.4 of [31]], one has

U (A)g/ClUw(A) = U(A)g/CU(A)
and thus the following splitting short exact sequence:
(2.2) 0 — Aff(T(A))/pa(Ko(A)) = U(A)/CU(A) — K1(A) — 0.

DEFINITION 2.4. Let A be a unital C*-algebra and let C be a separable C*-
algebra which satisfies the universal coefficient theorem. Recall that KL(C, A) is
the quotient of KK(C, A) modulo pure extensions. By a result of Didérlat and
Loring in [1]], one has

(2.3) KL(C, A) = Hom, (K(C), K(4)),

where

K(B) = (Ko(B) & Ki(B)) & ( @ (Ko(B,Z/nZ) & Ky (B, Z/nZ)))
n=2
for any C*-algebra B. Then, in the rest of the paper, we will identify the group
KL(C, A) with Hom (K(C), K(A)).
Denote by «; : K;(C) — K;(A) the homomorphism given by x withi = 0,1,
and denote by KL(C, A)™™ the set of those x € Hom, (K(C), K(A)) such that

ro(Ky (C)\ {0}) € Ky (4)\ {0}.

Denote by KLe(C, A)™™ the set of those elements k € KL(C,A)** such that
ko([1c]) = [1a]. Suppose that both A and C are unital, T(C) # @ and T(A) # @.
Let At : T(A) — T(C) be a continuous affine map. Let hj : Ko(C) — Ko(A) be
a positive homomorphism . We say At is compatible with hy if for any projec-
tion p € M (C), Ar(7)(p) = t(ho([p])) for all T € T(A). Let A : Aff(T¢(C)) —
Aff(T(A)) be an affine continuous map. We say A and h are compatible if hg is
compatible to At, where At : T(A) — T¢(C) is the map Ar(7)(a) = A(a*)(7),Va €
C*t and t € T(A), where a* € Aff(T¢(C)) is the affine function induced by a. We
say « and A (or At) are compatible, if x is positive and xy and A are compatible.

Denote by KLT¢(C, A)** the set of those pairs (k, A1) (or, (x,A)), where
k € KLe(C,A)™ and A1 : T(A) — T¢(C) (or, A : Aff(T¢(C)) — Aff(T(A)))isa
continuous affine map which is compatible with x. If A is compatible with x, then
A maps pc(Ko(C)) into p4(Ko(A)). Therefore A induces a continuous homomor-
phism

A= Aff(T¢(C))/pc(Ko(C)) — A(T(A))/pa(Ko(A)).
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Suppose that 7 : Ue(C)/Clw(C) — Uw(A)/CUw(A) is a continuous homo-
morphism and #; : K;(C) — K;(A) are homomorphisms for which hy is positive.
We say that y and h; are compatible if ¥(Ueo (C)o/ClUe(C)) C Us(A)o/Cls(A)
and y o5y = s o hy, we say that ho, h1, A and <y are compatible, if A and hg are
compatible, y and h; are compatible and

Det4 © Y|u,(c)y/cus(c)y = A © Detc,
and we also say that x, A and -y are compatible, if xp, 1, A and <y are compatible.

2.5. For each prime number p, let ¢, be a number in {0,1,2,..., +co}. Then

a supernatural number is the formal product p = []p®». Here we insist that
p
there are either infinitely many p in the product, or one of ¢, is infinite. Two

supernatural numbers p = []p®) and q = []p*(9) are relatively prime if for
p p
any prime number p, at most one of £, (p) and ,(q) is nonzero. A supernatural

number p is called of infinite type if for any prime number p, either &, (p) = 0 or
gp(p) = +oo. For each supernatural number p, there is a UHF-algebra M, associ-
ated to it, and the UHF-algebra is unique up to isomorphism (see [2]). Moreover,
by Theorem 6.4 of [2], if p is infinite type, then M, ® My = M,.

2.6. Denote by Q the UHF-algebra with (Ko(Q), Ko(Q)+, [14]) = (Q,Q4,1)

(the supernatural number associated to Q is [T p™*), and let M, and M, be two
P

UHF-algebras with My, @ Mq = Q and p = [1p%®) and q = []p* (@) relatively
P P

prime. Then it follows that p and q are of infinite type. Denote by

Qp = Z[%,. ., p%’] CQ, whereey, (p) =+oco and
Qq = Z[%,. .., ﬁ,] CQ, whereey, (q) = +oo.
Note that

(Ko(My), Ko(Myp)+, [1m,]) = (Qp, (Qp)+,1) and
(Ko(Mq), Ko(Nq)+ [1nm,]) = (Qq, (Qq)+,1)-
Moreover, Qy NQq = Z and Q = Qp + Qq.
2.7. For any pair of relatively prime supernatural numbers p and g, define
the C*-algebra Z, 4 by
Zpq={f:10,1] = My ® Mg; f(0) € My ® 1y, and f(1) € 1y, ® Mgq}.

The Jiang-Su algebra Z is the unital inductive limit of dimension drop in-
terval algebras with unique trace, and (Ko(2),Ko(2),[1]) = (Z,Z7,1) (see [7]).
By Theorem 3.4 of [29], for any pair of relatively prime supernatural numbers
p and q of infinite type, the Jiang—Su algebra Z has a stationary inductive limit
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decomposition:

Zp,q Zp,q Zp,q zZ.

By Corollary 3.2 of [29], the C*-algebra Z,, ; absorbs the Jiang-Su algebra:
Zpq® 2 = Zyq. A Cr-algebra A is said to be Z-stableif A ® Z = A.

DEFINITION 2.8. A unital simple C*-algebra A has tracial rank at most one,
denoted by TR(A) < 1, if for any finite subset ¥ C A, any ¢ > 0, and any
nonzero a € AT, there exist a nonzero projection p € A and a C*-subalgebra | &

m
@ C(X;) ® M,(;y with 1; = p for some finite CW-complexes X; with dimension
i=1

at most one such that:
@) [|[x, p]|| < eforany x € F,

(i) for any x € F, there is x’ € I such that ||pxp — ¥’|| < ¢ and

(iii) 1 — p is Murray-von Neumann equivalent to a projection in aAa.
Moreover, if the C*-subalgebra I above can be chosen to be a finite dimensional
C*-algebra, then A is said to have tracial rank zero, and in such case, we write
TR(A) = 0. It is a theorem of Guihua Gong [5] that every unital simple AH-
algebra with no dimension growth has tracial rank at most one. It has been
proved in [18] that every Z-stable unital simple AH-algebra has tracial rank at
most one.

DEFINITION 2.9. Denote by A the class of all (unital) separable amenable
C*-algebras which satisfy the universal coefficient theorem (UCT). Denote by C
the class of all simple C*-algebras A for which TR(A ® M) < 1 for some UHF-
algebra M, where p is a supernatural number of infinite type. Note, by [24], that,
if TR(A ® My) < 1 for some supernatural number p then TR(A ® M,) < 1 for all
supernatural number p.

Denote by Cy the class of all simple C*-algebras A for which TR(A ® M) =
0 for some supernatural number p of infinite type (and hence for all supernatural
number p of infinite type).

THEOREM 2.10 ([21], Theorem 5.10). Let C be a unital AH-algebra and let A be
a unital simple C*-algebra with TR(A) < 1. Suppose that ¢, : C — A are two unital
monomorphisms. Then ¢ and 1 are approximately unitarily equivalent if and only if

[¢] = [y] inKL(C, A), ¢y = ¢, and ¢+ = .

REMARK 2.11. One of the main purposes of this paper is to generalize this
result so that A can be allowed to be in the class C, and C can be rationally AH;
that is, C ® U is an AH-algebra for all UHF-algebra U of infinite type.

2.12. Let A and B be two unital C*-algebras. Let 1 : A — B be a homomor-
phism and v € U(B) be such that

[h(g), v] =0 foranyg € A.
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We then have a homomorphism / : A ® C(T) — B defined by f ® g + h(f)g(v)
forany f € Aand g € C(T). The tensor product induces two injective homomor-
phisms:

BO)  Ko(A) = Ky(A®C(T)) and B :Kq(A) = Ko(A®C(T)).
The first one is the usual Bott map. Note that, in this way, one writes
Ki(A®C(T)) = Ki(A) ® UV (Ki—1(A)).

Let us use ) : K;(A® C(T)) — B~V (K;_1(A)) to denote the quotient map.
For each integer k > 2, one also has the following injective homomor-
phisms:
B Ki(A, Z/KZ) = Ki1(A® C(T), Z/KZ), i=0,1.

Thus, we write
Ki(A®C(T), Z/KZ) = Ki(A, Z/KZ) & BV (K;_1(A, Z/kZ)).

Denote by B\}(j) : Ki(A®C(T),Z/kZ) — BU=V(K;_1(A),Z/kZ) the map analo-
gousto B If x € K(A), we use B(x) for () (x) if x € K;(A) and for ﬁ,((l) (x)ifx €
K;(A,Z/kZ). Thus we have amap B : K(A) — K(A® C(T)) aswellas B : K(A®
C(T)) — B(K). Therefore, we may write K(A ® C(T)) = K(A) & B(K(A)). On
the other hand, 1 induces the following homomorphisms, for k = 0,2,..., and
i=0,1:

h*i,k : Kl'(A & C(T),Z/kZ) — Ki(B,Z/kZ).

We use Bott(h, v) for all the homomorphisms E*z‘+1,k o ,81({1), k=0,2,..,i=
0,1, and we use bott; (i, v) for the homomorphism 79 o V) : Ki(A) — Ko(B),
and botty(h, v) for the homomorphism 7 g o B0 : Ko(A) — K (B). Bott(h,v) as
well as bott;(h,v) (i = 0,1) may be defined for a unitary v which only approxi-
mately commutes with /. In fact, given a finite subset P C K(A), there exists a
finite subset 7 C A and &y > 0 such that

Bott(h,v)|p

is well defined if
[[[1(a), o] | < do
foralla € F. See 2.11 of [13], 2.10 of [14], 2.21 of [22] for more details.

We have the following generalized Exel’s formula for the traces of Bott ele-
ments.

THEOREM 2.13 ([18], Theorem 3.5). There is 6 > 0 satisfying the following: Let
A be a unital separable simple C*-algebra with TR(A) < 1and let u,v € U(A) be two
unitaries such that ||uv — vu|| < 6. Then botty (u, v) is well defined and

T(bott; (u,v)) = ﬁ (t(log(vuv*u*)))
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forall T € T(A), where u is considered to be the homomorphism h : C(T) — A defined
by h(f) = f(u), ¥f € C(T).

3. ROTATION MAPS

In this section, we collect several facts on the rotation map which are going
to be used frequently in the rest of the paper. Most of them can be found in the
literature.

DEFINITION 3.1. Let A and B be two unital C*-algebras, and let ¢ and ¢ be
two unital monomorphisms from B to A. Then the mapping torus My y is the
C*-algebra defined by

Mgy :={f € C([0,1], A); f(0) = ¢(b) and f(1) = ¢(b) for some b € B}.

For any ¢, ¢ € Hom(B, A), denoting by 71 the evaluation of My, at 0, we
have the short exact sequence

7To

0 S(A) —— Myy B 0,
where S(A) = Cy((0,1), A).
If ¢.; = ¢ (@ = 0,1), then the corresponding six-term exact sequence

breaks down to the following two extensions:
1i(Mg,p) : 0 —= Ki11(A) —= Ki(Myy) — K;(B) —=0, (i=0,1).
3.2. Suppose that, in addition,
3.1) Top=rtoy forallTe T(A).

For any continuous piecewise smooth path of unitaries u(t) € Mgy, consider the
path of unitaries w(t) = u*(0)u(t) in A. Then it is a continuous and piecewise
smooth path with w(0) = 1 and w(1) = u*(0)u(1). Denote by Ry y(u) = Det(w)
the determinant of w(t). It is clear with the assumption of that Ry y(u) de-
pends only on the homotopy class of u(t). Therefore, it induces a homomor-
phism, denoted by Ry y, from Ky (My,y) to Aff(T(A)).

DEFINITION 3.3. Fix two unital C*-algebras A and B with T(A) # @. De-
fine R to be the subset of Hom(Kj(B), Aff(T(A))) consisting of those homo-
morphisms i € Hom(Kj (B), Aff(T(A))) for which there exists a homomorphism
d: Ky(B) — Ko(A) such that

h= PA© d.
It is clear that R is a subgroup of Hom(K; (B), Aff(T(A))).

3.4. If [p]=[y] in KK(B, A), then the exact sequences 77;(My,y) (i=0, 1) above
split. In particular, there is a lifting 6 : K; (B)—K;(My,y). Consider the map

Rpy 00 : Ki(B) — AfE(T(A)).
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If a different lifting 6’ is chosen, then, 6 — 6’ maps Kj (B) into Ko(A). Therefore
R<P’¢ o — R(p/w 9] 9/ € RO.
Then define
Ry = [Rg,p 0 0] € Hom(K;(B), Aff(T(A)))/Ro.

If [¢] = [¢] in KL(B, A), then the exact sequences 17;(My,y) (i = 0,1) are
pure, i.e., any finitely generated subgroup in the quotient groups has a lifting. In
particular, for any finitely generated subgroup G C Kj(B), one has a map

Rq;,w o GG :G — Aff(T(A)),

where 0 : G — Ki(My,y) is a lifting. Let G C K;(B) be a finitely generated
subgroup. Denote by R  the set of those elements /1 in Hom(G, Aff(T(A))) such
that there exists a homomorphism dg : G — Ko(A) such that h|g = ps o dg.

If [¢] = [¢] in KL(B, A) and R,p[q;(Kl (M(p/w)) C pa(Ko(A)), then bg € Ry
for any finitely generated subgroup G C Kj(B) and any lifting 6. In this case,
we will also write

E(P,lp - 0.

See 3.4 of [18] for more details.

LEMMA 3.5 (Lemma 9.2 of [18]]). Let C and A be unital C*-algebras such that
T(A) # @. Suppose that ¢, p : C — A are two unital homomorphisms such that

(9] = [y] inKL(C,A), ¢; = y; and ¢F = yF.
Then the image of Ry y is in the p o (Ko(A)) CAff(T(A)).

Proof. Let z € Ky(C). Suppose that u € U, (C) for some integer n > 1 such
that [u] = z. Note that (u)*¢(u) € CU,(A). Thus, by 2.3] for any continuous
and piecewise smooth path of unitaries {w(t) : t € [0,1]} C U(A) with w(0) =
()" 9(u) and w(1) = 1,

1
(3.2) Det(w)(t) = / r(d%gﬂw(t)*)dt € pa(Ko(A)).

0
Suppose that {(v)(t) : t € [0,1]} is a continuous and piecewise smooth path of
unitaries in U, (A) with v(0) = ¢(u) and v(1) = (u). Define w(t) = p(u)*v(t).
Then w(0) = ¢*(u)¢p(u) and w(1) = 1. Thus, by (3.2),

1 1
Rop(2)(®) = [ (ot )ar = [ () oty puy)ar
0 0

P
0
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3.6. Let A be a unital C*-algebra and let # and v be two unitaries with
lu*v —1|| < 2. Then h = (1/2mi)log(u*v) is a well-defined self-adjoint ele-
ment of A, and w(t) := uexp(2riht) is a smooth path of unitaries connecting u
and v. It is a straightforward calculation that for any 7 € T(A),

1 *
Det(w(t))(1) = ﬁr(log(u v)).
3.7. Let A be a unital C*-algebra, and let # and w be two unitaries. Sup-

m
pose that w € Uy(A). Then w = T[] exp(27mihy) for some self-adjoint elements
k=0
hg, ..., hy. Define the path

-1
w(t) = (Hexp(Znihk)) exp(2miymt), ift € [LL, L],
k=0

and define u(t) = w*(t)uw(t) for t € [0,1]. Then, u(t) is continuous and piece-
wise smooth, and #(0) = u and u(1) = w*uw. A straightforward calculation
shows that Det(u(t)) = 0.

In general, if w is not in the path-connected component containing the iden-
tity, one can consider unitaries diag(u,1) and diag(w, w*). Then, the same argu-
ment as above shows that there is a piecewise smooth path u(t) of unitaries in
M;(A) such that u(0) = diag(u,1), u(1) = diag(w*uw, 1), and

Det(u(t)) = 0.

LEMMA 3.8 (Lemma 3.5 of [13]]). Let B and C be two unital C*-algebras with
T(B) # @. Suppose that ¢,¢ : C — B are two unital monomorphisms such that
[¢] = [¢] in KL(C, B) and
Top=Toyp
forall T € T(B). Suppose that u € U;(C) is a unitary and w € U;(B) such that

(¢ ®idp,) (w)w* (Y @idpg,) (u*)w — 1| < 2.

Then, for any unitary U € U;(My,y) with U(0) = (¢ ®@idp,)(u) and U(1) = (p ®
idpy, ) (u), one has that

(33) %T(log((qb@idm,)(u*)ﬁ(1P®idMl)(M)W))—R¢,¢([U])(T)GPB(Ko(B))-

Proof. Without loss of generality, one may assume that u € C. Moreover, to
prove the lemma, it is enough to show that holds for one path of unitaries
U(t) in My (B) with U(0) = diag(¢(u),1) and U(1) = diag(¢(u),1).

Let U be the path of unitaries specified in 3.6 with Uy (0) = diag(¢(u),1)
and U;(1/2) = diag(w*¢(u)w,1), and let U, be the path specified in [3.7| with
Uy(1/2) = diag(w*y(u)w,1) and Up(1) = diag(yp(u),1).

Set U the path of unitaries by connecting U; and Uy. Then

U(0) = diag(¢(u),1) and U(1) = diag(y(u),1).



HOMOMORPHISMS INTO SIMPLE Z-STABLE C*-ALGEBRAS 529

By applying[3.6|and[3.7] for any T € T(B), one computes that

Ry, ([U])=Det(U(t))()=Det(Uy () ()+Det(U(t)) (T)I%T(ﬁb(u*)w*lp(u)w)/

as desired. 1

4. HOMOTOPY LEMMA

In this section, we collect several results from [25] on the homotopy lemma.

DEFINITION 4.1. Let A be a unital C*-algebra. In the following, for any in-
vertible element x € A, let (x) denote the unitary x(x*x)~1/2, and let ¥ denote the
element (x) in U(A)/CU(A). Consider a subgroup Z* C K;(A), and write the
unitary {uy,...,ur} C U(A) the unitary corresponding to the standard genera-
tors {eq, ey,..., e} of Z¥. Suppose that {uy,u, ..., ux} C My(A) for some integer
n > 1 Let ®: A — B be a unital positive linear map and ® ® idy, is at least
{u1,...,ux}-1/4-multiplicative (hence each ¢ ® idy, (1;) is invertible), then the
map (Di‘sl(Zk) : 7ZF — U(B)/CU(B) is defined by

O iy (@) = (@ @idy, (), 1<i<k

Thus, for any finitely generated subgroup G C U.(A), there exists § > 0 and a fi-
nite subset G C A such that, for any unital J-G-multiplicative completely positive
linear map L : A — B (for any unital C*-algebra B), the map L¥ is well defined
on s1(G). (Please see the paragraph after Definition 2.3|for U(A) and s;.)

The following theorems are taken from [25].

THEOREM 4.2 (3.10 of [25]). Let C = PM,(C(X))P, where X is a compact
subset of a finite CW-complex and P a projection in M, (C(X)) with an integer n > 1.
Let A: (0,1) — (0,1) be a non-decreasing map. For any ¢ > 0 and any finite subset
F C C, there exists § > 0,7 > 0, v > 0, a finite subsets G C C, P C K(C),
a finite subset @ = {x1,x2,...,x¢} C Ko(C) which generates a free subgroup and
x; = [pi] — [qi], where pi,q; € My (C) (for some integer m > 1) are projections,
satisfying the following:

Suppose that A is a unital simple C*-algebra with TR(A) < 1,¢ : C — Aisa
unital homomorphism and u € A is a unitary, and suppose that

lgp(c),ulll <6, Vce GandBott(p,u)|p =0, and
,u'roq)(ou) = A(Cl) VT € T(A),

where Oy is any open ball in X with radius ac[n,1) and picop is the Borel probability
measure defined by T o ¢p. Moreover, for each 1<i<k, there is v;eCU (M, (A)) such that

(L = @(pi) + @(pi)u) (L — ¢(4:) + ¢(q:)u™)) —vill <.
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Then there is a continuous path of unitaries {u(t) : t € [0,1]} in A such that, for any
c € Fandforany t € [0,1],

u(0)=u, u(l)=1, and |[p(c),u(t)]] <e.

THEOREM 4.3 (3.14 of [25])). Let C = PM,(C(X))P, where X is a compact
subset of a finite CW-complex and P a projection in M, (C(X)) for some integer n > 1.
Let G C Ko(C) be a finitely generated subgroup. Write G = ZF @ Tor(G) with Z*
generated by

{x1 =[] = ) x2 = [pa] = g2l = [pe] = [}

where p;,q; € My, (C) (for some integer m > 1) are projections, i =1,...,k.

Let A be a simple C*-algebra with TR(A) < 1. Suppose that ¢ : C — Aisa
monomorphism. Then, for any finite subsets F C C and P C K(C), any ¢ > 0 and
¥ > 0, any homomorphism

I:7ZF = Uy(A)/CU(A),
there is a unitary w € A such that
lip(f)wll <e VfeF, Bott(g,w)lp=0, and
dist({((1n = @(pi) + ¢(pi)@0) (1 — ¢(:) + P(q:)@0*)), I'(x:)) <7, VI<i<k

n

where @ = diag(%, ..., ).

THEOREM 4.4 (3.16 of [25]). Let C be an AH-algebra, and let A be a simple
C*-algebra with TR(A) < 1. Suppose that h : C — A is a monomorphism. Then,
for any € > 0, any finite subset F C C and any finite subset P C K(C), there is a
C*-algebra C' = PM,,(C(X"))P for some finite CW-complex X' with K;(C') = Z' &
Tor(K1(C")) and a homomorphism 1 : C' — C with P C [1](K(C")), a finite subset
Q C ZF C Ky(C')and § > 0 satisfying the following: Suppose that xk € Hom (K(C' ®
C(T)), K(A)) with

lpaox(B(x))(T) <6, Vxe Q, VreT(A).
Then there exists a unitary u € A such that
|[h(c),ull| <e VceF and Bott(hoiu)=rxop.
Moreover, there is a sequence of C*-algebras C,, with the form
Cn = PuM, (1) (C(Xn)) Pn,

where each X, is a finite CW-complex and Py € M,(,)(C (X)) a projection, such that
C = Lm(Cy, ¢n) for a sequence of unital homomorphisms ¢y : Cn — Cyyq and one
may choose C' = C,, and 1 = ¢y, for some integer n > 1.
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5. APPROXIMATELY UNITARY EQUIVALENCE

First we begin with the following lemma which is a simple combination
of the uniqueness Theorem and the proof of Theorem 4.2 in [23]. In what
follows, if G is a subset of a group, we will use G(P) for the subgroup generated
by G.

LEMMA 5.1. Let A be a simple C*-algebra with TR(A) < 1, and let C be a unital
AH-algebra. If there are monomorphisms ¢,y : C — A such that

(9] = [y] inKL(C,A), ¢; =y, and ¢F = ¢,
then, for any 2 > & > 0, any finite subset F C C, any finite subset of unitaries P C
U, (C) for some n > 1, there exist a finite subset G C Kq(C) with P C G (where P is
the image of P in K1(C)) and 6 > 0 such that, for any map n : G(G) — Aff(T(A))
with |1(x)(7)| < & forall T € T(A) and n(x) — Rgp(x) € pa(Ko(A)) forall x € G,
there is a unitary u € A such that, for all x € P and forall T € T(A),

lp(f) —up(flull <e VfeF, and
(5 10g((9 @ idg, () (1 © 11, )" (§p @ idg, () (1 © 1)) = T07([2]).

Proof. Without loss of generality, one may assume that any element in 7 has
norm at most one. Let ¢ > 0. Choose 6 with e > 6 > 0 and a finite subset F C
Fo C C satisfying the following: For all x € P, t((1/27i) log((l)(x*)w;‘lp(x)w]-))
is well defined and

61) 150 log(9 ()0l p(x)w))
= (5 Tog(p(x* i p(x)on))

27
I T(ﬁ log((p(x*)v;fgb(x)vj)) forallt € T(A),

whenever

lo(f) = o9 (f)vjll <6 forall f € Fo,

where v; are unitaries in A and wj = vy 0j, j = 1,2,3. In the above, if x €
U,(C), we denote by ¢ and i the extended maps ¢ ® idy, and ¢ ® idy,, and
replace wj, and v; by diag(wj, ..., w;) and diag (v, ..., v;), respectively.

LetC',1: C' — C, 6" > 0 (in the place of §) and G’ C K;(C’) (in the place of
Q) the constant and finite subset with respect to C (in the place of C), Fy (in the
place of F), P (in the place of P), and ¢ (in the place of h) required by Put
§=146/2.

Fix a decomposition (1),;(C’") = ZF @ Tor((1),1(C")) (for some integer k >
0), and let G be a set of standard generators of 7K. Let G" C U, (C) be a finite
subset containing a representative for each element of G. Without loss of gener-
ality, one may assume that P C G”. By Theorem 5.10 of [21], the maps ¢ and ¥
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are approximately unitary equivalent. Hence, for any finite subset Q and any ¢,
there is a unitary v € A such that

lo(f) =0 p(f)oll <61, VfeQ
By choosing QD F sufficiently large and 6; <7 /2 sufficiently small, the map
(] T(ﬁ log(¢" (x)o" p(x)0)), x€ G,
induces a homomorphism 77 : (1), (K1(C")) — Aff(T(A)) (note that we have
171 (Tor((1)41(K1(C")))) = {0}), and moreover, ||71(x)|| < é forall x € G.

By Lemma the image of 171 — R,y is in p(Ko(A)). Since 17(x) — Ry, y(x) €
pa(Ko(A)) forall x € G, the image (171 — 171) ((¢)+1(K1(C’))) is also in p4 (Ko(A)).
Since 57 — 77 factors through Z, there is a map / : (1).1(K{(C')) — Ko(A) such
that 7 — 171 = p4 o h. Note that |t(h(x))| < 26 = ¢ forall T € T(A) and x € G.

By the universal multi-coefficient theorem, there is

x € Homa (K(C'® C(T)),K(A)) with ko Bg, cry = ho (1)

Applying[4.4] there is a unitary w such that

Il w(NIl <5, VS € Fo,

and Bott(w, ¢ o 1) = «. In particular, bott; (w, ) (x) = h(x) forall x € P.
Set u = wv. One then has

lo(f) —up(flull <6, VfeF,
and for any x € P and any 7 € T(A),

(5 Tog(p(x)u" p(x)u)
=1 (5108 (p(x)0 0" p(e)wo)) =T 5 <log (9 (x" o Pl(x)ow” P p(x)w))

1 *\ % 1 * *
=7( 5= log(¢(x )0 p(x)0) ) + 7( 5= log (¥ (x" )" Y(x)w) )
= m([x]))(7) + h([x])(7) =n([x])(7)- ®
REMARK 5.2. In the case that TR(A) = 0, in fact one can apply Theorem 3.6
of [12] as the uniqueness theorem in which case the condition ¢t = ¢t is not

needed, and moreover, one can apply Corollary 17.9 of [14] (homotopy lemma).
This special case of lemma is also observed by H. Matui in [27].

THEOREM 5.3. Let A be a simple C*-algebra with TR(A ® Q) < 1, and let C be
a unital AH-algebra. Suppose that there are two unital monomorphisms ¢, : C — A
with
(9] = [y] inKL(C,A),¢; = p; and ¢ = yF.
Then, for any finite subset F* C C, there exists a unitray u € A ® Z such that

lp(x) @1z —u*(p(x) @1z)ul| <e, Vx e F.
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Proof. We first note, by [24], that TR(A ® M) < 1 for any supernatural
number.
Write C = 1311 (Cn, ¢n), where each C, has the form Pan(n)(C(Xn))Pn,
n o]

where X, is a finite CW-complex and P, € M,,,,)(C(Xy)) is a projection. Let
F C C be a finite subset, and let ¢ > 0. Without loss of generality, we may
assume that 7 C ¢,0(Cy) for some integer n > 1. We may write ¢,00(Cp) =
PM,,(C(X))P, where X is a compact subset of a finite CW-complex. Then, to
simplify notation, without loss of generality, in the rest of the proof, we may
assume that C = PM,,(C(X))P, where X is a compact subset of a finite CW-
complex and P € M,,(C(X)) is a projection.
Fix a metric on X. For any a € (0,1), denote by

A(a) = inf{piroy(O04); T € T(A), O, an open ball of radius a in X}.

Since A is simple, one has that 0 < A(a) < 1and A(a) — 0asa — 0.

Assume that every element in F has norm at most one. Let p and q be a
pair of relatively prime supernatural numbers of infinite type with Q, + Q4 = Q.
Denote by My, and M, the UHF-algebras associated to p and q respectively.

Letd > 0,7 > 0,d > 0 (in place of #7), G C C a finite subset, P C K(C)
a finite subset and Q = {xy,...,x¢} C Ko(C) which generates a free subgroup
required by Theorem[4.2|corresponding to F, /2 (in place of ¢) and A. We may as-
sume that x; = [p;] — [g;], where p;, q; € M,,(C) are projectionsand i = 1,2,... k.

In the rest of of the proof, for a homomorphism & : C" — B’ (for any C*-
algebras C’ and B’), we will use h instead of h ® idp, : M, (C') — M, (B’) when
it is inconvenient.

Without loss of generality, we may assume that § < /2 is small enough and
G is large enough so that for any homomorphism /1 : C — A, the maps Bott(h, u;)
and Bott(h, w;) are well defined and

Bott(h, w;) = Bott(h,u1) + - - - + Bott(h, u;)

on the subgroup generated by P, if u; is any unitaries with || [(x), u;]|| < ¢ for all
x € G, where wj=uy---u;,j=1234
We may also assume that

1 1 . .
62 h(p), wll < 7¢ and (g, ulll < 7o, 1<i<kj=12734

(by choosing larger G and smaller ).

Lets : A - A ® M, be the embedding defined by 1.(a) = a® 1 for all
a € A, where tis a supernatural number. Define ¢ = 1. o ¢ and . = 1. 0 .

For any supernatural number ¢ = p, q, the C*-algebra A ® M, has tracial
rank at most one. Denote by C' = P'M,(C(X"))P’, 1 : C' — C, J; (in place
of §) and Q. C Ki(C') (in place of Q) which generates a free subgroup cor-
responding to §/8 (in place of ¢), G, P and ¢, required by Theorem Let
0 < 8, < min{dy,dq,¢ 7}, and let H C K(C') be a finite set of generators. De-
noted by H; = H N K;(C’), we may assume that Q. C H;. Pick a finite subset
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U C Uy(C) for some integer n > 1 such that any element in 1,1 (?{1) has a rep-
resentative in /. Let S C C be a finite subset such that, if u = (a;;) € U, then
a;; € S.

Furthermore, one may assume that 4, is sufficiently small such that for
any unitaries z1, zp in a C*-algebra with tracial states, T((1/27ti) log(ziz]’-‘)) (i,j=
1,2,3) is well defined and

T(ﬁ IOg(lei)) = T(ﬁ log(leg)) + T(ﬁ log(z3z§))

for any tracial state T, whenever ||z; — z3|| < d and ||zx — z3]| < &2.

Let Q1 C K;(C) (in place of G) and J3 (in place of J) be the finite subset and
constant of Lemma 5.T|with respect to G U S (in place of F), U (in place of P) and
8y /n? (in place of e).

By Lemma the image of Ry, is in the closure of p4(Ko(A)). Note that
kernel of Ry, contains Tor(G(Q1)) and G(Q;) is finitely generated. There exists
a homomorphism 7 : Q; — Aff(T(A)) such that 77(x) — Ry,y(x) € pa(Ko(A))
and |[7(x)|| < &3 for all x € Qp. Then the image of (1); 0 7 — Ry, y, is in
pasM, (Ko(A ® Mp)). The same holds for q. By Lemma 5.1| there exist unitaries
up and uq such that

" o % o
lpn(8) = wpp()upll < -5 and g (8) — ugya(g)uall < 3
forall g € G US. Moreover,

(5 Tog(p (x" s (x)iep) ) = (1) o([x])(x) forall T € T(Ay) and

T(ﬁlog(qu(x*)umbq(x)uq)) = (1¢9)son([x])(7) forallT € T(Aq)

and for all x € U, where we identify ¢ and ¢ with ¢ ® idps, and ¢ ® idy;,, and u
with u ® 1, respectively.

Let oo be the supernatural number associated with Q. Lete, : A ® M, —
A®Qande; : A® My — A® Q be the standard embeddings. Then, one com-
putes that, for all x € U, by the Exel formula (see[2.13)),

T(botty (P(x) ® 1o, upug)) = T(ﬁ log(upuf (p(x) @ Vuquy(p(x*) @ 1))>
- T(% log(ug((x) ® Duguy (P(x*) @ 1)up))

_ T(zimlog(u;(lp(x) ® g (p(x) ©1)))

(s 0B ((9(x") © Vg (p(x) © 1yay))
= —(eg);© (1q)y 0 (X)) Hep); o () 0 ([x]) (1)
= (1) 1)) (X)) 0 7 (1) (1) = 0
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forall T € T(A ® Q), where we identify ¢ and ¢ with ¢ ® idp, and ¢ ® ids,, and
up and uq with up ® 1y, and ug with uq ® 131, respectively. Therefore, the image
of the map bott; (i ® 1o, upuy) isin ker p 4, . Note that Ko(A® Q) = Ko(A) ® Q
is torsion free. Hence the map bott; () ® 1g, upuy) factors through the torsion-free
part of G(1,1(H1)). Since H; is a set of generators of K;(C’), one may assume
that the domain of the map bott; (¢ ® 1o, upuy) is 1.1 (K1 (C')). Note that there is
a short exact sequence

[\

0 ——=kerpyu Ko(A) pa(Ko(A)) —0.

Since D := Q, Qy or Qg is flat, one has

pa®idp

0——>kerps @D ——=Ko(A) ® D ——pa(Ko(A)) ® D —0.

Since the UHF-algebra R := Q, M, or M have unique trace, the map p4 ®idp is
the same as the map p s if Ko(A ® R) is identified as Ko(A) ® D respectively.
Hence kerpspo = kerps ® Q and kerpsgpm, = (kerp) ® Qp, v = p, or
t = ¢. Moreover, since p and q are relative prime, any rational number r can be
written as 7 = rp +7q with r, € Qp and rq € Qq (see 2.6). Since kerpaxq is
torsion free, bott; ((¢ o1) ® 1g, upuy) maps Tor(K1(C')) to zero. Write Ky (C') =
Z" @ Tor(Kq(C')) and let {eq, e, . . er} be a set of generators of Z'. Suppose that
bott; ((Y o1) @ 1g, upuy) maps e; to Z xjj @rij, where x;; € kerpp and r;; € Q,

j=11L2,...,mpandi = 1,2,...,r. There are rjj, € Qp and r;;4 € Qq such
that tij = Tijp — Tijar j = 1,2,...,mi and i = 1,2,...,r. Define two homo-
morphisms 6, : Ki(C') — kerpagm, and 85 : Ki(C') — kerpagy, as fol-

m;

lows: (0c)ltor(k,(c’y) = 0, v = p, q. Define 0:(¢;) = 121 Xjj ®7;j. by regarding
j=

m;

Y. X;j @7 as an element of Ko(A® M,)),t=p,qandi=1,2,...,r. Then

j=1

botty ((po1) @ 1g, uptg) = (jp)0°0p — (jq)s0 by,

where j. : A® M, — A ® Q is the embedding. The same argument shows there
are homomorphisms a;, : Ko(C') = K1 (A ® Mp) and aq : Ko(C') — K1 (A ® My)
such that

botty((p 0 1) @ 1g,upttg) = (jp)+1 0 &p — (jg)s1 © g
By the universal multi-coefficient theorem, there is , € Homx(K(C' ®
C(T)),K(A ® My)) such that
(53) KP‘[S (Ko(C)) = —kp Oﬁ_l and KP|[3(K1(C’)) = —Gp Oﬁ_l.
Similarly, there is xq € Hom, (K(C' ® C(C(T))), K(A ® My)) such that

(5.4) Kq|p(K0(C’)) = —gq Oﬁil and quﬁ(Kl(C’)) = —04 Oﬁil.



536 HUAXIN LIN AND ZHUANG NIU

To apply [4.4} we verify that
loasm, o xp(B(x))| =0<4, forallx € Qy and
lpasm, o kp(B(x))| =0 <5 forallx € Q.
Then, by Theorem there are unitaries w, € AQ My and wq € AQ M, such that

llwp, 9o()]l < 3, Nwa,pals)ll < o,
for any ¢ € G, and
Bott(¢p o1, wp) =kp o B and Bott(yq o1, wy) =g 0 B.
One then has that

k k 6
19(8) @ La, — ey (P(g) @ Lag, Jwpupll < 7 and

* * (5
19(8) @ Lay — gt ($(8) @ LaggJwquiqll < 5
forall g € G. Hence

| wppuiywy, p(s) © 1]l < 3, forallg € G
In the following computation, we use  ® 1 for the map from C to A ® Q induced
by . We have, by (5.3) and (5.4), that
(5.5) botty (¢ @ 1o, wpupquq)h(() )P
= botto(Y ® 1g, wy) |k, (c)np + botto (P @ 1o, upug)|kyc)np
+botto( @ 1o, wg) |k, (c)np
—(jp)s1 0 aplkyc)np + ()1 0 ap — (jg)s1 © aq) gy (c)nP
+ (jg)«1 0"‘q|1<0 onp = 0.
The same computation shows that
(5.6) bott; (Y ® 1, wpupuqwy) |k, (c)np
= bott; (p ® 1g, wp) |k, (c)np + bott1 (P @ 1g, upug) |k, (c)np
+botty ( @ 1g, wy) [k, (c)np
—(jp)+0 2 0p g, (c)np + ((p)<0 © Op — (ja)+00q) |k, (c)np
+ (jq)x0 00 |K1 onp = =0.
Since K;(A ® Q) is torsion free (i = 0, 1), the aboves imply that
(5.7) Bott(y ® 1o, wpupugwy)|p = 0.
By the construction of 4, it is clear that
Hro(pet1)(Oa) = Ala)

for all a, where O, is any open ball of X with radius 4; in particular, it holds for
alla > d.
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For each 1 < i < k, define (see (5.2))

Liyu, = ((In — ¢(pi) @ Inm, + ($(pi) © Iy, )wpiip)
(L — (i) @ 1m, + (9(qi) ® 1y, Jujwy)) and
Liwgug = ((In — 9(pi) © Im, + ($(pi) ® 1m, ) wqtiq)
(L —9(q:) @ Iy, + ($(q:) @ 1y, Juiwi)),
and define the map T}, : ZF — U(A® M,)/CU(A ® My) by Ty(x;) = Liw,u, and

the map Iy : Z* — U(A ® M,)/CU(A ® My) by Tq(x;) = Liwqu,-
By Corollary 4.3} there are unitaries {, € A ® My, {q € A ® Mg such that

) 1)
G 9@ @l < 5 NEa v @lull <3 Vgeg

Bott(y @ 1y, Gp)lp = 0, Bott(t @ Ty, o)lp =0,
and forany 1 <i <k,

diSt(L,'/g;, Fp (xl-)) <

M=

and dist(L,-,ga,Fq(xi)) < %/

where

Ligy = ((1n — 9(pi) ® Im, + ($(pi) © 1m,)05)

(1 —9(q:) ® Im, + ((q:) ® 1m, )Cp)), and
Ligs = ((1n = 9(pi) @ Imy + (9 (pi) ® 1m,)5)

“(Ln = (q:) @ 1m, + ((9:) @ 1ag, ) Cq))-

In particular, if denote by vg = {pwpuy uzw’{] (w, one has that for any 1 <i <k,

dist(((L,—(p;) @1o+ (P (pi) @1g)ve) (L —9(q;) 1o HY(9:) ©10)v§)), 1n) <7-

Then, by Theorem there is a continuous path of unitaries v(t) in A ® Q
such that v(1) = 1 and v(0) = vy, and

£

2

Consider the unitary u(t) = v(t){qwqitq € A ® Z; 4, and it has the property
lp(f) @1z, —u (Y(f) @1z, Jul <e, VfeF.

One then embeds Z,, 4 into Z to get the desired conclusion. 1

I[o(t), p(x) @ 1]l < 5 Vx €F, Vt € [0,1].

Recall that C is the class of all simple separable C*-algebras A for which
TR(A ® M,) < 1 form some UHF-algebra M., where t is a supernatural number
of infinite type.
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COROLLARY 5.4. Let C be a unital AH-algebra and let A be a unital separable
simple Z-stable C*-algebra in C. Let ¢, ¢ : C — A be two unital monomorphisms. Then
there exists a sequence of unitaries {u,} C A such that

nlgn upp(c)upy = ¢(c) forallc € C,

if and only if
(¢l = [y inKL(C,A), ¢; = s and p* = y*.
Proof. We only show the “if" part. Suppose that ¢ and i satisfy the condi-
tion. Lete > 0, and let 7 C C be a finite subset. Then, by there exists a
unitary v € A ® Z such that

(5.8) lo* (p(a) @ 1)v — ¢(a) @ 1| < % foralla € F.

Leti: A — A® Z be defined by i1(a) = a®1 for a € A. There exists an isomor-
phismj: A® Z — A such that j o1 is approximately inner. So there is a unitaries
w € A such that

69) i@ @) —w'pa)el <5 and | playw—j(¢(a) 2 1)] < 3

foralla € F.Letu = wj(v)w* € A; then, fora € F,
[ (a)u = ¢(a)|| = [[wj(v) w"p(a)wj(v)w* —p(a)]|
< Jwj(v) w*p(a)wj(v)w” —wj(v)"(j(y(a) ©1)j(v))w"||

+ wj(o)*(j(¢(a) ® 1)j(v))w* —w(j(¢(a) ® 1))w"||
+ w(j(pa) ® 1))w™ — ¢(a)|
<§+§+§:€ foralla € 7. 1

A version of the following is also obtained by H. Matui.

COROLLARY 5.5. Let C be a unital AH-algebra and let A be a unital separable
simple C*-algebra in Cy which is Z-stable. Suppose that ¢, : C — A are two unital
monomorphisms. Then there exists a sequence of unitaries {u,} C A such that

lim upp(c)uy = ¢(c) forallc € C,
n—oo
if and only if
[9] = [¢] inKL(C,A), ¢y = t; and p* = y.
Proof. The proof is exactly the same as that of [5.3]and At where Theo-

rem is applied, one applies Theorem 3.6 of [12] instead. One also uses Re-
mark5.2l

LEMMA 5.6. Let A be a unital C*-algebra such that A @ M. is an AH-algebra for
any supernatural number « of infinite type. Let B € C be a unital separable C*-algebra,
and let ¢, : A — B be two unital monomorphisms. Suppose that

(5.10) [¢] = [¢] inKL(A,B),¢; = ¢y and p* = ¢,
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Let p and q be two relatively prime supernatural numbers of infinite type with M, ®
Mg = Q. Then, for any ¢ > 0 and any finite subset F C A ® 2y q, there exists a
unitary v € B® 2y q such that

(5.11) lo*((¢ ®id)(a))v — (P ®@id)(a)|| < e foralla € F.

The proof of this lemma will be lengthy and technical in nature. However,
the outline is the same as that of Theorem that is, using homotopy lemmas,
one could find a certain path of unitaries in B ® Q such that it implements the
approximate equivalence above when it is regarded as a unitary in B ® Z,, 4. But
since the domain C*-algebra A is only assumed to be rational tracial rank at most
one, in order to apply the homotopy lemmas, one also needs to interpolate paths
in A® Zy 4, and this increases the technical difficulty of the proof.

Proof. Let t be a supernatural number. Denote by 1. : A — A ® M, the
embedding defined by 1.(a) = a® 1 foralla € A. Denote by j. : B — B ® M, the
embedding defined by j.(b) = b ® 1 for all b € B. Without loss of generality, one
may assume that 7 = F1 ® F,, where 1 C A and F; C Z,; are finite subsets
and 14 € Fand 1 2,4 € F». Moreover, one may assume that any element in 73
or J, has norm at most one.

Let0 =ty < t; < --- <ty = 1 be a partition of [0, 1] such that

(5.12) I1b(t) — b(t)|| < Z VbeFp, Ve [t b, i=1,...,m.

Consider

€={ﬂ®b(i‘i),‘aEfl,bEFz,iZO,...,m}gA@Q,
Ep={a®b(tg);ac F,be Fh} CA®M, CA®Q and
Eq=1{a®@b(ty);ac F,be R} CA®My C A®Q.

Since A ® Q is an AH-algebra, without loss of generality, one may assume
that the finite subset £ is in a C*-subalgebra of A ® Q which is isomorphic to
C := PM,(C(X))P (for some n > 1) for some compact metric space X. Since
PM,(C(X))P = nlig})o(PmMn(C(Xm))Pm), where X, are closed subspaces of fi-
nite CW-complexes, then, without loss of generality, one may assume further that
X is a closed subset of a finite CW-complex.

Fix a metric on X, and for any a € (0,1), denote by

Aa) = inf{}ro(poiq) (Oa); T € T(B),Oq an open ball of radius a in X}.

Since B is simple, one has that 0 < A(a) < 1.

LetH C C,P CK(C), Q= {xq,x2,...,xm} C Ko(C) which generates a free
subgroup of Ky(C),d > 0,y > 0,and d > 0 (in the place of #) be the constants of
Theorem [4.2 with respect to &, ¢/8, and A. We may assume that x; = [p;] — [g:],
where p;,q; € M, (C) are projections (for some integer n > 1), i = 1,2,...,m.
Moreover, we may assume that y < 1.
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Denote by oo the supernatural number associated with Q. Let P; = P N
Ki(A®Q), i = 0,1. There is a finitely generated free subgroup G(P);o C K;(A)
such that if one sets

(5.13) G(P)ico0 = G({8r: g € (10)4i(G(P)i0) and r € Do}),

where 1 € Dy C Q is a finite subset, then G(P); « contains the subgroup gen-
erated by P;, i = 0,1. Moreover, we may assume that, if ¥ = k/m, where k and
m are nonzero integers, and v € Dy, then 1/m € Dy. Let 771/ C K;(A) be a finite
subset which generates G(P);, i = 0,1. Also denote by P/ = Pj U P;.

Denote by j : C — A ® Q the embedding.

Write the subgroup generated by the image of Q in Ko(A ® Q) as Z* (for
some integer k > 1). Choose {x},...,x.} C Ko(A) and {rig 1<i<m1<j<
k} C Q such that

jxo(x Zrzj]r 1<i<m 1<j<k

and moreover, {x], ..., X} generates a free subgroup of Ko(A) of rank k. Choose
projections pi, q; € My(A) such that x; = [pi] — [q}], 1 < j < k. Choose an integer
M such that Mrl-]- are integers for 1 < i < mand 1 < j < k. In particular Myx; is
the linear combination of x]’- with integer coefficients.

Also noting that the subgroup of Ky(A ® Q) generated by

{(1e0)s0(x1), -+, (100) 0 (1) }
is isomorphic to Z* and the subgroup of Ko(A ® M,) generated by

{(e)so(x1), -, (1) 0(xp) }

has to be isomorphic to Z¥, where t = p or t = q.
Since A ® M, is an AH-algebra, one can choose a C*-subalgebra C. of A ®
M, which is isomorphic to P M, (C(X¢))P: (for some n, > 1) such that & C C,
and projections
(P Pho T et € Ma(Ce)
such that for any 1 < j <k,

24

<1 and
32(1 + Zi,j’ ‘Mrij’ |)

(5.14) 1P} @ Im, — Pjell <

<1,

5.15 '@ I, — el < i
(.15 la7 @1 =gl < 357 Y [Mri])
where X, is a closed subset of a finite CW-complex, and ¢t = p or t = q.

Denote by x;, = [p} ] — [4;.], 1 < j < k, and denote by G the subgroup
of Ko(C,) generated by {x{,t, . ..,x,’(,t}, and write G, = Z" @& Tor(G,). Since Gy
is generated by k elements, one has that ¥ < k and v = k if and only if G, is
torsion free. Note that the image of G, in Ko(A ® M,) is the group generated by
{[py®1m] — 95 ©Im.), -, [ph @ 1as.] — [q; ® 1a,]}, which is isomorphic to ZF
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(with {[p; @ 1y, ] — [q; ®1p,]; 1 < j < k} as the standard generators). Hence G,
is torsion free and r = k.

Without loss of generality, one may assume that 1.(P’) C K(C;). Assume
that H is sufficiently large and ¢ is sufficiently small such that for any homomor-
phism / from A ® Q to B® Q and any unitary z; (j = 1,2,3,4), the map Bott(h, z]-)
and Bott(/, w;) are well defined on the subgroup generated by P and

Bott(h,w;) = Bott(h,z1) + - - - + Bott(h, zj)

on the subgroup generated by P, if ||[i(x),zj]|| < ¢ for any x € H, where w; =
Z1 'Z]*,j = 1,2,3,4.
By choosing larger H and smaller 4, one may also assume that

1 1
(5.16) 1(pi), 2]l < g and [I1(q:), 2]l < 3¢/

1<i<mj=1,273,4andforany 1 <i<m,

k
(5.17) dist (g, T1(6)-)") < 3.

j=1
where

Ciz = (((In — h(pi) + h(pi))z1) ((1n — h(q:) + h(4:))z7)), and
Zjzy = (1n = h(pj @ 1asq) + h(p; © Lagg))z1)
(1 = (g} @ 1ac0) + h(q7} ® 1acg))z7))-
By choosing even smaller J, without loss of generality, we may assume that
H=H @H" @H,
where HY € A, HP C My and H9 C M are finite subsets, and 1 HO 1 e HP
and 1 € H9.
Moreover, choose H°, HP and H9 even larger and J even smaller so that for
any homomorphism i, : A ® My — B ® M, and unitaries z1,zo € B ® M, with
[|he(x),zi|| < 6 forany x € Ho @ H., one has

1 1
(5.18) re(pie) 2l < 7z and - [Ihe(qie), 2]l < 1
1<i<kj=1,2and

Y
1+ Y j [Mryl)’

dist(Ci 2z, (1Bom, )n) < dist(Cizx, Cigy) + 32

where
iz = (X0 = he(p} ) + he(p} )2 ) ((An — he(q; ) + he(q; ) (Z')*)),  and
7' = 212,27, 2.

Denote by C' = P'M,(C(X))P',1: C' = A® Q, &, (in the place of ) the
constant, G C K;(C(X)) (in the place of Q) the finite subset in Theorem with
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respect to A ® Q (in the place of C), B® Q (in the place of A), ¢ ®idg (in the place
of 1), /4 (in the place of €), H (in the place of F) and P. Note that X is a finite
CW-complex.

Let #' C A ® Q be a finite subset and assume that J, is small enough
such that for any homomorphism % from A ® Q to B ® Q and any unitary z;
(j =1,2,3,4), the map Bott(h, z]-) and Bott(h, w]-) is well defined on the subgroup
[1(K(C")) and

Bott(h, w;) = Bott(h,z1) + - - - + Bott(h, z;)

on the subgroup [1(K(C')), if [|[k(x),z]|| < 0 for any x € H', where w; =
z1° 0 Zj, j = 1,2,3,4. Furthermore, as above, one may assume, without loss of
generality, that

H=H" @H @H,
where H0 C HY C A, HP C H¥ € My and H9 C HY C M, are finite subsets.

Let 65 > 0 be a constant such that for any unitary with ||u — 1|| < &}, one
has that ||logu|| < 6,/4. Without loss of generality, one may assume that &, <
0y/4 <e/4and &) < 6.

Let C, := P.M,C(X])P; (in the place of C'), /. : C; — A ® M, (in the place
of 1), R« C K1(C}) (in the place of Q) and 4, (in the place of §) be the finite subset
and constant of Theorem {4.4 with respect to A ® M, (in the place of C), B ® M,
(in the place of A), ¢ ® idy, (in the place of h), HY @ 1Y (in place of F) and
(1c)+0(Py) U (1c)41(P1) (in the place of P) and 85 /8 (in place of €) (t = p or v = q).
Note that X/, is a finite CW-complex with K; (C.) = Z* @ Tor(K;(CL)). Let Rg) =
(1.)+(Ki(C})), i = 0,1. There is a finitely generated subgroup G;(. C K;(A) and
a finitely generated subgroup Dy, C Q. so that

Z{,O,t = G({g7: g € (1)+i(Gio.) and ¥ € Do, })
(i)

contains the subgroup R.’, i = 0, 1. Without loss of generality, one may assume
that Dy, = {k/my; k € Z} and Dy q = {k/mq; k € Z} for an integer m,, divides
p and an integer mq divides q.

Let R C K(A® Q) be a finite subset which generates a subgroup containing

—— ((tp,00)+(Gpgp U Gi,o,p) U (1g,00)(Gp0,q U Gi,O,q))

in K(A ® Q), where 1, « is the canonical embedding A ® My - A® Q, t = p,q.
Without loss of generality, one may also assume that R D 1,1(G). Let H, C
A ® M, be a finite subset and J3 > 0 such that for any homomorphism / from
A® M, to B®& M, (v = p or v = q) any unitary z; (j = 1,2,3,4), the map Bott(h, zj)
and Bott(h, w;) are well defined on the subgroup [1](K(C})) and

Bott(h, w;) = Bott(h,z1) + - - - + Bott(h, z;)

on the subgroup generated by [1](K(Cy)), if [|[(x),zj]|| < &3 for any x € H,,
where w; = z1---z;, j = 1,2,3,4. Without loss of generality, we assume that
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HO @ HP C Hpand HO ® HY C H,4. Furthermore, we may also assume that
He = Hoo @ Hoe

for some finite subsets Hgo and Ho . with HY ¢ Hoo C A, HY C Hop C My
and H9 C Ho,q- In addition, we may also assume that 63 < d, /2.

Furthermore, one may assume that d3 is sufficiently small such that, for any
unitaries z1,2p,z3 in a C*-algebra with tracial states, 7(1/27i) log(ziz]’f)) (i,j =
1,2,3) is well defined and

T(ﬁlog(zlzﬁ)) = T(ﬁlog(zlzg)) —I—T(

5 log(273))
for any tracial state T, whenever ||z; — z3|| < d3 and ||zx — z3|| < &3.

To simply notation, we also assume that, for any unitary zj, (Gj=1234)
the map Bott(h, z;) and Bott(h, w;) are well defined on the subgroup generated
by R and

Bott(h, w;) = Bott(h,z1) + - - - + Bott(h, zj)

on the subgroup generated by R, if ||[i(x),z]|| < 3 for any x € H", where
wi =2zp-- -zj,j =1,2,...,4, and assume that

H' = Hoo ® Hop @ 'Ho,q.

Let R' = RN K;{(A® Q). There is a finitely generated subgroup G, of
K;(A) and there is a finite subset D C Q such that

Gieo := G({g7: § € (100)+i(Gjp) and r € Dy})

contains the subgroup generated by R!, i = 0,1. Without loss of generality, we
may assume that G; , is the subgroup generated by R'. Note that we may also
assume that Gj9 D G(P);p and 1 € D{ D Dy. Moreover, we may assume that,
if r = k/m, where m, k are relatively prime non-zero integers, and r € D6, then
1/m € Dj. We may also assume that G;o. € Gjo for v = p,qand i = 0,1. Let

R ¢ K;(A) be a finite subset which generates G; ¢, i = 0, 1. Choose a finite subset

U C U, (A) for some n such that for any element of RY, there is a representative
inU. Let S be a finite subset of A such that if (z;;) € U, thenz;; € S.

Denote by é; and Q, C Ki(A ® M) = K;(A) ® Q. the constant and finite
subset of Lemma [5.1| corresponding to & U H. ® 1 U 1(S) (in the place of F),
1:(U) (in the place of P) and (1/n%) min{6}/8,53/4} (in the place of €) (x = p
or v = ¢). We may assume that O, = {x®r : x € Q andr € D/}, where
Q' C Kj(A) is a finite subset and Dy C Q. is also a finite subset. Let K =
max{|r| : r € Dg U Dg} Since [¢] = [¢] in KL(A, B), ¢y = 3 and 4)1 = 1,111, by
Lemma Ryp(K1(A)) C pp(Ko(B)) C Aff(T(B)). Therefore, there is a map
7 :G(Q") — pp(Ko(B)) C Aff(T(B)) such that

6:19) (5~ Ryg)([2)) € po(Ko(B) and [5(2)] < i forallz € Q.
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Consider the map ¢, = ¢ ®idy, and P, = P ® idy;, (t = p or v = q). Since
1 vanishes on the torsion part of G(Q’), there is a homomorphism
e+ G((16)1(Q) = pBam, (Ko(B @ Me)) C Aff(T(B @ Me))
such that

(5.20) e o (te)s = 17.

Since ppam, (Ko(B® M,)) = Rpp(Ko(B)) is divisible, one can extend #, so it
defines on K;(A) ® Q.. We will continue to use #, for the extension. It follows

from (5.19) that 77:(z) — Ry, . (z) € ppam. (Ko(B® M,)) and ||5:(z)|| < &4 for all
z € Q.. By Lemmal5.1} there exists a unitary u, € B® M, such that

. . . 1 & 0

62D (¢ @idu,) @y — ($ @idag,) @) < 5 min{Z, T
fOr all (NS gp U Hp U lp (S) Note that

[up (¢ @idm, ) (z)up — (P ®@idp, ) (2)|| < 63 foranyz € U.

Therefore T((1/27ti) log(uy (¢ ®@idy ) (z)up (¥ @1idp)(z*))) = np([2]) (1) forallz €
1p(U), where we identify ¢ and ¢ with ¢ ® idp, and ¢ ® idps,, and up, with up, ®
11, respectively.

The same argument shows that there is a unitary 14 € B ® M, such that

% . . 1 5 6

622 |uj(¢ @idu,)(©)ug — (¥ ©idu,)(0)]] < —min {2, 2}
forallc € £ U HqU1y(S), and T((1/27i) log(uy (¢ @ 1dq)( 2)uq(Pp ®idq)(2%))) =
1q([z])(7) for all z € 14(U), where we identify ¢ and ¢ with ¢ ® idy, and ¢ ®
idp,, and ug with uq ® 1y, respectively. We will also identify uy with up ® 1p,
and uq with ug ® 1y, respectively. Then upuy € A ® Q and one estimates that
forany c € Hoo ® Ho,p @ Hyq,
(5.23) ([uquy (9 @ 1g(c))upug — (9 @ 1) (c)|| < 33,
and hence Bott(¢ ® idg, upuy)(z) is well defined on the subgroup generated by
R. Moreover, for any z € U, by the Exel formula (see[2.13) and applying (5.20),

T(bott; (¢ ® ldQ, Mpuq)((loo)*l([z])))
= 7(bott; (¢ ®@idg, upuy)(teo(2)))

= T(ﬁ log(upuy(¢ @idg) (1eo(2)) ) uqity (¢ © idQ)(zm(z))*)
= T(L IOg(u* (4) ®idQ)(loo(Z))))uq(llJ ® idQ)(lm(Z*)))

— (s 108 (1 (9 @ i) (s (2))1ty (9 100 ((27))))

(1
q((1q)+ ([ IN(T) =1 ((2p)a ([2])) (T)
(z])(t) = n([z])(t) =0 forall T € T(B),

n
U
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where we identify ¢ and ¢ with ¢ ® idy;, and ¢ ® idy,, and u, and uy with
up ® 1y, and ug with ugq ® 1y, respectively.

Now suppose that § € Gy . Then ¢ = (k/m)(ic0)41([2]) for some z € U,
where k, m are non-zero integers. It follows that

(5.24) T(bott; (¢ ® idg, upuy)(mg)) = kt(bott; (¢ ® idg, upug)([z])) =0
for all T € T(B). Since Aff(T(B)) is torsion free, it follows that
(5.25) 7(bott; (¢ ®@idg, upuy)(g)) =0

for all ¢ € Gy and T € T(B). Therefore, the image of R! under bott; (¢ ®
idg, upuy) is in ker ppy . One may write

Go=2"®L/1Z® - ®L/psZ,

where r is a non-negative integer and p1, ..., ps are powers of primes numbers.
Since p and q are relatively prime, one then has the decomposition

Gl,O =7 EBTorp(Gl,o) EBTOI'q(GLo) - Kl(A),

where Torp, (Gy,9) consists of the torsion-elements with their orders divide p and
Torg(Gi,0) consists of the torsion-elements with their orders divide g. Fix this
decomposition.

Note that the restriction of (1)1 to Z" @ Torq(Gi) is injective and the re-
striction to Torp(Gy ) is zero, and the restriction of (1q).1 to Z" @ Torp(Gyp) is
injective and the restriction to Torq (G ) is zero.

Moreover, using the assumption that p and q are relatively prime again, for
any element k € (1q).1(Z" @ Tory (G10)) and any nonzero integer g which divides
q, the element k/ g is well defined in K1 (A ® My); that is, there is a unique element
s € K1 (A ® My) such that gs = k.

Denote by ¢, ..., e, the standard generators of 7. It is also clear that

(t00) 1 (Tory (G1,0)) = (to0)41(Torg (Gi)) = 0.

Recall that Dy, = {k/my; k € Z} C Qp and Dy = {k/mgq; k € Z} C Qq
for an integer my, dividing p and an integer m dividing q. Put me = mpmy.
Consider (1/m«)Z" € K1(A® Q), and for each ¢;, 1 < i < r, consider

1 . N
m—bottl (¢ @idg, upuy)((teo)s1(ei)) € ker ppeg-

Since ker ppgo = (kerpp) ® Q, kerppgm, = (kerpp) ® Qp, and ker ppgum,
(ker pp) ® Qq, using the same arguments as that of Theorem 5.3} there are g,
ker PBaM, and g; 4 € ker PBeM, such that

m IR

botty (9 @ i, upi) (== ()e1(60))) = (i)o0(8ip) + () (83a),

where g; , and g; 4 are identified as their images in Ko(A ® Q).
Note that the subgroup (1p).1(G1p) in Ko(A ® M) is isomorphic to

7 ® Tor,
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and (1/my)(Z"®Tor) is well defined in Ko( A®M,, ), and the subgroup (14).1(G1,0)
in Ko(B ® Myq) is isomorphic to Z" & Tory and (1/mgq)(Z" & Tory) is well defined
in Ko(A ® My). One then defines the maps 6y : (1/my)(1p)+1(G10) — ker ppem,
and 04 : (1/mq)(19):1(G10) — ker ppgym, by

1

Gp( 1p (zp)*l(el)> =mggip, and Gq(—

—(1q) (1)) = Mpgiq
q

forl <i<rand

OplTor((1).1(Gro) =0 and " 4Tor((19).1(G1)) = O

Then, for each ¢;, one has
(jp)+0 0 0p 0 (1p)s1(er) + (jg)x0 0 0q © (19)41(e;)
=ty (1 (in)o0o 8y © 1)) + ma (11=Ga)) @04 1) €0
:umq((]P>*0<gl,p) (Ja)+0(8iq))
= moobotty (p®@idg, Uy} o (ics) w1 (n%) —bott; (p@idg, upitl)o(1eo)u1 (€7)-

Since the restriction of 6 o (1)1, 04 © (1q)+1 and bott; (¢ @ idg, upuy) o (1c0)s1 to
the torsion part of Gy g is zero, one has

bott; (¢ @ idg, uptg) © (teo)s1 = (jp)x0 © Op © (1p)s1 + (jg )0 © 0q © (1)1

The same argument shows that there also exist maps

i - njp((zp)*o(co,o)) S K(B®M,) and

1
g m—((lq)*o(Go,o)) — Kqi(B® My)
q
such that, on Gy,

botto(¢ ® idg, uptg) © (1) 0 = (jp)x1 0 &p © (1p) 0 + (jg) 1 © &g © (1q)s0-
Note that G; . € Gjg,i = 0,1, v = p, q. In particular, one has that

(1e)4i(Gio,e) € (2e)4i(Gip),

and therefore
1 1
Glop C "y —(1p):+0(G10) and Gjgq C qu(lq)*O(Gl,O)-

Then the maps 6}, and 04 can be restricted to G;  , and G;  , respectively. Since
the group G . contains (1;).;(K;(C;)), the maps 6}, and 0 can be restricted fur-
ther to (1, )*1 (K1(Cp)) and (1)1 (K1(Cy)) respectively.

For the same reason, the maps &, and a4 can be restricted to (¢},)+0(Ko(C},))
and (1y).0(Ko(Cy)) respectively. We keep the same notation for the restrictions of
these maps ayp, aq, 0y, and 0.
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By the universal multi-coefficient theorem, there is x, € Hom, (K(C}, ®
C(T)), K(B ® M,)) such that

Kplpkycy) = —Op 0 ()0 B and  Kplg(iy(cy)) = —ap © (1p)s00 B

Similarly, there exists x4 € Hom, (K(Cy ® C(T))), K(B @ My)) such that
Kalpi(cy) = —0a 0 (tg)a 0B and  xqlgky(cy) =~ © (tg)s00 B
Note that since g; . € kerpaem,, k:(B(K1(Ct))) C ker pggpm,, t =port = q.

By Theorem [4.4] there exist unitaries w, € B ® My and wq € B® Mg such that

e, (9 @i, (N < 2, g, (9 @ i, )] < 2,

for any x € HY © HP and y € 1 ® qu, and
Bott(¢ @ idp,, wp) o [1,] = kpo B and  Bott(¢ @ iday,, wq) o [15] = x40 B.
Fort=port=gandeachl <j <k define
ey = (1o = (¢ @idn, ) (p] ) + ((¢ @ida, ) (p] ) ) wetie)
T~ 1) (1) + (¢ &1 ) (g )uzwi).

It is an element in U(B ® M,)/CU(B ® M,).
Define the map I, : Z¥ — U(B® M,)/CU(B ® M,) by

Ft(x;,t) = Cjweu,, 1<j<k

Applying Corollaryto C: (in the place of C), G(x , ..., x; ) (in the place
of G), B® M, (in the place of A), and (¢ ®idp, )|c, (in the place of ¢), there is a
unitary ¢ € B ® M, such that

. 5
[[lex, (¢ @idm,) (0)]]| < %
forany x € HY @ HY,

BOtt((P ® ith, Ct) |1r(79’) = 0,

and

. Y .
5.26 dist(Z; o+, e (x; < , 1<j<k
where

Gjeg = ((In = (¢ @idm, ) (pj ) + (9 @ idar ) (p]))et)
(1n = (¢ @idm, ) (9;,) + (¢ @idm, ) (4]))ee))-
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Put v, = ccw.u,. Then, by (5.18) and (5.26), for 1 < j <k,
Y

(5-27) diSt(gj,vt/ (1B®Mt)n) < diSt(gj,ctr gj,wtut) + 32(

< Y
16(1+ X j [Mrij])

1+ 3 | Mri)

where

Gioe = (U — (@ @idu) () + (@ @1idu,)(7],))00)
T~ @@ ) (@) T (9 ® 1w, ) (7,))90))-

Recall that [x;] = [pj] - [q;] Define

Copor = (= 907) @ Tas, T @) & 12000
T =9 & T T ) B T ).
By and (5.15), one has

diSt(Cx;,vt/ gj,v,) < 16(

y
1+ Y [Mry])’

and hence by (5.27),

Y
L+ Y [Mripl)

diSt(gx;,vt/ (1B®Mt)'fl) < 8(
Regard 7,/ , asits image in B ® Q, one has
]/ T

Y
1+ Y [Mryp])’

diSt(éx;,vr/m) <H
and hence forany 1 <i < m,
dist( Ty (2x0) ™" (ool ) <
By (5.17), one has
dist(((1 - (¢ @idg)(pi) + (¢ @idg) (pi)ve) (1 - (¢ ©idg)(4i)+
{9 ®1de) (7)v))™, (Tsa)n) < ;.
and then, by Theorem 6.10 (and Theorem 6.11) of [11],

dist(((1 - (¢ @idg)(pi) + (¢ @idg) (pi)ve) (1 - (¢ ©idg)(4:)+

(9 ®idQ) @0, Tasa)n) < 37 < 4

®[=
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In particular,
dist({(1 — (¢ @idg)(pi) + (¢ ®@idg)(pi)vevp) (1 — (¢ ®idg)(q:)+
(¢ @idg)(4:)vpv;)), (1eQ)n)
< dist(((1 - (¢ @idg)(pi) + (¢ @idg) (pi)ve) (1 — (¢ ®idg)(g:)+
(¢ @idg)(41)vy)), (1Beg)n) + dist(((1 — (¢ @idg)(pi) + (¢ @ idg)(pi)vp)
1= (9 2idg)(g) + (¢ ©1d0)(4)%})), (Tsag)n) < 5-
That is
(5.28) dist(; 40, 1n) <

04
2/

where

Cipgoy = (1= (9 ®@idg)(pi) + (¢ ®idg)(pi)vqv))
(1= (p®idg)(g:) + (¢ ®idg)(9i)vpv;))-

Moreover, one also has

[p ®@idg(x) — vy (¢ @ido(x))vp|l < %, Vxe HY @ HY @ HY and
[p ®@idg(x) — vg(¢ ®@idg)(x)vg|l < 54—&, Ve HY @ HY @ HT .
Hence 5
[[opvy, ¢(x) @ 10]|| < 52 <&, VYVxeH.
Thus Bott(¢ © idg, vpvy) is well defined on the subgroup generated by P. More-
over, a direct calculation shows that
bott; (¢ ®idg, vpv:) 0 (10)41(2)
=bott; (¢ ®idg, cp) © (1eo)«1(2) +bott; (¢ ® idg, wp) © (1e)41(2)
+ bott(¢ ® idg, upu:;) 0 (1c0)+1(z) + bott; (¢ ®idg, w;) 0 (100)41(2)
+ bott (¢ @ idg, cg) © (1eo)41(2)
= (fp)s0 o botty (¢ ®idm,, cp) o (1p) 1 (2)
+(jp )0 © botty (¢@idp,, Wy ) o (1p)41(2) +bott(p@idg, upug)o (i) <1 (2)
+ (jq)+0 o botty (¢ @ idw,, wg) o (19):1(2)
+ (jg)x00botty (¢ ®idp, cq) © (19)1(2)
= (jip)x00botty (¢ @ idpm,, wy) © (1p)+1(z) + bott(¢p @ idg, upug) o (1)1 (2)
+ (jq)x0obotty (¢ @ idu,, wg) © (19)41(2)
=—(fp)s000p 0 (1p)s1(z) + ((jp)0 0 0p © (1p) 1
+ (ja)+0 ©0q 0 (19):1) = (ja)+0 © 0q © (19)1(2)
=0 forallz € G(P)1p.
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The same argument shows that botty(¢ ® idg, vyv;) = 0 on G(P)o,0. Now, for
any g € G(P)1,0,0, there is z € G(P)1 and integers k, m such that (k/m)z = g.
From the above,

bott; (¢ ® idg, vyvy)(mg) = kbotty (¢ ®idg, vpvy)(z) = 0.
Since Ko (B ® Q) is torsion free, it follows that
bott; (¢ ®idg, vpvy)(g) =0
for all g€ G(P)1,00,0- So it vanishes on PNK; (A®Q). Similarly, on PNKy(A®Q),
botto (¢ ®idg, vpvg) lprky(ae) = 0-
Since K;(B® Q,Z/mZ) = {0} for all m > 2, we conclude that
Bott(¢ @ idg, vpvy)|[p = 0
on the subgroup generated by P.
Since [¢] = (] in KL(A, B), ¢4 = 4 and ¢* = ¢, one has that
9 ®idg] = [p®idg] InKL(A®Q,B®Q),

(p®idg); = (p®idg); and (¢ ®idg)* = (y @idg)*.

Therefore, by 5.10 of [21], ¢ ® idg and ¢ ® idg are approximately unitarily
equivalent. Thus there exists a unitary u € B ® Q such that

!

(5.29) lu* (0 ®ido) () — (9 ®ido)(0)] < %2 forallc € £ UM,

It follows that
/!

B N o8
vy (9(c) @ 1g)opu” — plc) ® 1o < Z+ 2 Veed

By the choice of 85 and H', Bott(¢ ® idg, vpu*) is well defined on [1](K(C’)), and
12
|7 (botty (¢ ®idg, vpu*)(z))| < 52 vt € T(B),Vz € G.
By Theorem [4.4] there exists a unitary y, € B® Q such that

. 1)
Iy, (p@ido) (W] < 5, VheH,

and Bott(¢ ® idg, yp) = Bott(¢ ® idg, vpu*) on the subgroup generated by P.
For each 1 < i < m, define

Cigpuoy = ((In = (¢ @idg) (pi) + (9 ®idg) (pi))ypuvy)
(1 = (¢ @idg)(4:) + (9 @ id) (4:))opu*yy)),

and define themap I' : Z™ — U(B® Q)/CU(B® Q) by I'(x;) = Ciypuoy-
Applying Corollary [£.3]to C and G(Q), there is a unitary ceB®Q such that

e (p@ido)(M)]]l < § VieH, Botg@idg c)lp=0,
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and forany 1 <i <k,

7

dist(j -, I'(xi)) <

N[

where

Gioe = ((1n = (¢ ®@idg) (pi) + (¢ ®idg) (pi)c*)
(1n — (¢ ®@ido)(q:) + (¢ ®idg)(gi)c))-

Consider the unitary v = cy,u, one has that

[[v, (¢ ®idg)(h)]l| <6, forall h € H and Bott(¢ ®idg,vv;,) = 0

on the subgroup generated by P, and for any 1 < i < m,

(5.30) dist(i05, Tn) <

N2

7

where

Ciwoy = (1n — (@ @idg) (pi) + (¢ @idg)(pi))vvy)
- (1n = (¢ @idg) (4:) + (¢ ©idg)(4:))vpv*))-
By the construction of 4, it is clear that
]’lTO(w@l)(oﬂ) > A(a)

for all a, where O, is any open ball of X with radius 4; in particular, it holds for
alla > d. Applying Theorem[¢.2to C and (¢ ®idg)|c, one obtains a continuous
path of unitaries v(t) in B® Q such that v(0) = 1 and v(t;) = vvy, and

(5.31) I[zp (1), (¢ @idg) ()]l <

Note that

; Vx € &, Vit € [0,1].
Bott(¢ ®idg, v40") = Bott(¢ ®idg, v40,vpv")
(5.32) = Bott(¢ ®idg, v4vy,) + Bott(¢ ® idg,vpv*) =0+0=10
on the subgroup generated by P, and for any 1 <i < m,
diSt(gi,qu*rT) < diSt(éi,qu;rT) + diSt(Ci,vpv*IT)
=, (by 628 and (530))

where

Cipgor = (1= (@ ®idg)(pi) + (¢ ®@idg)(pi)vev*)
(1= (9p®idg)(g:) + (¢ ®idg)(4i)vv;)).-

Since
[[vog, (¢ @idg)(c)]l| <6, VceH,
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Theorem [4.2]implies that there is a path of unitaries zq(t) : [t—1,1] = U(A® Q)
such that z4(t,,—1) = vog, zq(1) = 1 and

. €
(5.33) l|[zq(t), ¢ @idg(c)]]| < g’ Vi€ [ty-1,1], Vc € £.
Consider the unitary
Zp(t)vp if 0 g t g tl,
o(t) =4 if by << bt

zq(H)vg if tyo1 <t < by

Then, for any ¢;, 0 < i < m, one has that

638 o' (t)(¢@idg)()o(t) — (p@ido)(e)]| < 5, Ve e £,
Then for any ¢ € [t;, t;11] with1 < j < m —2, one has
[0*(£) (¢ ®id(a @ b(t)))o(t) — p @id(a @ b(t)) |
= [[o"(¢(a) @ b(t))o — ¢(a) @ b(1) |
(5.35) < J[o* (¢(a) @ b(t))o — pla) @bt + 5 < 5+ 5 <
For any t € [0, 1], one has that forany a € Fy and b € 7,
[0%(8)(¢ @id(a @ b(t)))o(t) — ¢ @id(a @ b(t))]|
= [lopz, (5) (¢(a) @ b(1))zp (H)vp — p(a) @ b(H) ||
< lopzy (£) (9(a) @ b(to))zp (H)vp — () © b(to)[| + %

(5.36) < llo (¢(a) © b(to))op — $la) @ blto) | +35 <35+ =€

The same argument shows that for any ¢ € [t;_1,1], one has that for any
a€ Frand b € Fp,

(5.37) lo*(t)(p @id(a®@b(t)))v(t) —p@id(a@b(t))| < e.
Therefore, one has
lo(p@id(f))v—p@id(f)|| <e forallf € F. &

N ™

REMARK 5.7. In fact, using the same argument as the lemma above, one has
the following: Let A and B be two unital stably finite C*-algebras. Assume that,
for any UHF-algebra U of infinite type,

(i) the approximately unitarily equivalence classes of the monomorphisms
from A ® U to B® U is classified by the induced elements in KL(A ® U, B ®
U), the induced maps on traces, together with the induced maps from U (A ®
U)/CUx(A® U) to Us(B® U)/ClUx(B® U),

(ii) B ® U satisfies Theorem [4.4) with respect to any embedding of A ® U,

(iii) B ® U satisfies a homotopy lemma, such as Theorem §.2| or Lemma 8.4 of
[15]], for any embedding of A®@ U to B® U,
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then, for any monomorphisms ¢,y : A — B, the maps ¢ ® id and ¢ ® id from
A® Zp 4 to B® Z, q are approximately unitarily equivalent if and only if

(5.38) ¢] = [¢] inKL(A,B), ¢, = i; and ¢ = yt.
THEOREM 5.8. Let A be a Z-stable C*-algebra such that A ® M, is an AH-

algebra for any supernatural number v of infinite type, and let B € C be a unital separable
Z-stable C*-algebras. If ¢ and ¢ are two monomorphisms from A to B with

(5.39) [¢] = [¢] in KL(A,B), ¢y = iy and ¢ = ¥,
then, for any € > 0 and any finite subset 7 C A, there exists a unitary u € B such that

(5.40) |lu*p(a)u —¢(a)|| <e foralla € F.

Proof. Leta: A - A® Zand : Z — Z ® Z be isomorphisms. Consider
the map
id® “1gid
M A—>A0z5 Aczez" X Aez.
Then I is an isomorphism. However, since f is approximately unitarily equiva-
lent to the map

Zo25a—~»aQQxle ZRZ,

the map I'4 is approximately unitarily equivalent to the map
Ada—a®le AR Z.

Hence the map I'p o ¢ o ['4 is approximately unitarily equivalent to ¢ @ idz. The
same argument shows that I'p o ¢ o I'4 is approximately unitarily equivalent to
¢ ®id z. Thus, in order to prove the theorem, it is enough to show that ¢ ® id z is
approximately unitarily equivalent to ¢ ® id z.

Since Z is an inductive limit of C*-algebras Z; g, it is enough to show that
¢ ®idg,  is approximately unitarily equivalent to  ® idz, ;, and this follows
from Lemma 1

6. THE RANGE OF APPROXIMATE EQUIVALENCE CLASSES OF HOMOMORPHISMS

Now let A and B be two unital C*-algebras in A/ N C. Theorem [5.8| states
that two unital monomorphisms are approximately unitarily equivalent if they
induce the same element in KLT.(A, B) ™" (see Definition and the same map
on U(A)/CU(A).In this section, we will discuss the following problem: Suppose
that one has k € KLT¢ (A, B) " and a continuous homomorphism y: U(A) /CU(A)
— U(B)/CU(B) which is compatible with «. Is there always a unital monomor-
phism ¢ : A — B such that ¢ induces x and ¢t = 7? At least in the case that
K1(A) is free, Theorem states that such ¢ always exists.
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LEMMA 6.1. Let A and B be two unital infinite dimensional separable stably fi-
nite C*-algebras whose tracial simplexes are non-empty. Let 7y : Uso(A)/CUw(A) —
U (B)/CUw (B) be a continuous homomorphism, h; : K;(A) — K;(B) (i = 0,1) be ho-
momorphisms for which hy is positive, and let A : Aff(T(A)) — Aff(T(B)) be an affine
map so that (hy, hy, A,7y) are compatible. Let p be a supernatural number. Then vy in-
duces a unique homomorphism 7y, : U (Ap)/Cleo(Ap) = Uoo(By)/CUso(By) which
is compatible with (hy); (i = 0,1) and «yp, where Ay = A ® My and B, = B® My, and
(hp)i : Ki(A) ® Qp — K;(B) ® Qp is induced by h; (i = 0,1). Moreover, the diagram

Uw(A)/ClUx(A) 5 Usw(B)/CUw(B)
L Fg)t
Uso(Ap)/ClUss(Ap) 5 Uno(By)/Clco(By)

commutes, where 1y : A — Ay and 1, : B — By are the maps induced by a — a ® 1
and b — b ® 1, respectively.

Proof. Denote by Ag = A, Ay = A® My, By = B and By, = B® M;. By
a result of K. Thomsen ([31]), using the de la Harpe and Skandalis determinant,
one has the following short exact sequences:

O%Aff(T(Ai))/pA(Ko(A,‘))%UOO(A,')/CUOO(AZ')—)K1(AZ')*)0, i=0,p, and

Note that, in all these cases, Aff(T(A;))/pa(Ko(A;)) and Aff(T(B;))/pa(Ko(B;))
are divisible groups, i = 0, p. Therefore the exact sequences above splits. Fix split-
ting maps s; : Ki(A;) = Ueo(A)/CUw(A;) and s} : Kq(B;) — Uwo(B;)/ClUw(B;),
i = 0,p, for the above two splitting short exact sequences. Let 1, : A — Ay be the
homomorphism defined by 1,(a) = a® 1 foralla € Aand 1, : B — By be the ho-

momorphism defined by #,(b) = b® 1 for all b € B. Let 1,1J : U (A)/CUw(A) —
Uw(Ap)/CUx(Ap) and (1;3)i : Ueo(B)/CUw(B) = Ueo(Byp)/CUw(By) be the in-

duced maps. The map 1, induces the following commutative diagram:

0  Af(T(A)/pa(Ko(A))  — Uw(A)/CUn(A) —Ki(A) —0
Vo L Hop)a
0— Aff(T(Ap))/pa(Ko(Ap)) — Uwo(A;)/ClUx(Ap) — Ki(Ap) —0.

Since there is only one tracial state on M, one may identify T(A) with
T(Ayp) and T(B) with T(By ). One may also identify p4, (Ko(Ayp)) with

Ro4(Ko(A))

which is the closure of those elements r[p] with r € R. Note that (h,); : Ki(A ®
M,) — Ki(B® M,) (i = 0,1) is given by the Kiinneth formula. Since v is com-

patible with A, v maps Rpa(Ko(A))/pa(Ko(A)) into Rpg(Ko(B))/pp(Ko(B)).
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Note that
ker(1p)s« = {x € K1(A) : px = 0 for some factor p of p} and
(6.1) ker(1,).1 = {x € K1(B) : px = 0 for some factor p of p}.
Therefore
Ker(ih) = {x + soly) : ¥ € Rpa(Ko(A))/pa(Ka(A)),y € ker(15).1)} and
(62) Ker(i))F = {x+sh(y) : Rpa(Ro(B))/pp(Ro(B)), y €ker((1h)1)}-

If y € ker((1p)41), then, for some factor p of p, py = 0. It follows that py(so(y)) =
0. Therefore y(so(y)) must be in ker((z;,)i). It follows that

(6.3) y(ker(i})) C ker((i)%).

This implies that v induces a unique homomorphism 7, such that the following
diagram commutes and the lemma follows:

Uw(A)/ClUw(A) 5 Uw(B)/CUx(B)
L Ty
Us(Ap)/Cls(Ap) B Uw(Bp)/Clu(Bp).

LEMMA 6.2. Let A and B be two unital infinite dimensional separable stably fi-
nite C*-algebras whose tracial simplexes are non-empty. Let v : Us(A)/ClUw(A) —
Uw(B)/CUw(B) be a continuous homomorphism, h; : K;(A) — K;(B) (i = 0,1) be
homomorphisms and A : Aff(T(A)) — Aff(T(B)) be an affine homomorphism which
are compatible. Let p and q be two relatively prime supernatural numbers such that
My ® My = Q. Denote by oo the supernatural number associated with the product p
and q. Let Eg : B — B ® Z, q be the embedding defined by Eg(b) = b® 1, Vb € B.
Then

(6.4) (M0 Eg)f oy = ye o1k, forallt € (0,1),
(6.5) (oo Eg)toy=ypoid, and
(6.6) (nloEB)io'y:'yqozfl,

with the notation of 6.1} where 11y : 2, o — Q is the point-evaluation at t.

Proof. Fix z € U (B)/CUx(B). Let u € Uy, (B) for some integer n > 1 such
that 77 = z in Ues(B)/ClUes(B). Then

(6.7) Ebz)=u@l.

In other words, E% (z) is represented by w(t) € M, (B ® Zy q) for which
(6.8) w(t)=u®1 forallte [0,1].

Therefore, for any t € (0,1), 7tz 0 Eg(z) may be written as

(6.9) Mo EL(z) =u®1 inUx(B®Q)/Clx(B® Q).
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This implies that

(6.10) 7 0 EX(2) = (10)}(2) forall z € Ue(B)/ClUwo(B),

where 1o : B— B®Q is defined by 10, (b) =b®1 for all b € B. It follows from|[6.1]that
(6.11) (M0 Ep)t oy = yee 01k, forallt € (0,1).

The identities and for end points exactly follow from the same argu-
ments. 1

The following is standard (see the proof of 9.6 of [18])).

LEMMA 6.3. Let C and A be two unital separable stably finite C*-algebras, and
let ¢1, o, p3 : C — A be three unital homomorphisms. Suppose that

(6.12) [¢1] = [¢2] = [p3] in KL(C, A), (¢1): = (¢2); = (¢3);-
Then
(6.13) Rpr95 = Roy 4 + Rongs-

LEMMA 6.4. (cf. Theorem 4.2 of [23]]) Let A be a unital infinite dimensional sep-
arable simple C*-algebra with T(A) < 1, let C C A be a unital C*-subalgebra which
is a unital AH-algebra an let 1 : C — A be the embedding. For any A € Hom(K;(C),
pA(Ko(A))), there exists ¢ € Inn(C, A) such that there are homomorphisms 6; : K;(C)
— Ki(M,g) with (710)+i0; = idg,(c),i = 0,1, and the rotation map Ry : K1(C) —
Aff(T(A)) is given by

(6.14) Rip(x) = pa(x —01((70)+1(x)) + Ao (70)s1(x)) forall x € Ky(Mygp).

In other words,

(6.15) [p] =[] in KK(C,A)
and the rotation map R, ¢ : K1 (M, y) — Aff(T(A)) is given by
(6.16) Ryp(a,b) = pa(a) + A(b)

for some identification of Ky (M,,y) with Ko(A) @ Kq(C).

Proof. This follows from the proof of Theorem 4.2 of [23]. In Theorem 4.2 of
[23], it is assumed that p4(Ko(A)) is dense in Aff(T(A)). However, in fact, it is
the condition A(K;(C)) C pa(Ko(A)) that is used. Note that, by Theorem 3.10 of
[25], A has property (B1) and (B2) associated C and a constant A¢ (3.6 and 3.8 of
[23]) . Thus this lemma follows exactly the same proof. 1

LEMMA 6.5. Let A be a unital AH-algebra and let B be a unital separable simple
amenable C*-algebra with TR(B) < 1. Suppose that ¢1, ¢ : A — B are two monomor-
phisms such that

6.17) [¢1] = [92) in KK(A,B), (¢1); = (¢2); and ¢} = ¢}
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Then there exists a monomorphism B : ¢2(A) — B such that [Bo ¢p] = [¢2] in

KK(A,B), (Bo¢2)s = ¢4, (Bogo)t = 4)% and B o ¢ is asymptotically unitarily
equivalent to ¢1. Moreover, if

Hi(Ko(A), K1(B)) = Ki(B),
they are strongly asymptotically unitarily equivalent, where
Hy(Ko(A),K1(B)) = {x € Ky(B) : ¢([14]) =x for some ¢ € Hom(Ko(A), K1(B))}.
Proof. By Lemma there is a monomorphism B € Inn(¢,(A), B) such that
[B] = [1] in KK(¢2(A), B) and
Rip = =Ry,

where 1 is the embedding of ¢»(A) to B and R, g is viewed as a homomorphism
from Kq(A) = Kq(¢2(A)) to Aff(T(B)). In other words

(6.18) Ry, pops = Ry 40-
One also has that

(619) [ = [Bo¢n] inKK(A,B),(Bo¢n); = (¢2); and (B o ¢o)¥ = ¢3.
Thus

(6200 [¢1] =[Bo¢a] inKK(A,B),(¢1); = (Bogn);and ¢f = (Bo¢o)t.
It follows from and that

Ry pops = Ry + Ry pog, = 0-
Therefore, it follows from Theorem 4.2 of [25] that the map ¢; and o ¢, are
asymptotically unitarily equivalent.
In the case that Hy(Ko(A), K;(B)) = K;j(B), it follows from Theorem 4.4 of
[25] that B o ¢» and ¢ are strongly asymptotically unitarily equivalent. 1

LEMMA 6.6. Let C and A be two unital separable stably finite C*-algebras. Sup-
pose that ¢, : C — A are two unital monomorphisms such that

(6.21) [9] = [y] inKL(C,A), ¢; = pyand Ryy = 0.
Suppose that {U(t) : t € [0,1)} is a piecewise smooth and continuous path of unitaries
in A with U(0) = 1 such that
(6.22) lim U (8)p(u)U(t) = 9 (u)
—

for some u € U(C) and suppose that there exists w € U(A) such that P(u)w* €
UQ(A). Let

Z=Z7Z(t) =U(H)pu)Ut)w* ifte0,1)
and Z(1) = (u)w*. Suppose also that there is a piecewise smooth continuous path of

unitaries {z(s) : s € [0,1]} in A such that z(0) = ¢(u)w* and z(1) = 1. Then, for
any piecewise smooth continuous path {Z(t,s) : s € [0,1]|} € C(]0,1], A) of unitaries



558 HUAXIN LIN AND ZHUANG NIU

such that Z(t,0) = Z(t) and Z(t,1) = 1, there is f € pa(Ko(A)) such that, for all
te€ 0,1 and T € T(A),

(6.23)

1
27[\1/_710 T(dZC(IZ’S)Z(t,s)*)ds— 27‘[\/7/ z(s)” )d5+f( )-

Proof. Define

u*(t—2s)p(u)U(t — 2s)w* fors € [0,t/2),
(6.24) Zi(t,s) = < p(u)w* fors € [t/2,1/2),
z(2s — 1) fors € [1/2,1],

for t € [0,1) and define

P(u)w* fors =0,
(6.25) Zi(1,s) =  U*(1—28)¢p(u)U(1 —2s)w* fors e (0,1/2),
z(2s — 1) fors € [1/2,1].

Thus {Z;(t,s) : s € [0,1]} C C([0,1], A) is a piecewise smooth continuous path
of unitaries such that Z;(t,0) = Z(t) and Z;(t,1) = 1. Thus, there is an element
f1 € pa(Ko(A)), such that, for all T € T(A) and for all t € [0,1],

1
B 1 dz(t,s) . B t,s)
fl(T)—zn\/?lo/T< 2 7(1,5)" ) ds an L7, (1,5) ) ds.
On the other hand, let V(t) = U(t)*¢(u)U(t) fort € [0,1) and V(1) = 9 (u).

For any s € [0,1), since U(0) = 1, U(t) € U(C([0,s],A))o (for t € [0,s]). There
there are a1, 4y, ..., a; € U([0,s], A)sa such that

ut) = ﬁexp(iaj(t)) forallt € [0,s].

Then a straightforward calculation shows that

(6.26) / dziit)v*(t)dt —0.
0

We also have, forall T € T(A),

1
62) o / (T2 () dt = Ry (V) (1) = £(2) € palKo(A))
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Then
) L -1)
ZHF/ 7Z1(1 ))ds T T LV(Zs—l)*)ds
0
(6.28) = Ryp([V])(r) = f(r) forallT € T(A).

One computes that, for any T€T(A) and for any t€[0,1), by applying (6.28),

27(\/7/ le £s) Zl(t,s)*)ds
_ 27_[\1/?1|:/T<(d(u (t 2S)¢(§:>U(t 2s)w*)
1/2
(U*(t—Zs)¢(u)U(t—2s)w*)*)ds+//’L'((izti(;’S)Zl(t,s)*)ds
t/2
dz
+ z(2s—1)*)d
/ )ds|
mlr[/ dv(tds_zs)v“‘zs d”lé dZT) 2(25—1)")ds|
(6.29) =0+ \ﬁ/ dz 25 1) (25—1)*)(:15—zn\lﬂb/lT<dZ<SS)z(s)*)ds.
It then follows from (6.28) that
27{\/7/ dzli)zl(l,s)*)ds
an // le L S)Zl( ds—l—/ 01227531) (2s—1)* )ds}

1/2

630) = f(t) + 2n\1/j1 0/ T(dz(:)z(s)*)ds.

The lemma follows. 1

REMARK 6.7. Note that the Lemma 6.6|applies to M, (C) and M,,(A) for all
integer n > 1. So it works for all u € U, (C).
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LEMMA 6.8. Let A be a unital C*-algebra satisfying that A ® M, is an AH-
algebra for all supernatural number v with infinite type (in particular, all AH-algebra
satisfies this property), and let B be a unital simple C*-algebra in N N C. Let x €
KLe(A,B)™" and A : Aff(T(A)) — Aff(T(B)) be an affine homomorphism which
are compatible (see Definition[2.4). Then there exists a unital homomorphism ¢ : A — B
such that

[¢] =« and (gb)ﬁ = A.
Moreover, if v € Uw(A)/ClUx(A) — Uw(B)/CUw(B) is a continuous homomor-
phism which is compatible with x and A, then one may also require that

631) U a)y/Clin(a) = Vus(a)/cuna) ad (@)tosy =705 —h,

where s1 : K1(A) — Uw(A)/CUs(A) is a splitting map (see2.3), and the following is
a homomorphism:

h: K1 (A) — Rop(Ko(B))/p(Ko(B)).
Moreover, we have the following, where Ep is as defined in

(6.32) ((I)@idgplq)i 0s1 =Egoyosg —h.

Proof. Let p and g be two relative prime supernatural numbers of infinite
typesuchthat Q = M, ® My.Let Ay = AQM,, Ag = AQ My, By = B& My and
By = B® M,. Then A, and A, are AH-algebras, and TR(By) < 1 and TR(Bg) <
1. Let x, € KL(Ay,By), kq € KL(Ap, By), Ap : Aff(T(Ap)) — Aff(T(By)), Aq :
Aff(T(Aq)) — Aff(T(Bgq)), 7p : U(Ap)/CU(Ap) — U(Bp)/CU(By) and 74 :
U(Aq)/CU(Aq) — U(Bg)/CU(Bg) be induced by «, A and 7, respectively. Note
that Ay, Ay, By and B are all unital AH-algebras. Moreover, since M, = M.Q M.,
for any supernatural number t of infinite type (see 2.5), B, and By are unital
simple AH-algebras of slow dimension growth. It follows from Corollary 6.11 of
[21]] that there is a unital homomorphism ¢, : A, — By such that

(6.33) [¢p] = Ky in KL(Ap, By), (¢p)F = 7p and (¢p); = Ay
For the same reason, there is also a unital homomorphism 4 : Aq—Bg such that
(6.34) [pa) = kg in KL(Aq, Bq), (¥q)* = 74 and ($q); = Aq-

Define ¢ = ¢, ®idp, and ¢ = 9q ® id . From above, one has that
(9] =[y] nKL(A®Q B®Q)¢; =;and ¢} = yt.
Since both K;(B ® Q) are divisible (i = 0, 1), one actually has

[¢] =[] nKK(A®Q,B®Q).

It follows fromﬁ that there is By € Inn(y(A ® Q), B® Q) such that if 1, 450)
denotes the embedding of /(A ® Q) into B ® Q,

(6.35) [Bo] = [typ(awg)] InKK(Y(A®Q),B®Q),
(Bo): = (1p(acq))s and (Bo)* = (1p(ae0))*
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such that ¢ and Bp o ¢ are strongly asymptotically unitarily equivalent (since in
this case Hy (Ko(A®Q),K1(B® Q)) = K1(B ® Q)). Note that one may identify
T(Bg), T(By) and T(B ® Q). Moreover,

pBeo(Ko(B® Q)) = Rop(Ko(B)) = o, (Ko(By))-

Denote by 1, : By — B ® Q the embedding a — a ® 1p,, and note that the image
of 1, 0 14 is in the image of ¢. Thus, by Rpgorpopqipopy 18 iN

Hom(Kl (Mﬁgozpowq,zpolpq ), PBq (KO(BQ)))'

Note that
[Bootpotpg] = [1popg] in KK(Aq, Bg).
By there exists & € Inn(1q(Aq), Bq) such that
[a] = [1¢q(Aq)] in KK(Bq, B),

where 1, () is the embedding of ¢q(Aq) into Bg, and

R'X’ltﬁq(/“q) - 7R/50°1P°‘Pq'lpolpq :
As computed in the proof of[6.5 one has that

(6.36) [1poaotpy] =[Bootpotpy] inKK(A,;B®Q),
(6.37) (tpoaoty); = (Bootpotg)sand (1pomo 1/;[1)1 = (Booipo 1/Jq)¢, and

R

tponoyy,Bootpotpy — 0.
It follows from 7.2 and Theorem 4.2 of [25] that 7, o & 0 ¢; and Bg o 1, 0 Py
are strongly asymptotically unitarily equivalent.
Consider the maps
(Bootpoypq) ®idp,, 10Boop: AR Mg® My — (B® Mg ® Mp) @ My,

where1: B®Q — (B® Q) ® My is theembedding b — b® 1y, forallb € B® Q.

Identify o o (B @ Mq ® My) @ My with Bo o p(B) @ o o (Mg) @ o ©
P(Mp) ® My, and consider the automorphism 6 on By o (B) ® Bo o p(Mq) ®
Bo © P(My) ® M, defined by

0:aRbRcRd—~aRbRdRc.
Then
(61 8o (M) 280 (Mp) M, ) = (1o (M) 0o (M) oM, ] 0
KK(Bo(My)®Bo(My) @ My, Bo(Mg)@Bo(Mp) @ My).

Since K (Bo(My)®Bo(Mp) ® My) = {0}, it follows from Theorem 4.2 of [25] that
018y M,)@Bo(My)@M, 18 strongly asymptotically unitarily equivalent to the identity
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map. Therefore 6 is strongly asymptotically unitarily equivalent to the identity
map. Note that foranya € A, b € My, and ¢ € M, one has
0((Boo1p 0 pq) @idm, ) (a @b @c)) = 0(Po(q(a @ b) @ 1y,) @)
= Po(Pq(a®@b) ®c) @1y,
(6.38) =10BpoPp(a®bc).
Thus, the map (Bo o1 0 1Pq) ® idy, is strongly asymptotically unitarily

equivalent to 10 Bg o .
Defineamap ¥;: A ® Mq ® Mp — B® Mg ® My ® My by

(6.39) Yy:abc— a(Ppg(a®b)) @c®@ 1y,
Note that foralla®@b®c € A Q@ My ® My,
(6.40) ((tpoaotpy) ®idy,)(a@b®@c) =a(Pg(a®@b)) @1y, @c.

Then the same argument as above shows that ¥, is strongly asymptotically uni-
tarily equivalent to (1p o a o o) ®idpy, -

Since ¢ and B o i are strongly asymptotically unitarily equivalent, one has
that the map 1 o ¢ is strongly asymptotically unitarily equivalent to z o B o ¢, and
hence strongly asymptotically unitarily equivalent to (o o 1 0 q) ® idp,, and
therefore strongly asymptotically unitarily equivalent to (1, o @ 0 p5) @ idpy,. It
follows that the map 1 o ¢ is strongly asymptotically unitarily equivalent to ‘¥;.
Thus there is a continuous path of unitaries {w(t) : t € [0,1)} in B&® Mg ® M, ®
M, with w(0) = 1 such that

}l_rﬂw*(t)(l op(a))w(t) =¥4(a), VaecA®Q.

Pick an isomorphism )’ : My, ® M, — M, and consider the induced iso-
morphism x : B® Mg ® My ® M, — B® My ® M,. Note that (x') ! is strongly
asymptotically unitarily equivalent to the map ¢/ : M, — M, ® M, defined by
a—1 ® a. Then, it is straightforward to verify that x o1 0 ¢ is strongly asymp-
totically unitarily equivalent to ¢, and x o ¥ is strongly asymptotically unitarily
equivalent to (a o 1) ®idpy,. Thus, there is a continuous path of unitaries u(f) in
B ® My ® My (one can be made it into piecewise smooth; see Lemma 4.1 of [18])
such that #(0) = 1 and

(6.41) 111111 adu(t)op(a) = (xopg) ®idp, (a) forallae A®Q.
—
This provides a unital homomorphism @ : A ® 2, 4 — B ® 2, q such that,
foreacht € (0,1),
(6.42) mpo®(a) =adu(t)op(a(t)) forallac A® Z, .

Denote by ¢ a unital embedding Z — Z, 4, and let j : Z, ¢ — Z be a unital
homomorphism induced by the stationary inductive limit

8 8 8
Zpq = Zpq = Zpq— - 2
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given by 3.4 of [29]], where the map ¢ is regarded as its restriction to Zj, 4.

As in the proof of 7.1 of [33] (note that it follows from the same proof that
Proposition 4.6 of [33] also works for homomorphisms which are not necessary
being injective),

(6.43) (([dp®@j)oPo(ida®V))s =% i=0,1,
(6.44) ((idB X ]) od (ldA ® 19))11 =

In fact, one has that

(6.45) Py(a@b)(t@pu) = y(a(t))u(b) forallac Asaand b € (Zy,q)sa-

By considering ((idp ® j) o ®@ o (ida ® 1)) ®id¢(x,) : A®C(Xy) = B®
C(Xy) for some suitable compact metric spaces Xj, the same argument shows
that, in fact,

(6.46) [(idp®j)oPo (idg ®9)] =«
Define the map H = (idg ® j) o @ o (idy ® 9). Then [H]| = x in KL(A, B)
and H; = A.
Note that it follows from (6.45) that
(6.47) D104, /cuia) = E o Ylu(ay/cua)-
Letz € U(A)/CU(A). Then, one has
(6.48) Hf =y =1k 01

On the other hand, for each z € U(A)/CU(A), there is a unitary w € B® Z, 4
such that

(6.49) i (w) = mry(w) forallt,t’ € [0,1] and E;g oy(z) =

Since 71;(w) € B is constant, one may use w for its evaluation at t. Let vy € U(A)
be such that 7y = z. For any t € (0,1), define

(6.50) Z(t) = o P(vg)w™ = u(t)*¢(vo)u(t)w*.

Let Z(t,s) be a piecewise smooth continuous path of unitaries in B ® Z, 4 such
that Z(t,0) = Z(t) and Z(t,1) = 1. Denote by 1 the unique tracial state in T(My),
where t is a supernatural number. For each s, € T(Z, ), one may write
1
sula) = [ To(a(t)dp(e),
0
where 1 is a probability Borel measure on [0, 1].
Then, for T € T(B) and s, € T(Zy,q), by applying|6.6]
Det(Z)(t ®@sy)

Z(t,s)
ds

T®Sy Z(t,s)*)ds

271\/7
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11
e O/<T®TO>(dzéi's)za,s)*)du(t)ds

2/ —1
o1 dZ(t,s)
b fire o (S0
1
(6.51) = /Det(cp(vo)w*)(r)dy(t) + f(t) forsome f € pp(Ko(B)).
0
Byl[6.2]and (6.42),

(6.52) Det(Z)(t®s;)=Det(¢(vg)w")(T)+f(T)€Rpp(Ko(B))CAL(T(BR Zp,q)-
Thus, ®*(z)(Ep o A(z)*) defines a homomorphism from the group

U(A)/CU(A)
into Rpg(Ko(B))/pp(Ko(B)) which will be denoted by h. By ,
(6.53) hlu(ay,/cucay = 0.

Thus & induces a homomorphism & : K1 (A) — Rpg(Ko(B))/pp(Ko(B)). &

In [18]], it was shown that, given two unital separable simple C*-algebras A
and B in V"N C, if there is an isomorphism on the Elliott invariant, i.e.,

(Ko(A), Ko(A)+,[1a], Ki(A), T(A),74) = (Ko(B), Ko(B)+, [18], T(B), 75),
then A = B. The following corollary is a more general statement.

COROLLARY 6.9. Let A and B be two unital separable C*-algebras in N'NC. Sup-
pose that there is a homomorphism x; : K;(A) — K;(B) such that kg is order preserving
and xo([14]) < [1p] and there is a continuous affine map A : Aff(T(A)) — Aff(T(B))
which is compatible with «o. Then there is a homomorphism ¢ : A — B such that

(@)si =xi, i=0,1and Py = A.
Proof. Consider the splitting short exact sequence:
0 — Extz(K.(A),K,41(B)) = KK(A, B) — Hom (K. (A),K.(B)) — 0.
There exists an element x € KK(A, B) such that the image of x in
Hom(K,(A),K«(B))

is exactly the same as that «.. Let k¥ in KL(A, B) be the image of k. There is a pro-
jection p € Bsuch that [p] = xo([14]). Let By = pBp. Then& € KLe(A, B;)** and
A and ¥ are compatible. It follows from [6.§] that there is a unital homomorphism
¢ : A — By C Bsuch that

[p] =% and ¢y =A.
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THEOREM 6.10. Let C be a unital C*-algebra such that C ® M, is an AH-algebra
for all supernatural number ¢ with infinite type, and let A be a unital simple C*-algebra
in N'N C which is Z-stable. Then, for any x € KLTe(C, A)*™ and a continuous homo-
morphism 7 : Uso(C)/Cleo(C) — U (A)/CUc(A) which are compatible, there is a
unital monomorphism ¢ : C — A such that

([pl, ¢s) =x and .

provided that
(i) K1(C) is a free group, or
(i) Rpa (Ko(A)) /04 (Ko(A)) = {0}, or
(iii) Rpa (Ko(A))/pa(Ko(A)) is torsion free and Ky (C) is finitely generated.
Proof. It follows from [6.8| that there is a unital monomorphism ¢ : C — A
such that

(¥, 92) =% ¥Hu(c)oscuic) = Mucyscucy and
(6.54) (¢®idgp,q)¢osl = EEO’YOSl—E,

where I : K1(C) — Rpa(Ko(A))/pa(Ko(A)) is a homomorphism . If K;(C) is
free, there exists a homomorphism /7 : K1(C) — Rp(Ko(A)) which induces h;.
In the case that

Roa(Ko(A))/pa(Ko(A))
is torsion free and Kj(C) is finitely generated, then one also obtains a such ;.
Since Rp4(Ko(A)) is torsion free, h; induces a homomorphism

hy : Ki(C)/(Tor(Ky(C))) — Rpa(Ko(A)).

Since the map from K;(C)/(Tor(K;(C))) — (K1 (A)/(Tor(K;(A)))®Qy is injec-
tive, one obtains a homomorphism 1, : K1(C®M,) —Rp4(Ko(A)) such that

(6.55) hy = hyp o (1p)s1,

where 1, : A - A ® M, is the embedding so that7,(a) =a® 1foralla € A (visa
supernatural number). Similarly, there is a homomorphism h; ¢ : K1 (C ® Mq) —

Rpa(Ko(A)) such that
(656) hl = hl,q o (lq)*l-

Put C, = ((¢ ® idp,)(C ® M,)), where t is a supernatural number. It fol-
lows from [6.4| that there is a monomorphism By € Inn(C}, Ap) such that

[Bo] = [1¢y]  in KK(Cy, Ap),
(6.57) (Bo): = 1c,. B = i, * and Rypsidu, foo(yeidy,) = Mp

where i¢; is the embedding of Cj,.
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Similarly, there is a monomorphism B; € Inn(Cg, Aq) such that
[B1] = [1c;] in KK(Cy, Aq),
(6.58) (B1): = 1cy, Bt = icF and Rypsidyg, ro(yeidy,) = M

where i, is the embedding of Cy-

As in the proof of by applying [6.5|and its proof, one has a monomor-
phism B> € Inn(By o (¥ ®idpm,)(Cq), Aq) and a piecewise smooth continuous
path of unitaries {U(t) : t € [0,1)} of A® Q such that U(0) = 1 and

[(B20B10 (Y @idp,))] = [Boo (Y ®idwm,)] in KK(Cq, Ag),
(B2opro(p@idp,))s = (Boo (P @idp,)); and
(6.59) (B2oB1o (P @idpm,))* = (Boo (¢ @idp,))*

Moreover, if denote by o = Boo (p ®idpy,) and ¢ = (B2oBro (P ®
idp,)), one has that

(6.60) lim U(1)° (90 ® ido, ) (@U(1) = (1 ©idlu, ) ()
foralla € A ® Q. In particular,

(661) FI]JQ@idMq,l[J]@ide =0.

Let : A® Zpq - A® Zp q be defined by
Q(a@b)(t)=U"(t)((Yo@idm, (a®b(t)))U(t)) forallt€[0,1) and
(6.62) P(a®b)(1) =y ®idp, (a @ b(1)),

foralla®@b e A® Zp 4.
We claim that

(6.63) Pto(Eqop)tos; = (Eq)toqos,.

To compute &%, let x € s1(K;(C)) and vy € U(C) such that 7y = x. There is
welU(A® Zpq)/CU(A® Z,,q) such that w(t) = w(t') forall t,#' € [0,1] and
(6.64) Ei oyosi(x) =.

Let Z = (®o (p®idg,,)(v0))w* € A® Zy,4. Note that Z € U(A ® Zy,q)o-
Suppose that there is a piecewise smooth continuous path {Z(t,s) : s € [0,1]} C
A ® Zpqsuch that Z(¢,0) = Z(t) and Z(t,1) = 1. Then

Det(Z(t,s))
=Det(®@ o ((p®idz, ,)(v0))(p©idz,, (v0)"))+Det((p®idz, ) (vo)w")
(6.65) =Det(®o ((p ®idz,,)(v0)) (Y @idz, (v0)*)) +hosi(x).
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It follows from [6.6] that

Det(® o ((p®idz, ,)(v0))(p®idz, (v0)")) =Det(Bo o Y (vo)§(vo)*)+pa(Ko(A))
= Rpgop,p([v0]) +pa(Ko(A))

(6.66) =—hy,p0s1(x) + pa(Ko(A)).

Therefore, by (6.55) and by (6.65),
Det(Z(t,5))(t @sy) € pa(Ko(A))-
This proves the claim.

Regard ¢ as amap to A ® Z. Denote by j : Z, 4 — Z the unital homomor-
phism induced by the stationary inductive limit decomposition of Z, and denote
by ¢: Z — Z, 4 the unital embedding induced by tensoring Z (2, 4 is Z-stable).
Consider

$p=(dg®j)oPo(idg®@0)op.
One then checks that
[¢] = [¢] inKL(C,A), ¢y =pyand ¢t =17. 1
REMARK 6.11. It follows from Proposition 3.6 of [17] that, if TR(A)<1, then

Rpa(Ko(A))/pa(Ko(A)) = {0}.
So Theorem [6.10|recovers a version of Theorem 8.6 of [18].
Now suppose that in[6.10}
U (C)/Cls(C) = U (C)g/Cls(C) @ G @ Tor(Kq(C)),

where G is identified with a free subgroup of K;(C). From the proof of Theo-
rem|6.10| we see that, if k € KLT.(C, A)*" and y: U (C)/ClUc (C) — U(A)/CU(A)
which is compatible to « are given, there is a unital monomorphism ¢ : C — A
such that ([¢], ¢4) = x and, for all z € Tor(K;(C)),

PlU(C)o/CU(C)aGr = YUn(Clo/Cln(C)G, and
¢H(z)—7(z) € Rpa(Ko(A))/pa(Ko(A)).
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