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ABSTRACT. Let A and B be unital separable simple amenable C∗-algebras
which satisfy the universal coefficient theorem. Suppose that A and B are Z-
stable and are of rationally tracial rank no more than one. We prove the follow-
ing: Suppose that φ, ψ : A → B are unital ∗-monomorphisms. There exists a
sequence of unitaries {un} ⊂ B such that lim

n→∞
u∗nφ(a)un = ψ(a) for all a ∈ A,

if and only if [φ] = [ψ] in KL(A, B), φ] = ψ] and φ‡ = ψ‡, where φ], ψ] :
Aff(T(A)) → Aff(T(B)) and φ‡, ψ‡ : U(A)/CU(A) → U(B)/CU(B) are the
induced maps (where T(A) and T(B) are the tracial state spaces of A and
B, and CU(A) and CU(B) are the closures of the commutator subgroups of
the unitary groups of A and B, respectively). We also show that this holds
if A is a rationally AH-algebra which is not necessarily simple. Moreover,
for any strictly positive unit-preserving κ ∈ KL(A, B), any continuous affine
map λ : Aff(T(A)) → Aff(T(B)) and any continuous group homomorphism
γ : U(A)/CU(A) → U(B)/CU(B) which are compatible, we also show that
there is a unital homomorphism φ : A → B so that ([φ], φ], φ‡) = (κ, λ, γ), at
least in the case that K1(A) is a free group.

KEYWORDS: Classification of C∗-algebras, AH-algebras, Z-stable C∗-algebras, ho-
motopy lemma, uniqueness theorems.
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1. INTRODUCTION

Let X and Y be two compact Hausdorff spaces, and denote by C(X) (or
C(Y)) the C∗-algebra of complex-valued continuous functions on X (or Y). Any
continuous map λ : Y → X induces a homomorphism φ from the commutative
C∗-algebra C(X) into the commutative C∗-algebra C(Y) by φ( f ) = f ◦ λ, and
any homomorphism from C(X) to C(Y) arises this way (in this paper, by homo-
morphisms or isomorphisms between C∗-algebras, we mean ∗-homomorphisms
or ∗-isomorphisms). It should be noted that, by the Gelfand–Naimark theorem,
every unital commutative C∗-algebra has the form C(X) as above.
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For non-commutative C∗-algebras, one also studies homomorphisms. Let
A and B be two unital C∗-algebras and let φ, ψ : A→ B be two homomorphisms.
A fundamental problem in the study of C∗-algebras is to determine when φ and
ψ are (approximately) unitarily equivalent.

The last two decades saw a rapid development of classification of amenable
C∗-algebras, or otherwise known the Elliott program. For instance, all unital sim-
ple AH-algebras with slow dimension growth are classified by their Elliott in-
variant [4]. In fact, the class of classifiable simple C∗-algebras includes all unital
separable amenable simple C∗-algebras with the tracial rank at most one which
satisfy the universal coefficient theorem (the UCT) (see [11]). One of the crucial
problems in the Elliott program is the so-called uniqueness theorem which usu-
ally asserts that two monomorphisms are approximately unitarily equivalent if
they induce the same K-theory related maps under certain assumptions on C∗-
algebras involved.

Recently, W. Winter’s method [33] greatly advances the Elliott classifica-
tion program. The class of amenable separable simple C∗-algebras that can be
classified by the Elliott invariant has been enlarged so that it contains simple C∗-
algebras which no longer are assumed to have finite tracial rank. In fact, with [18],
[20], [23] and [33], the classifiable C∗-algebras now include any unital separable
simple Z-stable C∗-algebra A satisfying the UCT such that A⊗U has the tracial
rank no more than one for some UHF-algebra U (it has recently been shown, for
example, A ⊗ U has tracial rank at most one for all UHF-algebras U of infinite
type, if A ⊗ C has tracial rank at most one for one of infinite dimensional uni-
tal simple AF-algebra (see [26])). This class of C∗-algebras is strictly larger than
the class of AH-algebras without dimension growth. For example, it contains the
Jiang–Su algebra Z itself which is projectionless and all simple unital inductive
limits of so-called generalized dimension drop algebras (see [16]).

Recall that the Elliott invariant for a stably finite unital simple separable
C∗-algebra A is

Ell(A) := ((K0(A), K0(A)+, [1A], T(A)), K1(A)),

where (K0(A), K0(A)+, [1A], T(A)) is the quadruple consisting of the K0-group,
its positive cone, the order unit and tracial simplex together with their canonical
pairing, and K1(A) is the K1-group.

Denote by C the class of all unital simple C∗-algebras A for which A ⊗ U
has tracial rank no more than one for some UHF-algebra U of infinite type.

Suppose that A and B are two unital separable amenable C∗-algebras in C
which satisfy the UCT. The classification theorem in [18] states that if the Elliott
invariants of A and B are isomorphic, i.e.,

Ell(A) ∼= Ell(B).

However, the question when two isomorphisms are approximately unitar-
ily equivalent was still left open.
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A more general question is: for any two such C∗-algebras A and B, and, for
any two homomorphisms φ, ψ : A → B, when are they approximately unitarily
equivalent?

If φ and ψ are approximately unitarily equivalent, then one must have

[φ] = [ψ] in KL(A, B) and φ] = ψ],

where φ], ψ] : Aff(T(A)) → Aff(T(B)) are the affine maps induced by φ and ψ,
respectively. Moreover, as shown in [19], one also has

φ‡ = ψ‡,

where φ‡, ψ‡ : U(A)/CU(A) → U(B)/CU(B) are homomorphisms induced by
φ, ψ, and CU(A) and CU(B) are the closures of the commutator subgroups of the
unitary groups of A and B, respectively.

In this paper, we will show that the above conditions are also sufficient,
that is, the maps φ and ψ are approximately unitarily equivalent if and only if
[φ] = [ψ] in KL(A, B), φ] = ψ] and φ‡ = ψ‡.

Not surprisingly, the proof of this uniqueness theorem is based on the meth-
ods developed in the proof of the classification result mentioned above, which
can be found in [13], [15], [18], [19] and [23]. Most technical tools are developed
in those papers, either directly or implicitly.

In the present paper, we will collect them and then assemble them into pro-
duction. It should be noted that the above-mentioned uniqueness theorem still
holds in a more general setting where the source algebra A is not necessary in the
class C. For example, it is still valid for all AH-algebras A which are not necessar-
ily simple. In particular, A could be just C(X) for any compact metric space X.

In that situation, the first version of this kind of uniqueness theorem was
proved in [6], where A = C(X) and B is a unital simple C∗-algebra with the
unique tracial state and with real rank zero, stable rank one and weakly unperfo-
rated K0(B).

Then, in [10], it was shown that, if A = C(X) for some compact metric
space X and B is a unital simple C∗-algebra with tracial rank zero, then any unital
monomorphisms φ and ψ from A to B are approximately unitarily equivalent if
and only if [φ] = [ψ] in KL(A, B) and φ] = ψ]. This result was then generalized
to the case that B has tracial rank no more than one with the additional condition
φ‡ = ψ‡ in [21].

From this point of view, the main result in this paper may also be regarded
as a further generalization of these uniqueness theorems. In fact, in this paper,
we also allow the source algebra A to be any unital C∗-algebra such that A⊗U
is a unital AH-algebra for all UHF-algebra U of infinite type. One should also re-
alize that these uniqueness theorems have a common root: The Brown–Douglas–
Fillmore theorem for essentially normal operators. One version of it can be stated
as follows: Two monomorphisms φ, ψ : C(X) → B(H)/K — the Calkin algebra,
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which is a unital simple C∗-algebra with real rank zero — are unitarily equivalent
if and only if [φ] = [ψ] in KK(C(X), B(H)/K).

As this research was under way, we learned that H. Matui was conducting
his own investigation on the same problems. In fact, he proved the same unique-
ness theorems mentioned under the assumption that B⊗U has tracial rank zero.
Moreover, he actually showed the same result holds if the assumption that B⊗U
has tracial rank zero is weaken to be that B ⊗U has real rank zero, stable rank
one and weakly unperforated K0(B ⊗ U), at least for the case that quasi-traces
are traces and there are only finitely many of extremal tracial states.

In [24], it is shown that, for any partially ordered simple weakly unperfo-
rated rationally Riesz group G0 with order unit u, any countable abelian group
G1, any metrizable Choquet simple S, and any surjective affine continuous map
r : S → Su(G0) (the state space of G0) which preserves extremal points, there ex-
ists one (and only one up to isomorphism) unital separable simple amenable C∗-
algebra A ∈ C which satisfies the UCT so that Ell(A) = (G0, (G0)+, u, G1, S, r).

Then a natural question is: Given two unital separable simple amenable C∗-
algebras A, B ∈ C which satisfy the UCT, and a homomorphism Γ from Ell(A) to
Ell(B), does there exist a unital homomorphism φ : A→ B which induces Γ? We
will give an answer to this question. Related to the uniqueness theorem discussed
earlier and also related to the question above, one may also ask the following:
Given an element κ ∈ KL(A, B) which preserves the unit and order, an affine
map λ : Aff(T(A)) → Aff(T(B)) and a homomorphism γ : U(A)/CU(A) →
U(B)/CU(B) which are compatible, does there exist a unital homomorphism φ :
A→ B so that [φ] = κ, φ] = λ and φ‡ = γ? We will, at least, partially answer this
question.

2. PRELIMINARIES

2.1. Let A be a unital stably finite C∗-algebra. Denote by T(A) the simplex
of tracial states of A and denote by Aff(T(A)) the space of all real affine contin-
uous functions on T(A). Suppose that τ ∈ T(A) is a tracial state. We will also
denote by τ the trace τ ⊗ Tr on Mk(A) = A⊗Mk(C) (for every integer k > 1),
where Tr is the standard trace on Mk(C). A trace τ is faithful if τ(a) > 0 for any
a ∈ A+ \ {0}. Denote by Tf(A) the convex subset of T(A) consisting of all faithful
tracial states. Note that Tf(A) = T(A) when A is simple.

Denote by M∞(A) the set
∞⋃

k=1
Mk(A), where Mk(A) is regarded as a C∗-

subalgebra of Mk+1(A) by the embedding a 7→
( a 0

0 0
)

.
For any projection p ∈ M∞(A), the restriction τ 7→ τ(p) defines a positive

affine function on T(A). This induces a canonical positive homomorphism ρA :
K0(A)→ Aff(T(A)).
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Denote by U(A) the unitary group of A, and denote by U(A)0 the connected
component of U(A) containing the identity. Let C be another unital C∗-algebra
and let φ : C → A be a unital ∗-homomorphism. Denote by φT : T(A) → T(C)
the continuous affine map induced by φ, i.e.,

φT(τ)(c) = τ ◦ φ(c)

for all c ∈ C and τ ∈ T(A). Denote by φ] : Aff(T(C)) → Aff(T(A)) the map
defined by

φ]( f )(τ) = f (φT(τ)) for all τ ∈ T(A).

DEFINITION 2.2. Let A be a unital C∗-algebra. Denote by CU(A) the closure
of the subgroup generated by commutators of U(A). If u ∈ U(A), its image in the
quotient U(A)/CU(A) will be denoted by u. Let B be another unital C∗-algebra
and let φ : A → B be a unital homomorphism . It is clear that φ maps CU(A)
into CU(B). Let φ‡ denote the induced homomorphism from U(A)/CU(A) into
U(B)/CU(B).

Let n > 1 be any integer. Denote by Un(A) the unitary group of Mn(A), and
denote by CU(A)n the closure of commutator subgroup of Un(A). Regard Un(A) as
a subgroup of Un+1(A) via the embedding u 7→

( u 0
0 1
)

and denote by U∞(A) the
union of all Un(A).

Consider the union CU∞(A) :=
⋃
n

CUn(A). It is then a normal subgroup of

U∞(A), and the quotient U(A)∞/CU∞(A) is in fact isomorphic to the inductive
limit of Un(A)/CUn(A) (as abelian groups). We will use φ‡ for the homomor-
phism induced by φ from U∞(A)/CU∞(A) into U∞(B)/CU∞(B).

DEFINITION 2.3. Let A be a unital C∗-algebra, and let u ∈ U(A)0. Let
u(t) ∈ C([0, 1], A) be a piecewise-smooth path of unitaries such that u(0) = u
and u(1) = 1. Then the de la Harpe–Skandalis determinant of u(t) is defined by

Det(u(t))(τ) =
1

2πi

1∫
0

τ
(du(t)

dt
u(t)∗

)
dt for all τ ∈ T(A),

which induces a homomorphism

Det : U(A)0 → Aff(T(A))/ρA(K0(A)).

The determinant Det can be extended to a map from U∞(A)0 into

Aff(T(A))/ρA(K0(A)).

It is easy to see that the determinant vanishes on the closure of commutator sub-
group of U∞(A). In fact, by a result of K. Thomsen ([31]), the closure of the com-
mutator subgroup is exactly the kernel of this map, that is, it induces an isomor-
phism Det : U∞(A)0/CU∞(A)→ Aff(T(A))/ρA(K0(A)).

Moreover, by [31], one has the following short exact sequence

(2.1) 0→ Aff(T(A))/ρA(K0(A))→U∞(A)/CU∞(A)
Π→K1(A)→ 0
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which splits (with the embedding of Aff(T(A))/ρA(K0(A)) induced by (Det)−1).
We will fix a splitting map s1 : K1(A) → U∞(A)/CU∞(A). The notation Π and
s1 will be used late without further warning.

For each u ∈ s1(K1(A)), select and fix one element uc ∈
∞⋃

n=1
Mn(A) such

that uc = u. Denote this set by Uc(A).
In the case that A has tracial rank at most one (see 2.8 below), by Corol-

lary 3.4 of [31], one has

U∞(A)0/CU∞(A) = U(A)0/CU(A)

and thus the following splitting short exact sequence:

(2.2) 0→ Aff(T(A))/ρA(K0(A))→ U(A)/CU(A)→ K1(A)→ 0.

DEFINITION 2.4. Let A be a unital C∗-algebra and let C be a separable C∗-
algebra which satisfies the universal coefficient theorem. Recall that KL(C, A) is
the quotient of KK(C, A) modulo pure extensions. By a result of Dădărlat and
Loring in [1], one has

(2.3) KL(C, A) = HomΛ(K(C), K(A)),

where

K(B) = (K0(B)⊕ K1(B))⊕
( ∞⊕

n=2
(K0(B,Z/nZ)⊕ K1(B,Z/nZ))

)
for any C∗-algebra B. Then, in the rest of the paper, we will identify the group
KL(C, A) with HomΛ(K(C), K(A)).

Denote by κi : Ki(C) → Ki(A) the homomorphism given by κ with i = 0, 1,
and denote by KL(C, A)++ the set of those κ ∈ HomΛ(K(C), K(A)) such that

κ0(K+
0 (C) \ {0}) ⊆ K+

0 (A) \ {0}.
Denote by KLe(C, A)++ the set of those elements κ ∈ KL(C, A)++ such that
κ0([1C]) = [1A]. Suppose that both A and C are unital, T(C) 6= ∅ and T(A) 6= ∅.
Let λT : T(A) → T(C) be a continuous affine map. Let h0 : K0(C) → K0(A) be
a positive homomorphism . We say λT is compatible with h0 if for any projec-
tion p ∈ M∞(C), λT(τ)(p) = τ(h0([p])) for all τ ∈ T(A). Let λ : Aff(Tf(C)) →
Aff(T(A)) be an affine continuous map. We say λ and h0 are compatible if h0 is
compatible to λT, where λT : T(A)→ Tf(C) is the map λT(τ)(a) = λ(a∗)(τ), ∀a ∈
C+ and τ ∈ T(A), where a∗ ∈ Aff(Tf(C)) is the affine function induced by a. We
say κ and λ (or λT) are compatible, if κ0 is positive and κ0 and λ are compatible.

Denote by KLTe(C, A)++ the set of those pairs (κ, λT) (or, (κ, λ)), where
κ ∈ KLe(C, A)++ and λT : T(A) → Tf(C) (or, λ : Aff(Tf(C)) → Aff(T(A))) is a
continuous affine map which is compatible with κ. If λ is compatible with κ, then
λ maps ρC(K0(C)) into ρA(K0(A)). Therefore λ induces a continuous homomor-
phism

λ : Aff(Tf(C))/ρC(K0(C))→ Aff(T(A))/ρA(K0(A)).
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Suppose that γ : U∞(C)/CU∞(C) → U∞(A)/CU∞(A) is a continuous homo-
morphism and hi : Ki(C) → Ki(A) are homomorphisms for which h0 is positive.
We say that γ and h1 are compatible if γ(U∞(C)0/CU∞(C)) ⊂ U∞(A)0/CU∞(A)
and γ ◦ s1 = s1 ◦ h1, we say that h0, h1, λ and γ are compatible, if λ and h0 are
compatible, γ and h1 are compatible and

DetA ◦ γ|U∞(C)0/CU∞(C) = λ ◦DetC,

and we also say that κ, λ and γ are compatible, if κ0, κ1, λ and γ are compatible.

2.5. For each prime number p, let εp be a number in {0, 1, 2, . . . ,+∞}. Then
a supernatural number is the formal product p = ∏

p
pεp . Here we insist that

there are either infinitely many p in the product, or one of εp is infinite. Two
supernatural numbers p = ∏

p
pεp(p) and q = ∏

p
pεp(q) are relatively prime if for

any prime number p, at most one of εp(p) and εp(q) is nonzero. A supernatural
number p is called of infinite type if for any prime number p, either εp(p) = 0 or
εp(p) = +∞. For each supernatural number p, there is a UHF-algebra Mp associ-
ated to it, and the UHF-algebra is unique up to isomorphism (see [2]). Moreover,
by Theorem 6.4 of [2], if p is infinite type, then Mp ⊗Mp

∼= Mp.

2.6. Denote by Q the UHF-algebra with (K0(Q), K0(Q)+, [1A]) = (Q,Q+, 1)
(the supernatural number associated to Q is ∏

p
p+∞), and let Mp and Mq be two

UHF-algebras with Mp ⊗Mq
∼= Q and p = ∏

p
pεp(p) and q = ∏

p
pεp(q) relatively

prime. Then it follows that p and q are of infinite type. Denote by

Qp = Z[ 1
p1

, . . . , 1
pn

, . . .] ⊆ Q, where εpn(p) = +∞ and

Qq = Z[ 1
p1

, . . . , 1
pn

, . . .] ⊆ Q, where εpn(q) = +∞.

Note that

(K0(Mp), K0(Mp)+, [1Mp ]) = (Qp, (Qp)+, 1) and

(K0(Mq), K0(Nq)+, [1Mq ]) = (Qq, (Qq)+, 1).

Moreover, Qp ∩Qq = Z and Q = Qp +Qq.

2.7. For any pair of relatively prime supernatural numbers p and q, define
the C∗-algebra Zp,q by

Zp,q = { f : [0, 1]→ Mp ⊗Mq; f (0) ∈ Mp ⊗ 1Mq and f (1) ∈ 1Mp ⊗Mq}.

The Jiang–Su algebra Z is the unital inductive limit of dimension drop in-
terval algebras with unique trace, and (K0(Z), K0(Z), [1]) = (Z,Z+, 1) (see [7]).
By Theorem 3.4 of [29], for any pair of relatively prime supernatural numbers
p and q of infinite type, the Jiang–Su algebra Z has a stationary inductive limit
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decomposition:

Zp,q // Zp,q // · · · // Zp,q // · · · // Z .

By Corollary 3.2 of [29], the C∗-algebra Zp,q absorbs the Jiang–Su algebra:
Zp,q ⊗Z ∼= Zp,q. A C∗-algebra A is said to be Z-stable if A⊗Z ∼= A.

DEFINITION 2.8. A unital simple C∗-algebra A has tracial rank at most one,
denoted by TR(A) 6 1, if for any finite subset F ⊂ A, any ε > 0, and any
nonzero a ∈ A+, there exist a nonzero projection p ∈ A and a C∗-subalgebra I ∼=
m⊕

i=1
C(Xi)⊗Mr(i) with 1I = p for some finite CW-complexes Xi with dimension

at most one such that:
(i) ‖[x, p]‖ 6 ε for any x ∈ F ,

(ii) for any x ∈ F , there is x′ ∈ I such that ‖pxp− x′‖ 6 ε, and
(iii) 1− p is Murray–von Neumann equivalent to a projection in aAa.

Moreover, if the C∗-subalgebra I above can be chosen to be a finite dimensional
C∗-algebra, then A is said to have tracial rank zero, and in such case, we write
TR(A) = 0. It is a theorem of Guihua Gong [5] that every unital simple AH-
algebra with no dimension growth has tracial rank at most one. It has been
proved in [18] that every Z-stable unital simple AH-algebra has tracial rank at
most one.

DEFINITION 2.9. Denote by N the class of all (unital) separable amenable
C∗-algebras which satisfy the universal coefficient theorem (UCT). Denote by C
the class of all simple C∗-algebras A for which TR(A⊗Mp) 6 1 for some UHF-
algebra Mp, where p is a supernatural number of infinite type. Note, by [24], that,
if TR(A⊗Mp) 6 1 for some supernatural number p then TR(A⊗Mp) 6 1 for all
supernatural number p.

Denote by C0 the class of all simple C∗-algebras A for which TR(A⊗Mp) =
0 for some supernatural number p of infinite type (and hence for all supernatural
number p of infinite type).

THEOREM 2.10 ([21], Theorem 5.10). Let C be a unital AH-algebra and let A be
a unital simple C∗-algebra with TR(A) 6 1. Suppose that φ, ψ : C → A are two unital
monomorphisms. Then φ and ψ are approximately unitarily equivalent if and only if

[φ] = [ψ] in KL(C, A), φ] = ψ] and φ‡ = ψ‡.

REMARK 2.11. One of the main purposes of this paper is to generalize this
result so that A can be allowed to be in the class C, and C can be rationally AH;
that is, C⊗U is an AH-algebra for all UHF-algebra U of infinite type.

2.12. Let A and B be two unital C∗-algebras. Let h : A → B be a homomor-
phism and v ∈ U(B) be such that

[h(g), v] = 0 for any g ∈ A.
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We then have a homomorphism h : A⊗C(T) → B defined by f ⊗ g 7→ h( f )g(v)
for any f ∈ A and g ∈ C(T). The tensor product induces two injective homomor-
phisms:

β(0) : K0(A)→ K1(A⊗C(T)) and β(1) : K1(A)→ K0(A⊗C(T)).

The first one is the usual Bott map. Note that, in this way, one writes

Ki(A⊗C(T)) = Ki(A)⊕ β(i−1)(Ki−1(A)).

Let us use β̂(i) : Ki(A⊗C(T))→ β(i−1)(Ki−1(A)) to denote the quotient map.
For each integer k > 2, one also has the following injective homomor-

phisms:

β
(i)
k : Ki(A,Z/kZ)→ Ki−1(A⊗C(T),Z/kZ), i = 0, 1.

Thus, we write

Ki(A⊗C(T),Z/kZ) = Ki(A,Z/kZ)⊕ β
(i−1)
k (Ki−1(A,Z/kZ)).

Denote by β̂
(i)
k : Ki(A ⊗ C(T),Z/kZ) → β(i−1)(Ki−1(A),Z/kZ) the map analo-

gous to β̂(i). If x ∈ K(A), we use β(x) for β(i)(x) if x ∈ Ki(A) and for β
(i)
k (x) if x ∈

Ki(A,Z/kZ). Thus we have a map β : K(A)→ K(A⊗C(T)) as well as β̂ : K(A⊗
C(T)) → β(K). Therefore, we may write K(A⊗ C(T)) = K(A)⊕ β(K(A)). On
the other hand, h induces the following homomorphisms, for k = 0, 2, . . . , and
i = 0, 1:

h∗i,k : Ki(A⊗C(T),Z/kZ)→ Ki(B,Z/kZ).

We use Bott(h, v) for all the homomorphisms h∗i+1,k ◦ β
(i)
k , k = 0, 2, . . ., i =

0, 1, and we use bott1(h, v) for the homomorphism h0,0 ◦ β(1) : K1(A) → K0(B),
and bott0(h, v) for the homomorphism h1,0 ◦ β(0) : K0(A) → K1(B). Bott(h, v) as
well as botti(h, v) (i = 0, 1) may be defined for a unitary v which only approxi-
mately commutes with h. In fact, given a finite subset P ⊂ K(A), there exists a
finite subset F ⊂ A and δ0 > 0 such that

Bott(h, v)|P
is well defined if

‖[h(a), v]‖ < δ0

for all a ∈ F . See 2.11 of [13], 2.10 of [14], 2.21 of [22] for more details.

We have the following generalized Exel’s formula for the traces of Bott ele-
ments.

THEOREM 2.13 ([18], Theorem 3.5). There is δ > 0 satisfying the following: Let
A be a unital separable simple C∗-algebra with TR(A) 6 1 and let u, v ∈ U(A) be two
unitaries such that ‖uv− vu‖ < δ. Then bott1(u, v) is well defined and

τ(bott1(u, v)) =
1

2πi
(τ(log(vuv∗u∗)))
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for all τ ∈ T(A), where u is considered to be the homomorphism h : C(T) → A defined
by h( f ) = f (u), ∀ f ∈ C(T).

3. ROTATION MAPS

In this section, we collect several facts on the rotation map which are going
to be used frequently in the rest of the paper. Most of them can be found in the
literature.

DEFINITION 3.1. Let A and B be two unital C∗-algebras, and let ψ and φ be
two unital monomorphisms from B to A. Then the mapping torus Mφ,ψ is the
C∗-algebra defined by

Mφ,ψ := { f ∈ C([0, 1], A); f (0) = φ(b) and f (1) = ψ(b) for some b ∈ B}.
For any ψ, φ ∈ Hom(B, A), denoting by π0 the evaluation of Mφ,ψ at 0, we

have the short exact sequence

0 // S(A)
ı // Mφ,ψ

π0 // B // 0,

where S(A) = C0((0, 1), A).
If φ∗i = ψ∗i (i = 0, 1), then the corresponding six-term exact sequence

breaks down to the following two extensions:

ηi(Mφ,ψ) : 0 // Ki+1(A) // Ki(Mφ,ψ) // Ki(B) // 0, (i = 0, 1).

3.2. Suppose that, in addition,

(3.1) τ ◦ φ = τ ◦ ψ for all τ ∈ T(A).

For any continuous piecewise smooth path of unitaries u(t) ∈ Mφ,ψ, consider the
path of unitaries w(t) = u∗(0)u(t) in A. Then it is a continuous and piecewise
smooth path with w(0) = 1 and w(1) = u∗(0)u(1). Denote by Rφ,ψ(u) = Det(w)
the determinant of w(t). It is clear with the assumption of (3.1) that Rφ,ψ(u) de-
pends only on the homotopy class of u(t). Therefore, it induces a homomor-
phism, denoted by Rφ,ψ, from K1(Mφ,ψ) to Aff(T(A)).

DEFINITION 3.3. Fix two unital C∗-algebras A and B with T(A) 6= ∅. De-
fine R0 to be the subset of Hom(K1(B), Aff(T(A))) consisting of those homo-
morphisms h ∈ Hom(K1(B), Aff(T(A))) for which there exists a homomorphism
d : K1(B)→ K0(A) such that

h = ρA ◦ d.

It is clear thatR0 is a subgroup of Hom(K1(B), Aff(T(A))).

3.4. If [φ]=[ψ] in KK(B, A), then the exact sequences ηi(Mφ,ψ) (i=0, 1) above
split. In particular, there is a lifting θ : K1(B)→K1(Mφ,ψ). Consider the map

Rφ,ψ ◦ θ : K1(B)→ Aff(T(A)).
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If a different lifting θ′ is chosen, then, θ − θ′ maps K1(B) into K0(A). Therefore

Rφ,ψ ◦ θ − Rφ,ψ ◦ θ′ ∈ R0.

Then define

Rφ,ψ = [Rφ,ψ ◦ θ] ∈ Hom(K1(B), Aff(T(A)))/R0.

If [φ] = [ψ] in KL(B, A), then the exact sequences ηi(Mφ,ψ) (i = 0, 1) are
pure, i.e., any finitely generated subgroup in the quotient groups has a lifting. In
particular, for any finitely generated subgroup G ⊆ K1(B), one has a map

Rφ,ψ ◦ θG : G → Aff(T(A)),

where θG : G → K1(Mφ,ψ) is a lifting. Let G ⊂ K1(B) be a finitely generated
subgroup. Denote byR0,G the set of those elements h in Hom(G, Aff(T(A))) such
that there exists a homomorphism dG : G → K0(A) such that h|G = ρA ◦ dG.

If [φ] = [ψ] in KL(B, A) and Rφ,ψ(K1(Mφ,ψ)) ⊂ ρA(K0(A)), then θG ∈ R0,G
for any finitely generated subgroup G ⊂ K1(B) and any lifting θG. In this case,
we will also write

Rφ,ψ = 0.

See 3.4 of [18] for more details.

LEMMA 3.5 (Lemma 9.2 of [18]). Let C and A be unital C∗-algebras such that
T(A) 6= ∅. Suppose that φ, ψ : C → A are two unital homomorphisms such that

[φ] = [ψ] in KL(C, A), φ] = ψ] and φ‡ = ψ‡.

Then the image of Rφ,ψ is in the ρA(K0(A))⊆Aff(T(A)).

Proof. Let z ∈ K1(C). Suppose that u ∈ Un(C) for some integer n > 1 such
that [u] = z. Note that ψ(u)∗φ(u) ∈ CUn(A). Thus, by 2.3, for any continuous
and piecewise smooth path of unitaries {w(t) : t ∈ [0, 1]} ⊂ U(A) with w(0) =
ψ(u)∗φ(u) and w(1) = 1,

(3.2) Det(w)(τ) =

1∫
0

τ
(dw(t)

dt
w(t)∗

)
dt ∈ ρA(K0(A)).

Suppose that {(v)(t) : t ∈ [0, 1]} is a continuous and piecewise smooth path of
unitaries in Un(A) with v(0) = φ(u) and v(1) = ψ(u). Define w(t) = ψ(u)∗v(t).
Then w(0) = ψ∗(u)φ(u) and w(1) = 1. Thus, by (3.2),

Rφ,ψ(z)(τ) =
1∫

0

τ
(dv(t)

dt
v(t)∗

)
dt =

1∫
0

τ
(

ψ(u)∗
dv(t)

dt
v(t)∗ψ(u)

)
dt

=

1∫
0

τ
(dw(t)

dt
w(t)∗

)
dt ∈ ρA(K0(A)).
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3.6. Let A be a unital C∗-algebra and let u and v be two unitaries with
‖u∗v − 1‖ < 2. Then h = (1/2πi) log(u∗v) is a well-defined self-adjoint ele-
ment of A, and w(t) := u exp(2πiht) is a smooth path of unitaries connecting u
and v. It is a straightforward calculation that for any τ ∈ T(A),

Det(w(t))(τ) =
1

2πi
τ(log(u∗v)).

3.7. Let A be a unital C∗-algebra, and let u and w be two unitaries. Sup-

pose that w ∈ U0(A). Then w =
m
∏

k=0
exp(2πihk) for some self-adjoint elements

h0, . . . , hm. Define the path

w(t) =
( l−1

∏
k=0

exp(2πihk)
)

exp(2πihlmt), if t ∈ [ l−1
m , l

m ],

and define u(t) = w∗(t)uw(t) for t ∈ [0, 1]. Then, u(t) is continuous and piece-
wise smooth, and u(0) = u and u(1) = w∗uw. A straightforward calculation
shows that Det(u(t)) = 0.

In general, if w is not in the path-connected component containing the iden-
tity, one can consider unitaries diag(u, 1) and diag(w, w∗). Then, the same argu-
ment as above shows that there is a piecewise smooth path u(t) of unitaries in
M2(A) such that u(0) = diag(u, 1), u(1) = diag(w∗uw, 1), and

Det(u(t)) = 0.

LEMMA 3.8 (Lemma 3.5 of [13]). Let B and C be two unital C∗-algebras with
T(B) 6= ∅. Suppose that φ, ψ : C → B are two unital monomorphisms such that
[φ] = [ψ] in KL(C, B) and

τ ◦ φ = τ ◦ ψ

for all τ ∈ T(B). Suppose that u ∈ Ul(C) is a unitary and w ∈ Ul(B) such that

‖(φ⊗ idMl )(u)w
∗(ψ⊗ idMl )(u

∗)w− 1‖ < 2.

Then, for any unitary U ∈ Ul(Mφ,ψ) with U(0) = (φ⊗ idMl )(u) and U(1) = (ψ⊗
idMl )(u), one has that

(3.3)
1

2πi
τ(log((φ⊗idMl )(u

∗)w∗(ψ⊗idMl )(u)w))−Rφ,ψ([U])(τ)∈ρB(K0(B)).

Proof. Without loss of generality, one may assume that u ∈ C. Moreover, to
prove the lemma, it is enough to show that (3.3) holds for one path of unitaries
U(t) in M2(B) with U(0) = diag(φ(u), 1) and U(1) = diag(ψ(u), 1).

Let U1 be the path of unitaries specified in 3.6 with U1(0) = diag(φ(u), 1)
and U1(1/2) = diag(w∗ψ(u)w, 1), and let U2 be the path specified in 3.7 with
U2(1/2) = diag(w∗ψ(u)w, 1) and U2(1) = diag(ψ(u), 1).

Set U the path of unitaries by connecting U1 and U2. Then

U(0) = diag(φ(u), 1) and U(1) = diag(ψ(u), 1).
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By applying 3.6 and 3.7, for any τ ∈ T(B), one computes that

Rφ,ψ([U])=Det(U(t))(τ)=Det(U1(t))(τ)+Det(U2(t))(τ)=
1

2πi
τ(φ(u∗)w∗ψ(u)w),

as desired.

4. HOMOTOPY LEMMA

In this section, we collect several results from [25] on the homotopy lemma.

DEFINITION 4.1. Let A be a unital C∗-algebra. In the following, for any in-
vertible element x ∈ A, let 〈x〉 denote the unitary x(x∗x)−1/2, and let x denote the
element 〈x〉 in U(A)/CU(A). Consider a subgroup Zk ⊆ K1(A), and write the
unitary {u1, . . . , uk} ⊆ Uc(A) the unitary corresponding to the standard genera-
tors {e1, e2, . . . , ek} of Zk. Suppose that {u1, u2, . . . , uk} ⊂ Mn(A) for some integer
n > 1. Let Φ : A → B be a unital positive linear map and Φ ⊗ idMn is at least
{u1, . . . , uk}-1/4-multiplicative (hence each Φ⊗ idMn(ui) is invertible), then the
map Φ‡|s1(Zk) : Zk → U(B)/CU(B) is defined by

Φ‡|s1(Zk)(ei) = 〈Φ⊗ idMn(ui)〉, 1 6 i 6 k.

Thus, for any finitely generated subgroup G ⊂ Uc(A), there exists δ > 0 and a fi-
nite subset G ⊂ A such that, for any unital δ-G-multiplicative completely positive
linear map L : A → B (for any unital C∗-algebra B), the map L‡ is well defined
on s1(G). (Please see the paragraph after Definition 2.3 for Uc(A) and s1.)

The following theorems are taken from [25].

THEOREM 4.2 (3.10 of [25]). Let C = PMn(C(X))P, where X is a compact
subset of a finite CW-complex and P a projection in Mn(C(X)) with an integer n > 1.
Let ∆ : (0, 1) → (0, 1) be a non-decreasing map. For any ε > 0 and any finite subset
F ⊆ C, there exists δ > 0, η > 0, γ > 0, a finite subsets G ⊆ C, P ⊆ K(C),
a finite subset Q = {x1, x2, . . . , xk} ⊂ K0(C) which generates a free subgroup and
xi = [pi] − [qi], where pi, qi ∈ Mm(C) (for some integer m > 1) are projections,
satisfying the following:

Suppose that A is a unital simple C∗-algebra with TR(A) 6 1, φ : C → A is a
unital homomorphism and u ∈ A is a unitary, and suppose that

‖[φ(c), u]‖ < δ, ∀c ∈ G and Bott(φ, u)|P = 0, and

µτ◦φ(Oa) > ∆(a) ∀τ ∈ T(A),

where Oa is any open ball in X with radius a∈[η, 1) and µτ◦φ is the Borel probability
measure defined by τ ◦ φ. Moreover, for each 16i6k, there is vi∈CU(Mm(A)) such that

‖〈(1m − φ(pi) + φ(pi)u)(1m − φ(qi) + φ(qi)u∗)〉 − vi‖ < γ.
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Then there is a continuous path of unitaries {u(t) : t ∈ [0, 1]} in A such that, for any
c ∈ F and for any t ∈ [0, 1],

u(0) = u, u(1) = 1, and ‖[φ(c), u(t)]‖ < ε.

THEOREM 4.3 (3.14 of [25]). Let C = PMn(C(X))P, where X is a compact
subset of a finite CW-complex and P a projection in Mn(C(X)) for some integer n > 1.
Let G ⊂ K0(C) be a finitely generated subgroup. Write G = Zk ⊕ Tor(G) with Zk

generated by

{x1 = [p1]− [q1], x2 = [p2]− [q2], . . . , xk = [pk]− [qk]},

where pi, qi ∈ Mm(C) (for some integer m > 1) are projections, i = 1, . . . , k.
Let A be a simple C∗-algebra with TR(A) 6 1. Suppose that φ : C → A is a

monomorphism. Then, for any finite subsets F ⊆ C and P ⊆ K(C), any ε > 0 and
γ > 0, any homomorphism

Γ : Zk → U0(A)/CU(A),

there is a unitary w ∈ A such that

‖[φ( f ), w]‖ < ε ∀ f ∈ F , Bott(φ, w)|P = 0, and

dist(〈(1n − φ(pi) + φ(pi)w̃)(1n − φ(qi) + φ(qi)w̃∗)〉, Γ(xi)) < γ, ∀1 6 i 6 k,

where w̃ = diag(
n︷ ︸︸ ︷

w, . . . , w).

THEOREM 4.4 (3.16 of [25]). Let C be an AH-algebra, and let A be a simple
C∗-algebra with TR(A) 6 1. Suppose that h : C → A is a monomorphism. Then,
for any ε > 0, any finite subset F ⊆ C and any finite subset P ⊆ K(C), there is a
C∗-algebra C′ ∼= PMn(C(X′))P for some finite CW-complex X′ with K1(C′) = Zk ⊕
Tor(K1(C′)) and a homomorphism ι : C′ → C with P ⊆ [ι](K(C′)), a finite subset
Q ⊆ Zk ⊂ K1(C′) and δ > 0 satisfying the following: Suppose that κ ∈ HomΛ(K(C′⊗
C(T)), K(A)) with

|ρA ◦ κ(β(x))(τ)| < δ, ∀x ∈ Q, ∀τ ∈ T(A).

Then there exists a unitary u ∈ A such that

‖[h(c), u]‖ < ε ∀c ∈ F and Bott(h ◦ ι, u) = κ ◦ β.

Moreover, there is a sequence of C∗-algebras Cn with the form

Cn = Pn Mr(n)(C(Xn))Pn,

where each Xn is a finite CW-complex and Pn ∈ Mr(n)(C(Xn)) a projection, such that
C = lim−→(Cn, φn) for a sequence of unital homomorphisms φn : Cn → Cn+1 and one
may choose C′ = Cn and ι = φn for some integer n > 1.
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5. APPROXIMATELY UNITARY EQUIVALENCE

First we begin with the following lemma which is a simple combination
of the uniqueness Theorem 2.10 and the proof of Theorem 4.2 in [23]. In what
follows, if G is a subset of a group, we will use G(P) for the subgroup generated
by G.

LEMMA 5.1. Let A be a simple C∗-algebra with TR(A) 6 1, and let C be a unital
AH-algebra. If there are monomorphisms φ, ψ : C → A such that

[φ] = [ψ] in KL(C, A), φ] = ψ], and φ‡ = ψ‡,

then, for any 2 > ε > 0, any finite subset F ⊆ C, any finite subset of unitaries P ⊂
Un(C) for some n > 1, there exist a finite subset G ⊂ K1(C) with P ⊆ G (where P is
the image of P in K1(C)) and δ > 0 such that, for any map η : G(G) → Aff(T(A))
with |η(x)(τ)| < δ for all τ ∈ T(A) and η(x)− Rφ,ψ(x) ∈ ρA(K0(A)) for all x ∈ G,
there is a unitary u ∈ A such that, for all x ∈ P and for all τ ∈ T(A),

‖φ( f )− u∗ψ( f )u‖ < ε ∀ f ∈ F , and

τ
( 1

2πi
log((φ⊗ idMn(x∗))(u⊗ 1Mn)

∗(ψ⊗ idMn(x))(u⊗ 1Mn))
)
= τ(η([x])).

Proof. Without loss of generality, one may assume that any element inF has
norm at most one. Let ε > 0. Choose θ with ε > θ > 0 and a finite subset F ⊂
F0 ⊂ C satisfying the following: For all x ∈ P , τ((1/2πi) log(φ(x∗)w∗j ψ(x)wj))

is well defined and

τ
( 1

2πi
log(φ(x∗)w∗j ψ(x)wj)

)
(5.1)

= τ
( 1

2πi
log(φ(x∗)v∗1ψ(x)v1)

)
+ · · ·+ τ

( 1
2πi

log(φ(x∗)v∗j ψ(x)vj)
)

for all τ ∈ T(A),

whenever
‖φ( f )− v∗j ψ( f )vj‖ < θ for all f ∈ F0,

where vj are unitaries in A and wj = v1 · · · vj, j = 1, 2, 3. In the above, if x ∈
Un(C), we denote by φ and ψ the extended maps φ ⊗ idMn and ψ ⊗ idMn , and
replace wj, and vj by diag(wj, . . . , wj) and diag(vj, . . . , vj), respectively.

Let C′, ι : C′ → C, δ′ > 0 (in the place of δ) and G ′ ⊆ K1(C′) (in the place of
Q) the constant and finite subset with respect to C (in the place of C), F0 (in the
place of F ), P (in the place of P), and ψ (in the place of h) required by 4.4. Put
δ = δ′/2.

Fix a decomposition (ι)∗1(C′) = Zk ⊕ Tor((ι)∗1(C′)) (for some integer k >
0), and let G be a set of standard generators of Zk. Let G ′′ ⊂ Um(C) be a finite
subset containing a representative for each element of G. Without loss of gener-
ality, one may assume that P ⊆ G ′′. By Theorem 5.10 of [21], the maps φ and ψ
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are approximately unitary equivalent. Hence, for any finite subset Q and any δ1,
there is a unitary v ∈ A such that

‖φ( f )− v∗ψ( f )v‖ < δ1, ∀ f ∈ Q.

By choosingQ⊇F0 sufficiently large and δ1<η/2 sufficiently small, the map

[x] 7→ τ
( 1

2πi
log(φ∗(x)v∗ψ(x)v)

)
, x ∈ G ′′,

induces a homomorphism η1 : (ι)∗1(K1(C′)) → Aff(T(A)) (note that we have
η1(Tor((ι)∗1(K1(C′)))) = {0}), and moreover, ‖η1(x)‖ < δ for all x ∈ G.

By Lemma 3.8, the image of η1−Rφ,ψ is in ρ(K0(A)). Since η(x)−Rφ,ψ(x) ∈
ρA(K0(A)) for all x ∈ G, the image (η − η1)((ι)∗1(K1(C′))) is also in ρA(K0(A)).
Since η − η1 factors through Zk, there is a map h : (ι)∗1(K1(C′)) → K0(A) such
that η − η1 = ρA ◦ h. Note that |τ(h(x))| < 2δ = δ′ for all τ ∈ T(A) and x ∈ G.

By the universal multi-coefficient theorem, there is

κ ∈ HomΛ(K(C′ ⊗C(T)), K(A)) with κ ◦ β|K1(C′) = h ◦ (ι)∗1.

Applying 4.4, there is a unitary w such that

‖[w, ψ( f )]‖ < θ

2
, ∀ f ∈ F0,

and Bott(w, ψ ◦ ι) = κ. In particular, bott1(w, ψ)(x) = h(x) for all x ∈ P .
Set u = wv. One then has

‖φ( f )− u∗ψ( f )u‖ < θ, ∀ f ∈ F0,

and for any x ∈ P and any τ ∈ T(A),

τ
( 1

2πi
log(φ(x∗)u∗ψ(x)u)

)
=τ
( 1

2πi
log(φ(x)v∗w∗ψ(z)wv)

)
=τ
( 1

2πi
log(φ(x∗)v∗ψ(x)vv∗ψ(x∗)w∗ψ(x)wv)

)
=τ
( 1

2πi
log(φ(x∗)v∗ψ(x)v)

)
+ τ

( 1
2πi

log(ψ(x∗)w∗ψ(x)w)
)

= η1([x])(τ) + h([x])(τ) =η([x])(τ).

REMARK 5.2. In the case that TR(A) = 0, in fact one can apply Theorem 3.6
of [12] as the uniqueness theorem in which case the condition φ‡ = ψ‡ is not
needed, and moreover, one can apply Corollary 17.9 of [14] (homotopy lemma).
This special case of lemma is also observed by H. Matui in [27].

THEOREM 5.3. Let A be a simple C∗-algebra with TR(A⊗ Q) 6 1, and let C be
a unital AH-algebra. Suppose that there are two unital monomorphisms φ, ψ : C → A
with

[φ] = [ψ] in KL(C, A), φ] = ψ] and φ‡ = ψ‡.
Then, for any finite subset F ⊆ C, there exists a unitray u ∈ A⊗Z such that

‖φ(x)⊗ 1Z − u∗(ψ(x)⊗ 1Z )u‖ < ε, ∀x ∈ F .
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Proof. We first note, by [24], that TR(A ⊗ Mr) 6 1 for any supernatural
number.

Write C = lim
n→∞

(Cn, φn), where each Cn has the form Pn Mm(n)(C(Xn))Pn,

where Xn is a finite CW-complex and Pn ∈ Mm(n)(C(Xn)) is a projection. Let
F ⊆ C be a finite subset, and let ε > 0. Without loss of generality, we may
assume that F ⊆ φn,∞(Cn) for some integer n > 1. We may write φn,∞(Cn) =
PMm(C(X))P, where X is a compact subset of a finite CW-complex. Then, to
simplify notation, without loss of generality, in the rest of the proof, we may
assume that C = PMm(C(X))P, where X is a compact subset of a finite CW-
complex and P ∈ Mm(C(X)) is a projection.

Fix a metric on X. For any a ∈ (0, 1), denote by

∆(a) = inf{µτ◦ψ(Oa); τ ∈ T(A), Oa an open ball of radius a in X}.
Since A is simple, one has that 0 < ∆(a) 6 1 and ∆(a)→ 0 as a→ 0.

Assume that every element in F has norm at most one. Let p and q be a
pair of relatively prime supernatural numbers of infinite type with Qp +Qq = Q.
Denote by Mp and Mq the UHF-algebras associated to p and q respectively.

Let δ > 0, γ > 0, d > 0 (in place of η), G ⊆ C a finite subset, P ⊆ K(C)
a finite subset and Q = {x1, . . . , xk} ⊆ K0(C) which generates a free subgroup
required by Theorem 4.2 corresponding toF , ε/2 (in place of ε) and ∆. We may as-
sume that xi = [pi]− [qi], where pi, qi ∈ Mn(C) are projections and i = 1, 2, . . . , k.

In the rest of of the proof, for a homomorphism h : C′ → B′ (for any C∗-
algebras C′ and B′), we will use h instead of h⊗ idMn : Mn(C′) → Mn(B′) when
it is inconvenient.

Without loss of generality, we may assume that δ < ε/2 is small enough and
G is large enough so that for any homomorphism h : C → A, the maps Bott(h, uj)
and Bott(h, wj) are well defined and

Bott(h, wj) = Bott(h, u1) + · · ·+ Bott(h, uj)

on the subgroup generated by P , if uj is any unitaries with ‖[h(x), uj]‖ < δ for all
x ∈ G, where wj = u1 · · · uj, j = 1, 2, 3, 4.

We may also assume that

(5.2) ‖h(pi), uj]‖ <
1
16

and ‖h(qi), uj]‖ <
1

16
, 1 6 i 6 k, j = 1, 2, 3, 4

(by choosing larger G and smaller δ).
Let ır : A → A ⊗ Mr be the embedding defined by ır(a) = a ⊗ 1 for all

a ∈ A, where r is a supernatural number. Define φr = ır ◦ φ and ψr = ır ◦ ψ.
For any supernatural number r = p, q, the C∗-algebra A ⊗ Mr has tracial

rank at most one. Denote by C′ = P′Mn(C(X′))P′, ı : C′ → C, δr (in place
of δ) and Qr ⊆ K1(C′) (in place of Q) which generates a free subgroup cor-
responding to δ/8 (in place of ε), G, P and ψr required by Theorem 4.4. Let
0 < δ2 < min{δp, δq, ε, γ}, and let H ⊆ K(C′) be a finite set of generators. De-
noted by H1 = H ∩ K1(C′), we may assume that Qr ⊂ H1. Pick a finite subset
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U ⊂ Un(C) for some integer n > 1 such that any element in ı∗1(H1) has a rep-
resentative in U . Let S ⊂ C be a finite subset such that, if u = (aij) ∈ U , then
ai,j ∈ S.

Furthermore, one may assume that δ2 is sufficiently small such that for
any unitaries z1, z2 in a C∗-algebra with tracial states, τ((1/2πi) log(ziz∗j )) (i, j =
1, 2, 3) is well defined and

τ
( 1

2πi
log(z1z∗2)

)
= τ

( 1
2πi

log(z1z∗3)
)
+ τ

( 1
2πi

log(z3z∗2)
)

for any tracial state τ, whenever ‖z1 − z3‖ < δ2 and ‖z2 − z3‖ < δ2.
Let Q1 ⊂ K1(C) (in place of G) and δ3 (in place of δ) be the finite subset and

constant of Lemma 5.1 with respect to G ∪ S (in place of F ), U (in place of P) and
δ2/n2 (in place of ε).

By Lemma 3.5, the image of Rφ,ψ is in the closure of ρA(K0(A)). Note that
kernel of Rφ,ψ contains Tor(G(Q1)) and G(Q1) is finitely generated. There exists
a homomorphism η : Q1 → Aff(T(A)) such that η(x)− Rφ,ψ(x) ∈ ρA(K0(A))

and ‖η(x)‖ < δ3 for all x ∈ Q1. Then the image of (ıp)] ◦ η − Rφp ,ψp is in
ρA⊗Mp

(K0(A⊗Mp)). The same holds for q. By Lemma 5.1 there exist unitaries
up and uq such that

‖φp(g)− u∗pψp(g)up‖ <
δ2

n2 and ‖φq(g)− u∗qψq(g)uq‖ <
δ2

n2 ,

for all g ∈ G ∪ S. Moreover,

τ
( 1

2πi
log(φp(x∗)u∗pψp(x)up)

)
= (ıp)] ◦ η([x])(τ) for all τ ∈ T(Ap) and

τ
( 1

2πi
log(φq(x∗)u∗qψq(x)uq)

)
= (ıq)] ◦ η([x])(τ) for all τ ∈ T(Aq)

and for all x ∈ U , where we identify φ and ψ with φ⊗ idMn and φ⊗ idMn , and u
with u⊗ 1Mn , respectively.

Let ∞ be the supernatural number associated with Q. Let ep : A ⊗ Mp →
A⊗ Q and eq : A⊗Mq → A⊗ Q be the standard embeddings. Then, one com-
putes that, for all x ∈ U , by the Exel formula (see 2.13 ),

τ(bott1(ψ(x)⊗ 1Q, upu∗q)) = τ
( 1

2πi
log(upu∗q(ψ(x)⊗ 1)uqu∗p(ψ(x∗)⊗ 1))

)
= τ

( 1
2πi

log(u∗q(ψ(x)⊗ 1)uqu∗p(ψ(x∗)⊗ 1)up)
)

= τ
( 1

2πi
log(u∗q(ψ(x)⊗ 1)uq(φ(x∗)⊗ 1))

)
+τ
( 1

2πi
log((φ(x∗)⊗ 1)u∗p(ψ(x)⊗ 1)up)

)
= −(eq)] ◦ (ıq)] ◦ η([x])(τ)+(ep)] ◦ (ıp)] ◦ η([x])(τ)

= −(ı∞)] ◦ η([x])(τ)+(ı∞)] ◦ η([x])(τ) = 0
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for all τ ∈ T(A⊗Q), where we identify φ and ψ with φ⊗ idMn and ψ⊗ idMn , and
up and uq with up⊗ 1Mn and uq with uq⊗ 1Mn , respectively. Therefore, the image
of the map bott1(ψ⊗ 1Q, upu∗q) is in ker ρA⊗Q. Note that K0(A⊗Q) ∼= K0(A)⊗Q
is torsion free. Hence the map bott1(ψ⊗ 1Q, upu∗q) factors through the torsion-free
part of G(ı∗1(H1)). Since H1 is a set of generators of K1(C′), one may assume
that the domain of the map bott1(ψ⊗ 1Q, upu∗q) is ı∗1(K1(C′)). Note that there is
a short exact sequence

0 // ker ρA // K0(A)
ρA // ρA(K0(A)) // 0.

Since D := Q, Qp or Qq is flat, one has

0 // ker ρA ⊗ D // K0(A)⊗ D
ρA⊗idD// ρA(K0(A))⊗ D // // 0.

Since the UHF-algebra R := Q, Mp or Mq have unique trace, the map ρA ⊗ idD is
the same as the map ρA⊗R if K0(A⊗ R) is identified as K0(A)⊗ D respectively.

Hence ker ρA⊗Q = ker ρA ⊗ Q and ker ρA⊗Mr
= (ker ρ) ⊗ Qr, r = p, or

r = q. Moreover, since p and q are relative prime, any rational number r can be
written as r = rp + rq with rp ∈ Qp and rq ∈ Qq (see 2.6). Since ker ρA⊗Q is
torsion free, bott1((ψ ◦ ı)⊗ 1Q, upu∗q) maps Tor(K1(C′)) to zero. Write K1(C′) =
Zr ⊕ Tor(K1(C′)) and let {e1, e2, . . . , er} be a set of generators of Zr. Suppose that

bott1((ψ ◦ ı)⊗ 1Q, upu∗q) maps ei to
mi
∑

j=1
xi,j ⊗ ri,j, where xi,j ∈ ker ρA and ri,j ∈ Q,

j = 1, 2, . . . , mi and i = 1, 2, . . . , r. There are ri,j,p ∈ Qp and ri,j,q ∈ Qq such
that ri,j = ri,j,p − ri,j,q, j = 1, 2, . . . , mi and i = 1, 2, . . . , r. Define two homo-
morphisms θp : K1(C′) → ker ρA⊗Mp

and θq : K1(C′) → ker ρA⊗Mq
as fol-

lows: (θr)|Tor(K1(C′)) = 0, r = p, q. Define θr(ei) =
mi
∑

j=1
xi,j ⊗ ri,j,r by regarding

mi
∑

j=1
xi,j ⊗ ri,j,r as an element of K0(A⊗Mr)), r = p, q and i = 1, 2, . . . , r. Then

bott1((ψ ◦ ı)⊗ 1Q, upu∗q) = (jp)∗0 ◦ θp − (jq)∗0 ◦ θq,

where jr : A⊗Mr → A⊗ Q is the embedding. The same argument shows there
are homomorphisms αp : K0(C′)→ K1(A⊗Mp) and αq : K0(C′)→ K1(A⊗Mq)
such that

bott0((ψ ◦ ı)⊗ 1Q, upu∗q) = (jp)∗1 ◦ αp − (jq)∗1 ◦ αq.

By the universal multi-coefficient theorem, there is κp ∈ HomΛ(K(C′ ⊗
C(T)), K(A⊗Mp)) such that

(5.3) κp|β(K0(C′)) = −αp ◦ β−1 and κp|β(K1(C′)) = −θp ◦ β−1.

Similarly, there is κq ∈ HomΛ(K(C′ ⊗C(C(T))), K(A⊗Mq)) such that

(5.4) κq|β(K0(C′)) = −αq ◦ β−1 and κq|β(K1(C′)) = −θq ◦ β−1.
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To apply 4.4, we verify that

|ρA⊗Mp
◦ κp(β(x))| = 0 < δp for all x ∈ Qp and

|ρA⊗Mq
◦ κp(β(x))| = 0 < δq for all x ∈ Qq.

Then, by Theorem 4.4, there are unitaries wp∈A⊗Mp and wq∈A⊗Mq such that

‖[wp, ψp(g)]‖ < δ

8
, ‖[wq, ψq(g)]‖ < δ

8
,

for any g ∈ G, and

Bott(ψp ◦ ı, wp) = κp ◦ β and Bott(ψq ◦ ı, wq) = κq ◦ β.

One then has that

‖φ(g)⊗ 1Mp − u∗pw∗p(ψ(g)⊗ 1Mp)wpup‖ <
δ

4
and

‖φ(g)⊗ 1Mq − u∗qw∗q(ψ(g)⊗ 1Mq)wquq‖ <
δ

4
for all g ∈ G. Hence

‖[wpupu∗qw∗q, ψ(g)⊗ 1Q]‖ <
δ

2
, for all g ∈ G.

In the following computation, we use ψ⊗ 1 for the map from C to A⊗Q induced
by ψ. We have, by (5.3) and (5.4), that

bott0(ψ⊗ 1Q, wpupu∗qw∗q)|K0(C)∩P(5.5)

= bott0(ψ⊗ 1Q, wp)|K0(C)∩P + bott0(ψ⊗ 1Q, upu∗q)|K0(C)∩P

+ bott0(ψ⊗ 1Q, w∗q)|K0(C)∩P

= −(jp)∗1 ◦ αp|K0(C)∩P + ((jp)∗1 ◦ αp − (jq)∗1 ◦ αq)|K0(C)∩P

+ (jq)∗1 ◦ αq|K0(C)∩P = 0.

The same computation shows that

bott1(ψ⊗ 1Q, wpupu∗qw∗q)|K1(C)∩P(5.6)

= bott1(ψ⊗ 1Q, wp)|K1(C)∩P + bott1(ψ⊗ 1Q, upu∗q)|K1(C)∩P

+ bott1(ψ⊗ 1Q, w∗q)|K1(C)∩P

= −(jp)∗0 ◦ θp|K1(C)∩P + ((jp)∗0 ◦ θp − (jq)∗0θq)|K1(C)∩P

+ (jq)∗0 ◦ θq|K1(C)∩P = 0.

Since Ki(A⊗Q) is torsion free (i = 0, 1), the aboves imply that

(5.7) Bott(ψ⊗ 1Q, wpupu∗qw∗q)|P = 0.

By the construction of ∆, it is clear that

µτ◦(ψ⊗1)(Oa) > ∆(a)

for all a, where Oa is any open ball of X with radius a; in particular, it holds for
all a > d.
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For each 1 6 i 6 k, define (see (5.2))

Li,wpup
= 〈(1n − ψ(pi)⊗ 1Mp + (ψ(pi)⊗ 1Mp)wpup)

· (1n − ψ(qi)⊗ 1Mp + (ψ(qi)⊗ 1Mp)u
∗
pw∗p)〉 and

Li,wquq
= 〈(1n − ψ(pi)⊗ 1Mq + (ψ(pi)⊗ 1Mq)wquq)

· (1n − ψ(qi)⊗ 1Mq + (ψ(qi)⊗ 1Mq)u∗qw∗q)〉,

and define the map Γp : Zk → U(A⊗Mp)/CU(A⊗Mp) by Γp(xi) = Li,wpup
and

the map Γq : Zk → U(A⊗Mq)/CU(A⊗Mq) by Γq(xi) = Li,wquq
.

By Corollary 4.3, there are unitaries ζp ∈ A⊗Mp, ζq ∈ A⊗Mq such that

‖[ζp, ψ(g)⊗ 1Mp ]‖ <
δ

4
, ‖[ζq, ψ(g)⊗ 1Mq ]‖ <

δ

4
, ∀g ∈ G

Bott(ψ⊗ 1Mp , ζp)|P = 0, Bott(ψ⊗ 1Mq , ζq)|P = 0,

and for any 1 6 i 6 k,

dist(Li,ζ∗p , Γp(xi)) 6
γ

2
and dist(Li,ζ∗q , Γq(xi)) 6

γ

2
,

where

Li,ζ∗p = 〈(1n − ψ(pi)⊗ 1Mp + (ψ(pi)⊗ 1Mp)ζ
∗
p)

· (1n − ψ(qi)⊗ 1Mp + (ψ(qi)⊗ 1Mp)ζp)〉, and

Li,ζ∗q = 〈(1n − ψ(pi)⊗ 1Mq + (ψ(pi)⊗ 1Mq)ζ
∗
q)

· (1n − ψ(qi)⊗ 1Mq + (ψ(qi)⊗ 1Mq)ζq)〉.

In particular, if denote by v0 = ζpwpupu∗qw∗qζ∗q, one has that for any 16 i6k,

dist(〈(1n−ψ(pi)⊗1Q+(ψ(pi)⊗1Q)v0)(1n−ψ(qi)⊗1Q+(ψ(qi)⊗1Q)v∗0)〉, 1n)<γ.

Then, by Theorem 4.2, there is a continuous path of unitaries v(t) in A⊗ Q
such that v(1) = 1 and v(0) = v0, and

‖[v(t), ψ(x)⊗ 1Q]‖ <
ε

2
∀x ∈ F , ∀t ∈ [0, 1].

Consider the unitary u(t) = v(t)ζqwquq ∈ A⊗Zp,q, and it has the property

‖φ( f )⊗ 1Zp,q − u∗(ψ( f )⊗ 1Zp,q)u‖ < ε, ∀ f ∈ F .

One then embeds Zp,q into Z to get the desired conclusion.

Recall that C is the class of all simple separable C∗-algebras A for which
TR(A⊗Mr) 6 1 form some UHF-algebra Mr, where r is a supernatural number
of infinite type.
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COROLLARY 5.4. Let C be a unital AH-algebra and let A be a unital separable
simple Z-stable C∗-algebra in C. Let φ, ψ : C → A be two unital monomorphisms. Then
there exists a sequence of unitaries {un} ⊂ A such that

lim
n→∞

u∗nψ(c)un = φ(c) for all c ∈ C,

if and only if
[φ] = [ψ] in KL(C, A), φ] = ψ] and φ‡ = ψ‡.

Proof. We only show the “if" part. Suppose that φ and ψ satisfy the condi-
tion. Let ε > 0, and let F ⊂ C be a finite subset. Then, by 5.3, there exists a
unitary v ∈ A⊗Z such that

(5.8) ‖v∗(ψ(a)⊗ 1)v− φ(a)⊗ 1‖ < ε

3
for all a ∈ F .

Let ı : A → A⊗Z be defined by ı(a) = a⊗ 1 for a ∈ A. There exists an isomor-
phism j : A⊗Z → A such that j ◦ ı is approximately inner. So there is a unitaries
w ∈ A such that

(5.9) ‖j(ψ(a)⊗ 1)− w∗ψ(a)w‖ < ε

3
and ‖w∗φ(a)w− j(φ(a)⊗ 1)‖ < ε

3
for all a ∈ F . Let u = wj(v)w∗ ∈ A; then, for a ∈ F ,

‖u∗ψ(a)u− φ(a)‖ = ‖wj(v)∗w∗ψ(a)wj(v)w∗ − φ(a)‖
6 ‖wj(v)∗w∗ψ(a)wj(v)w∗ − wj(v)∗(j(ψ(a)⊗ 1)j(v))w∗‖
+ ‖wj(v)∗(j(ψ(a)⊗ 1)j(v))w∗ − w(j(φ(a)⊗ 1))w∗‖
+ ‖w(j(φ(a)⊗ 1))w∗ − φ(a)‖

<
ε

3
+

ε

3
+

ε

3
= ε for all a ∈ F .

A version of the following is also obtained by H. Matui.

COROLLARY 5.5. Let C be a unital AH-algebra and let A be a unital separable
simple C∗-algebra in C0 which is Z-stable. Suppose that φ, ψ : C → A are two unital
monomorphisms. Then there exists a sequence of unitaries {un} ⊂ A such that

lim
n→∞

u∗nφ(c)un = ψ(c) for all c ∈ C,

if and only if
[φ] = [ψ] in KL(C, A), φ] = ψ] and φ‡ = ψ‡.

Proof. The proof is exactly the same as that of 5.3 and 5.4. At where Theo-
rem 2.10 is applied, one applies Theorem 3.6 of [12] instead. One also uses Re-
mark 5.2.

LEMMA 5.6. Let A be a unital C∗-algebra such that A⊗Mr is an AH-algebra for
any supernatural number r of infinite type. Let B ∈ C be a unital separable C∗-algebra,
and let φ, ψ : A→ B be two unital monomorphisms. Suppose that

(5.10) [φ] = [ψ] in KL(A, B), φ] = ψ] and φ‡ = ψ‡.
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Let p and q be two relatively prime supernatural numbers of infinite type with Mp ⊗
Mq = Q. Then, for any ε > 0 and any finite subset F ⊂ A ⊗ Zp,q, there exists a
unitary v ∈ B⊗Zp,q such that

(5.11) ‖v∗((φ⊗ id)(a))v− (ψ⊗ id)(a)‖ < ε for all a ∈ F .

The proof of this lemma will be lengthy and technical in nature. However,
the outline is the same as that of Theorem 5.3, that is, using homotopy lemmas,
one could find a certain path of unitaries in B ⊗ Q such that it implements the
approximate equivalence above when it is regarded as a unitary in B⊗Zp,q. But
since the domain C∗-algebra A is only assumed to be rational tracial rank at most
one, in order to apply the homotopy lemmas, one also needs to interpolate paths
in A⊗Zp,q, and this increases the technical difficulty of the proof.

Proof. Let r be a supernatural number. Denote by ır : A → A ⊗ Mr the
embedding defined by ır(a) = a⊗ 1 for all a ∈ A. Denote by jr : B→ B⊗Mr the
embedding defined by jr(b) = b⊗ 1 for all b ∈ B. Without loss of generality, one
may assume that F = F1 ⊗F2, where F1 ⊆ A and F2 ⊆ Zp,q are finite subsets
and 1A ∈ F and 1Zp,q ∈ F2. Moreover, one may assume that any element in F1
or F2 has norm at most one.

Let 0 = t0 < t1 < · · · < tm = 1 be a partition of [0, 1] such that

(5.12) ‖b(t)− b(ti)‖ <
ε

4
∀b ∈ F2, ∀t ∈ [ti−1, ti], i = 1, . . . , m.

Consider

E = {a⊗ b(ti); a ∈ F1, b ∈ F2, i = 0, . . . , m} ⊆ A⊗Q,

Ep = {a⊗ b(t0); a ∈ F1, b ∈ F2} ⊆ A⊗Mp ⊂ A⊗Q and

Eq = {a⊗ b(tm); a ∈ F1, b ∈ F2} ⊆ A⊗Mq ⊂ A⊗Q.

Since A⊗ Q is an AH-algebra, without loss of generality, one may assume
that the finite subset E is in a C∗-subalgebra of A ⊗ Q which is isomorphic to
C := PMn(C(X))P (for some n > 1) for some compact metric space X. Since
PMn(C(X))P = lim

m→∞
(Pm Mn(C(Xm))Pm), where Xm are closed subspaces of fi-

nite CW-complexes, then, without loss of generality, one may assume further that
X is a closed subset of a finite CW-complex.

Fix a metric on X, and for any a ∈ (0, 1), denote by

∆(a) = inf{µτ◦(φ⊗id)(Oa); τ ∈ T(B), Oa an open ball of radius a in X}.

Since B is simple, one has that 0 < ∆(a) 6 1.
LetH ⊂ C, P ⊆ K(C),Q = {x1, x2, . . . , xm} ⊂ K0(C) which generates a free

subgroup of K0(C), δ > 0, γ > 0, and d > 0 (in the place of η) be the constants of
Theorem 4.2 with respect to E , ε/8, and ∆. We may assume that xi = [pi]− [qi],
where pi, qi ∈ Mn(C) are projections (for some integer n > 1), i = 1, 2, . . . , m.
Moreover, we may assume that γ < 1.
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Denote by ∞ the supernatural number associated with Q. Let Pi = P ∩
Ki(A⊗ Q), i = 0, 1. There is a finitely generated free subgroup G(P)i,0 ⊂ Ki(A)
such that if one sets

(5.13) G(P)i,∞,0 = G({gr : g ∈ (ı∞)∗i(G(P)i,0) and r ∈ D0}),
where 1 ∈ D0 ⊂ Q is a finite subset, then G(P)i,∞,0 contains the subgroup gen-
erated by Pi, i = 0, 1. Moreover, we may assume that, if r = k/m, where k and
m are nonzero integers, and r ∈ D0, then 1/m ∈ D0. Let P ′i ⊂ Ki(A) be a finite
subset which generates G(P)i,0, i = 0, 1. Also denote by P ′ = P ′0 ∪ P ′1.

Denote by j : C → A⊗Q the embedding.
Write the subgroup generated by the image of Q in K0(A ⊗ Q) as Zk (for

some integer k > 1). Choose {x′1, . . . , x′k} ⊆ K0(A) and {rij; 1 6 i 6 m, 1 6 j 6
k} ⊆ Q such that

j∗0(xi) =
k

∑
j=1

rijx′j, 1 6 i 6 m, 1 6 j 6 k,

and moreover, {x′1, . . . , x′k} generates a free subgroup of K0(A) of rank k. Choose
projections p′j, q′j ∈ Mn(A) such that x′j = [p′j]− [q′j], 1 6 j 6 k. Choose an integer
M such that Mrij are integers for 1 6 i 6 m and 1 6 j 6 k. In particular Mxi is
the linear combination of x′j with integer coefficients.

Also noting that the subgroup of K0(A⊗Q) generated by

{(ı∞)∗0(x′1), . . . , (ı∞)∗0(x′k)}

is isomorphic to Zk and the subgroup of K0(A⊗Mr) generated by

{(ır)∗0(x′1), . . . , (ır)∗0(x′k)}

has to be isomorphic to Zk, where r = p or r = q.
Since A⊗Mr is an AH-algebra, one can choose a C∗-subalgebra Cr of A⊗

Mr which is isomorphic to PrMnr(C(Xr))Pr (for some nr > 1) such that Er ⊆ Cr

and projections
{p′1,r, . . . , p′k,r, q′1,r, . . . , q′k,r} ⊆ Mn(Cr)

such that for any 1 6 j 6 k,

‖p′j ⊗ 1Mr − p′j,r‖ <
γ

32(1 + ∑i,j′ |Mrij′ |)
< 1 and(5.14)

‖q′j ⊗ 1Mr − q′j,r‖ <
γ

32(1 + ∑i,j′ |Mrij′ |)
< 1,(5.15)

where Xr is a closed subset of a finite CW-complex, and r = p or r = q.
Denote by x′j,r = [p′j,τ ]− [q′j,r], 1 6 j 6 k, and denote by Gr the subgroup

of K0(Cr) generated by {x′1,r, . . . , x′k,r}, and write Gr = Zr ⊕ Tor(Gr). Since Gr

is generated by k elements, one has that r 6 k and r = k if and only if Gr is
torsion free. Note that the image of Gr in K0(A⊗Mr) is the group generated by
{[p′1 ⊗ 1Mr ]− [q′1 ⊗ 1Mr ], . . . , [p′k ⊗ 1Mr ]− [q′k ⊗ 1Mr ]}, which is isomorphic to Zk
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(with {[p′j ⊗ 1Mr ]− [q′j ⊗ 1Mr ]; 1 6 j 6 k} as the standard generators). Hence Gr

is torsion free and r = k.
Without loss of generality, one may assume that ır(P ′) ⊆ K(Cr). Assume

thatH is sufficiently large and δ is sufficiently small such that for any homomor-
phism h from A⊗Q to B⊗Q and any unitary zj (j = 1, 2, 3, 4), the map Bott(h, zj)
and Bott(h, wj) are well defined on the subgroup generated by P and

Bott(h, wj) = Bott(h, z1) + · · ·+ Bott(h, zj)

on the subgroup generated by P , if ‖[h(x), zj]‖ < δ for any x ∈ H, where wj =
z1 · · · zj, j = 1, 2, 3, 4.

By choosing largerH and smaller δ, one may also assume that

(5.16) ‖h(pi), zj]‖ <
1

16
and ‖h(qi), zj]‖ <

1
16

,

1 6 i 6 m, j = 1, 2, 3, 4, and for any 1 6 i 6 m,

(5.17) dist
(

ζM
i,z1

,
k

∏
j=1

(ζ ′j,z1
)Mrij

)
<

γ

8
,

where

ζi,z1 = 〈((1n − h(pi) + h(pi))z1)((1n − h(qi) + h(qi))z∗1)〉, and

ζ ′j,z1
= 〈(1n − h(p′j ⊗ 1A⊗Q) + h(p′j ⊗ 1A⊗Q))z1)

· ((1n − h(q′j ⊗ 1A⊗Q) + h(q′j ⊗ 1A⊗Q))z∗1)〉.

By choosing even smaller δ, without loss of generality, we may assume that

H = H0 ⊗Hp ⊗Hq,

where H0 ⊂ A, Hp ⊂ Mp and Hq ⊂ Mq are finite subsets, and 1 ∈ H0, 1 ∈ Hp

and 1 ∈ Hq.
Moreover, chooseH0,Hp andHq even larger and δ even smaller so that for

any homomorphism hr : A⊗Mr → B⊗Mr and unitaries z1, z2 ∈ B⊗Mr with
‖hr(x), zi‖ < δ for any x ∈ H0 ⊗Hr, one has

(5.18) ‖hr(p′i,r), zj]‖ <
1

16
and ‖hr(q′i,r), zj]‖ <

1
16

,

1 6 i 6 k, j = 1, 2, and

dist(ζi,z1z2 , (1B⊗Mr)n) < dist(ζi,z∗1
, ζi,z2) +

γ

32(1 + ∑i′ ,j |Mri′ j|)
,

where

ζi,z′ = 〈((1n − hr(p′i,r) + hr(p′i,r))z
′)((1n − hr(q′i,r) + hr(q′i,r))(z

′)∗)〉, and

z′ = z1z2, z∗1 , z2.

Denote by C′ = P′Mn(C(X̃))P′, ι : C′ → A ⊗ Q, δ2 (in the place of δ) the
constant, G ⊆ K1(C(X̃)) (in the place of Q) the finite subset in Theorem 4.4 with
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respect to A⊗Q (in the place of C), B⊗Q (in the place of A), φ⊗ idQ (in the place
of h), δ/4 (in the place of ε), H (in the place of F ) and P . Note that X̃ is a finite
CW-complex.

Let H′ ⊆ A ⊗ Q be a finite subset and assume that δ2 is small enough
such that for any homomorphism h from A ⊗ Q to B ⊗ Q and any unitary zj
(j = 1, 2, 3, 4), the map Bott(h, zj) and Bott(h, wj) is well defined on the subgroup
[ι](K(C′)) and

Bott(h, wj) = Bott(h, z1) + · · ·+ Bott(h, zj)

on the subgroup [ι](K(C′)), if ‖[h(x), zj]‖ < δ2 for any x ∈ H′, where wj =
z1 · · · zj, j = 1, 2, 3, 4. Furthermore, as above, one may assume, without loss of
generality, that

H′ = H0′ ⊗Hp′ ⊗Hq′ ,

whereH0 ⊆ H0′ ⊂ A,Hp ⊆ Hp′ ∈ Mq andHq ⊆ Hq′ ⊂ Mq are finite subsets.
Let δ′2 > 0 be a constant such that for any unitary with ‖u− 1‖ < δ′2, one

has that ‖ log u‖ < δ2/4. Without loss of generality, one may assume that δ′2 <
δ2/4 < ε/4 and δ′2 < δ.

Let C′r := PrMnC(X′r)Pr (in the place of C′), ι′r : Cr → A⊗Mr (in the place
of ι),Rr ⊂ K1(C′r) (in the place of Q) and δr (in the place of δ) be the finite subset
and constant of Theorem 4.4 with respect to A⊗Mr (in the place of C), B⊗Mr

(in the place of A), φ ⊗ idMr (in the place of h), H0′ ⊗ Hr′ (in place of F ) and
(ır)∗0(P ′0) ∪ (ır)∗1(P ′1) (in the place of P) and δ′2/8 (in place of ε) (r = p or r = q).

Note that X′r is a finite CW-complex with K1(C′r) = Zkr ⊕Tor(K1(C′r)). LetR(i)
r =

(ι′r)∗i(Ki(C′r)), i = 0, 1. There is a finitely generated subgroup Gi,0,r ⊂ Ki(A) and
a finitely generated subgroup D0,r ⊆ Qr so that

G′i,0,r := G({gr : g ∈ (ır)∗i(Gi,0,r) and r ∈ D0,r})

contains the subgroup R(i)
r , i = 0, 1. Without loss of generality, one may assume

that D0,p = {k/mp; k ∈ Z} and D0,q = {k/mq; k ∈ Z} for an integer mp divides
p and an integer mq divides q.

LetR ⊂ K(A⊗Q) be a finite subset which generates a subgroup containing

1
mpmq

((ıp,∞)∗(G′0,0,p ∪ G′1,0,p) ∪ (ıq,∞)∗(G′0,0,q ∪ G′1,0,q))

in K(A⊗ Q), where ır,∞ is the canonical embedding A⊗Mr → A⊗ Q, r = p, q.
Without loss of generality, one may also assume that R ⊇ ι∗1(G). Let Hr ⊂
A ⊗ Mr be a finite subset and δ3 > 0 such that for any homomorphism h from
A⊗Mr to B⊗Mr (r = p or r = q) any unitary zj (j = 1, 2, 3, 4), the map Bott(h, zj)

and Bott(h, wj) are well defined on the subgroup [ι′r](K(C′r)) and

Bott(h, wj) = Bott(h, z1) + · · ·+ Bott(h, zj)

on the subgroup generated by [ι′r](K(C′r)), if ‖[h(x), zj]‖ < δ3 for any x ∈ Hr,
where wj = z1 · · · zj, j = 1, 2, 3, 4. Without loss of generality, we assume that
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H0 ⊗Hp ⊂ Hp andH0 ⊗Hq ⊂ Hq. Furthermore, we may also assume that

Hr = H0,0 ⊗H0,r

for some finite subsets H0,0 and H0,r with H0′ ⊂ H0,0 ⊂ A, Hp′ ⊂ H0,p ⊂ Mp

andHq′ ⊂ H0,q. In addition, we may also assume that δ3 < δ2/2.
Furthermore, one may assume that δ3 is sufficiently small such that, for any

unitaries z1, z2, z3 in a C∗-algebra with tracial states, τ(1/2πi) log(ziz∗j )) (i, j =

1, 2, 3) is well defined and

τ
( 1

2πi
log(z1z∗2)

)
= τ

( 1
2πi

log(z1z∗3)
)
+ τ

( 1
2πi

log(z3z∗2)
)

for any tracial state τ, whenever ‖z1 − z3‖ < δ3 and ‖z2 − z3‖ < δ3.
To simply notation, we also assume that, for any unitary zj, (j = 1, 2, 3, 4)

the map Bott(h, zj) and Bott(h, wj) are well defined on the subgroup generated
byR and

Bott(h, wj) = Bott(h, z1) + · · ·+ Bott(h, zj)

on the subgroup generated by R, if ‖[h(x), zj]‖ < δ3 for any x ∈ H′′, where
wj = z1 · · · zj, j = 1, 2, . . . , 4, and assume that

H′′ = H0,0 ⊗H0,p ⊗H0,q.

Let Ri = R ∩ Ki(A ⊗ Q). There is a finitely generated subgroup Gi,0 of
Ki(A) and there is a finite subset D′0 ⊂ Q such that

Gi,∞ := G({gr : g ∈ (ı∞)∗i(Gi,0) and r ∈ D′0})

contains the subgroup generated by Ri, i = 0, 1. Without loss of generality, we
may assume that Gi,∞ is the subgroup generated by Ri. Note that we may also
assume that Gi,0 ⊃ G(P)i,0 and 1 ∈ D′0 ⊃ D0. Moreover, we may assume that,
if r = k/m, where m, k are relatively prime non-zero integers, and r ∈ D′0, then
1/m ∈ D′0. We may also assume that Gi,0,r ⊆ Gi,0 for r = p, q and i = 0, 1. Let
Ri′ ⊂ Ki(A) be a finite subset which generates Gi,0, i = 0, 1. Choose a finite subset
U ⊂ Un(A) for some n such that for any element of R1′, there is a representative
in U . Let S be a finite subset of A such that if (zi,j) ∈ U , then zi,j ∈ S.

Denote by δ4 and Qr ⊂ K1(A⊗Mr) ∼= K1(A)⊗Qr the constant and finite
subset of Lemma 5.1 corresponding to Er ∪ Hr ⊗ 1 ∪ ır(S) (in the place of F ),
ır(U ) (in the place of P) and (1/n2)min{δ′2/8, δ3/4} (in the place of ε) (r = p

or r = q). We may assume that Qr = {x ⊗ r : x ∈ Q′ and r ∈ D′′r }, where
Q′ ⊂ K1(A) is a finite subset and D′′r ⊂ Qr is also a finite subset. Let K =
max{|r| : r ∈ D′′p ∪ D′′q}. Since [φ] = [ψ] in KL(A, B), φ] = ψ] and φ‡ = ψ‡, by
Lemma 3.5, Rφ,ψ(K1(A)) ⊆ ρB(K0(B)) ⊂ Aff(T(B)). Therefore, there is a map
η : G(Q′)→ ρB(K0(B)) ⊂ Aff(T(B)) such that

(5.19) (η − Rφ,ψ)([z]) ∈ ρB(K0(B)) and ‖η(z)‖ < δ4

1 + K
for all z ∈ Q′.
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Consider the map φr = φ⊗ idMr and ψr = ψ⊗ idMr (r = p or r = q). Since
η vanishes on the torsion part of G(Q′), there is a homomorphism

ηr : G((ır)∗1(Q′))→ ρB⊗Mr(K0(B⊗Mr)) ⊂ Aff(T(B⊗Mr))

such that

(5.20) ηr ◦ (ır)∗1 = η.

Since ρB⊗Mr(K0(B⊗Mr)) = RρB(K0(B)) is divisible, one can extend ηr so it
defines on K1(A)⊗Qr. We will continue to use ηr for the extension. It follows
from (5.19) that ηr(z)− Rφr,ψr(z) ∈ ρB⊗Mr(K0(B⊗Mr)) and ‖ηr(z)‖ < δ4 for all
z ∈ Qr. By Lemma 5.1, there exists a unitary up ∈ B⊗Mp such that

(5.21) ‖u∗p(φ⊗ idMp)(c)up − (ψ⊗ idMp)(c)‖ <
1
n2 min

{ δ′2
8

,
δ3

4

}
for all c ∈ Ep ∪Hp ∪ ıp(S). Note that

‖u∗p(φ⊗ idMp)(z)up − (ψ⊗ idMp)(z)‖ < δ3 for any z ∈ U .

Therefore τ((1/2πi) log(u∗p(φ⊗ idp)(z)up(ψ⊗ idp)(z∗))) = ηp([z])(τ) for all z ∈
ıp(U ), where we identify φ and ψ with φ⊗ idMn and ψ⊗ idMn , and up with up ⊗
1Mn , respectively.

The same argument shows that there is a unitary uq ∈ B⊗Mq such that

(5.22) ‖u∗q(φ⊗ idMq)(c)uq − (ψ⊗ idMq)(c)‖ <
1
n2 min

{ δ′2
8

,
δ3

4

}
for all c ∈ Eq ∪Hq∪ıp(S), and τ((1/2πi) log(u∗q(φ⊗ idq)(z)uq(ψ⊗ idq)(z∗))) =
ηq([z])(τ) for all z ∈ ıq(U ), where we identify φ and ψ with φ ⊗ idMn and ψ ⊗
idMn , and uq with uq ⊗ 1Mn , respectively. We will also identify up with up ⊗ 1Mq

and uq with uq ⊗ 1Mp respectively. Then upu∗q ∈ A⊗ Q and one estimates that
for any c ∈ H00 ⊗H0,p ⊗Hq,

(5.23) ‖uqu∗p(φ⊗ 1Q(c))upu∗q − (φ⊗ 1Q)(c)‖ < δ3,

and hence Bott(φ⊗ idQ, upu∗q)(z) is well defined on the subgroup generated by
R. Moreover, for any z ∈ U , by the Exel formula (see 2.13) and applying (5.20),

τ(bott1(φ⊗ idQ, upu∗q)((ı∞)∗1([z])))

= τ(bott1(φ⊗ idQ, upu∗q)(ı∞(z)))

= τ
( 1

2πi
log(upu∗q(φ⊗ idQ)(ı∞(z)))uqu∗p(φ⊗ idQ)(ı∞(z))∗

)
= τ

( 1
2πi

log(u∗q(φ⊗ idQ)(ı∞(z))))uq(ψ⊗ idQ)(ı∞(z∗))
)

− τ
( 1

2πi
log(u∗p(φ⊗ idQ)(ı∞(z))up(ψ⊗ idQ)(ı∞(z∗)))

)
= ηq((ıq)∗1([z]))(τ)− ηp((ıp)∗1([z]))(τ)

= η([z])(τ)− η([z])(τ) = 0 for all τ ∈ T(B),
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where we identify φ and ψ with φ ⊗ idMn and ψ ⊗ idMn , and up and uq with
up ⊗ 1Mn and uq with uq ⊗ 1Mn , respectively.

Now suppose that g ∈ G1,∞. Then g = (k/m)(ı∞)∗1([z]) for some z ∈ U ,
where k, m are non-zero integers. It follows that

(5.24) τ(bott1(φ⊗ idQ, upu∗q)(mg)) = kτ(bott1(φ⊗ idQ, upu∗q)([z])) = 0

for all τ ∈ T(B). Since Aff(T(B)) is torsion free, it follows that

(5.25) τ(bott1(φ⊗ idQ, upu∗q)(g)) = 0

for all g ∈ G1,∞ and τ ∈ T(B). Therefore, the image of R1 under bott1(φ ⊗
idQ, upu∗q) is in ker ρB⊗Q. One may write

G1,0 = Zr ⊕Z/p1Z⊕ · · · ⊕Z/psZ,

where r is a non-negative integer and p1, . . . , ps are powers of primes numbers.
Since p and q are relatively prime, one then has the decomposition

G1,0 = Zr ⊕ Torp(G1,0)⊕ Torq(G1,0) ⊆ K1(A),

where Torp(G1,0) consists of the torsion-elements with their orders divide p and
Torq(G1,0) consists of the torsion-elements with their orders divide q. Fix this
decomposition.

Note that the restriction of (ıp)∗1 to Zr ⊕ Torq(G1,0) is injective and the re-
striction to Torp(G1,0) is zero, and the restriction of (ıq)∗1 to Zr ⊕ Torp(G1,0) is
injective and the restriction to Torq(G1,0) is zero.

Moreover, using the assumption that p and q are relatively prime again, for
any element k ∈ (ıq)∗1(Zr ⊕Torp(G1,0)) and any nonzero integer q which divides
q, the element k/q is well defined in K1(A⊗Mq); that is, there is a unique element
s ∈ K1(A⊗Mq) such that qs = k.

Denote by e1, . . . , er the standard generators of Zr. It is also clear that

(ı∞)∗1(Torp(G1,0)) = (ı∞)∗1(Torq(G1,0)) = 0.

Recall that D0,p = {k/mp; k ∈ Z} ⊂ Qp and D0,q = {k/mq; k ∈ Z} ⊂ Qq

for an integer mp dividing p and an integer mq dividing q. Put m∞ = mpmq.
Consider (1/m∞)Zr ∈ K1(A⊗Q), and for each ei, 1 6 i 6 r, consider

1
m∞

bott1(φ⊗ idQ, upu∗q)((ı∞)∗1(ei)) ∈ ker ρB⊗Q.

Since ker ρB⊗Q ∼= (ker ρB) ⊗ Q, ker ρB⊗Mp
∼= (ker ρB) ⊗ Qp, and ker ρB⊗Mq

∼=
(ker ρB)⊗Qq, using the same arguments as that of Theorem 5.3, there are gi,p ∈
ker ρB⊗Mp and gi,q ∈ ker ρB⊗Mq such that

bott1(φ⊗ idQ, upu∗q)
( 1

m∞
((ı∞)∗1(ei))

)
= (jp)∗0(gi,p) + (jq)∗0(gi,q),

where gi,p and gi,q are identified as their images in K0(A⊗Q).
Note that the subgroup (ıp)∗1(G1,0) in K0(A⊗Mp) is isomorphic to

Zr ⊕ Torq
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and (1/mp)(Zr⊕Torq) is well defined in K0(A⊗Mp), and the subgroup (ıq)∗1(G1,0)
in K0(B⊗Mq) is isomorphic to Zr ⊕ Torp and (1/mq)(Zr ⊕ Torp) is well defined
in K0(A⊗Mq). One then defines the maps θp : (1/mp)(ıp)∗1(G1,0)→ ker ρB⊗Mp

and θq : (1/mq)(ıq)∗1(G1,0)→ ker ρB⊗Mq by

θp
( 1

mp
(ιp)∗1(ei)

)
= mqgi,p and θq

( 1
mq

(ιq)∗1(ei)
)
= mpgi,q

for 1 6 i 6 r and

θp|Tor((ıp)∗1(G1,0))
= 0 and θq|Tor((ıq)∗1(G1,0))

= 0.

Then, for each ei, one has

(jp)∗0 ◦ θp ◦ (ıp)∗1(ei) + (jq)∗0 ◦ θq ◦ (ıq)∗1(ei)

= mp

( 1
mp

(jp)∗0 ◦ θp ◦ (ıp)∗1(ei)
)
+ mq

( 1
mq

(jq)
)
∗0
◦ θq ◦ (ıq)∗1(ei)

= mpmq((jp)∗0(gi,p) + (jq)∗0(gi,q))

= m∞bott1(φ⊗idQ, upu∗q)◦(ı∞)∗1
( ei

m∞

)
=bott1(φ⊗idQ, upu∗q)◦(ı∞)∗1(ei).

Since the restriction of θp ◦ (ıp)∗1, θq ◦ (ıq)∗1 and bott1(φ⊗ idQ, upu∗q) ◦ (ı∞)∗1 to
the torsion part of G1,0 is zero, one has

bott1(φ⊗ idQ, upu∗q) ◦ (ı∞)∗1 = (jp)∗0 ◦ θp ◦ (ıp)∗1 + (jq)∗0 ◦ θq ◦ (ıq)∗1.

The same argument shows that there also exist maps

αp :
1

mp
((ıp)∗0(G0,0))→ K1(B⊗Mp) and

αq :
1

mq
((ıq)∗0(G0,0))→ K1(B⊗Mq)

such that, on G0,0,

bott0(φ⊗ idQ, upu∗q) ◦ (ı∞)∗0 = (jp)∗1 ◦ αp ◦ (ıp)∗0 + (jq)∗1 ◦ αq ◦ (ıq)∗0.

Note that Gi,0,r ⊆ Gi,0, i = 0, 1, r = p, q. In particular, one has that

(ır)∗i(Gi,0,r) ⊆ (ır)∗i(Gi,0),

and therefore

G′1,0,p ⊆
1

mp
(ıp)∗0(G1,0) and G′1,0,q ⊆

1
mq

(ıq)∗0(G1,0).

Then the maps θp and θq can be restricted to G′1,0,p and G′1,0,q respectively. Since
the group G′i,0,r contains (ι′r)∗i(Ki(C′r)), the maps θp and θq can be restricted fur-
ther to (ι′p)∗1(K1(C′p)) and (ι′q)∗1(K1(C′q)) respectively.

For the same reason, the maps αp and αq can be restricted to (ι′p)∗0(K0(C′p))
and (ι′q)∗0(K0(C′q)) respectively. We keep the same notation for the restrictions of
these maps αp, αq, θp, and θq.
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By the universal multi-coefficient theorem, there is κp ∈ HomΛ(K(C′p ⊗
C(T)), K(B⊗Mp)) such that

κp|β(K1(C′p)) = −θp ◦ (ι′p)∗1 ◦ β−1 and κp|β(K0(C′p)) = −αp ◦ (ι′p)∗0 ◦ β−1.

Similarly, there exists κq ∈ HomΛ(K(C′q ⊗C(T))), K(B⊗Mq)) such that

κq|β(K1(C′q)) = −θq ◦ (ι′q)∗1 ◦ β−1 and κq|β(K0(C′q)) = −αq ◦ (ι′q)∗0 ◦ β−1.

Note that since gi,r ∈ kerρA⊗Mr
, κr(β(K1(C′r))) ⊆ ker ρB⊗Mr , r = p or r = q.

By Theorem 4.4, there exist unitaries wp ∈ B⊗Mp and wq ∈ B⊗Mq such that

‖[wp, (φ⊗ idMp)(x)]‖ < δ′2
8

, ‖[wq, (φ⊗ idMq)(y)]‖ <
δ′2
8

,

for any x ∈ H0′ ⊗Hp′ and y ∈ H0′ ⊗Hq′ , and

Bott(φ⊗ idMp , wp) ◦ [ι′p] = κp ◦ β and Bott(φ⊗ idMq , wq) ◦ [ι′q] = κq ◦ β.

For r = p or r = q and each 1 6 j 6 k, define

ζ j,wrur
= 〈(1n − (φ⊗ idMr)(p′j,r) + ((φ⊗ idMr)(p′j,r))wrur)

· (1n − (φ⊗ idMr)(q
′
j,r) + ((φ⊗ idMr)(q

′
j,r))u

∗
rw∗r)〉.

It is an element in U(B⊗Mr)/CU(B⊗Mr).
Define the map Γr : Zk → U(B⊗Mp)/CU(B⊗Mp) by

Γr(x′j,r) = ζ j,wrur
, 1 6 j 6 k.

Applying Corollary 4.3 to Cr (in the place of C), G(x′1,r, . . . , x′k,r) (in the place
of G), B⊗Mr (in the place of A), and (φ⊗ idMr)|Cr

(in the place of φ), there is a
unitary cr ∈ B⊗Mr such that

‖[cr, (φ⊗ idMr)(x)]‖ < δ′2
16

for any x ∈ H0′ ⊗Hr′ ,

Bott(φ⊗ idMr , cr)|ır(P ′) = 0,

and

(5.26) dist(ζ j,c∗r , Γr(xj,r)) 6
γ

32(1 + ∑i,j |Mrij|)
, 1 6 j 6 k,

where

ζ j,c∗r = 〈(1n − (φ⊗ idMr)(p′j,r) + ((φ⊗ idMr)(p′j,r))c
∗
r)

· (1n − (φ⊗ idMr)(q
′
j,r) + ((φ⊗ idMr)(q

′
j,r))cr)〉.



548 HUAXIN LIN AND ZHUANG NIU

Put vr = crwrur. Then, by (5.18) and (5.26), for 1 6 j 6 k,

dist(ζ j,vr , (1B⊗Mr)n) < dist(ζ j,c∗r , ζ j,wrur
) +

γ

32(1 + ∑i,j |Mrij|)
(5.27)

<
γ

16(1 + ∑i,j |Mrij|)
,

where

ζ j,vr = 〈(1n − (φ⊗ idMr)(p′j,r) + ((φ⊗ idMr)(p′j,r))vr)

· (1n − (φ⊗ idMr)(q
′
j,r) + ((φ⊗ idMr)(q

′
j,r))v

∗
r)〉.

Recall that [x′j] = [p′j]− [q′j]. Define

ζx′j ,vr
= 〈(1n − φ(p′j)⊗ 1Mr + (φ(p′j)⊗ 1Mr)vr)

· (1n − φ(q′j)⊗ 1Mr + (φ(q′j)⊗ 1Mr)v∗r)〉.

By (5.14) and (5.15), one has

dist(ζx′j ,vr
, ζ j,vr ) <

γ

16(1 + ∑i,j′ |Mrij′ |)
,

and hence by (5.27),

dist(ζx′j ,vr
, (1B⊗Mr)n) <

γ

8(1 + ∑i,j′ |Mrij′ |)
.

Regard ζx′j ,vr
as its image in B⊗Q, one has

dist(ζx′j ,vr
, (1B⊗Q)n) <

γ

8(1 + ∑i,j′ |Mrij′ |)
,

and hence for any 1 6 i 6 m,

dist
(

∏k
j=1(ζx′j ,vr

)Mrij , (1B⊗Q)n

)
<

γ

8
.

By (5.17), one has

dist(〈(1− (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)vr)(1− (φ⊗ idQ)(qi)+

· (φ⊗ idQ)(qi)v∗r)〉M, (1B⊗Q)n) <
γ

4
,

and then, by Theorem 6.10 (and Theorem 6.11) of [11],

dist(〈(1− (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)vr)(1− (φ⊗ idQ)(qi)+

· (φ⊗ idQ)(qi)v∗r)〉, (1B⊗Q)n) <
γ

4M
<

γ

4
.
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In particular,

dist(〈(1− (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)vqv∗p)(1− (φ⊗ idQ)(qi)+

· (φ⊗ idQ)(qi)vpv∗q)〉, (1B⊗Q)n)

6 dist(〈(1− (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)vq)(1− (φ⊗ idQ)(qi)+

· (φ⊗ idQ)(qi)v∗q)〉, (1B⊗Q)n) + dist(〈(1− (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)vp)

· (1− (φ⊗ idQ)(qi) + (φ⊗ idQ)(qi)v∗p)〉, (1B⊗Q)n) <
γ

2
.

That is

(5.28) dist(ζi,vqv∗p , 1n) <
γ

2
,

where

ζi,vqv∗p = 〈(1− (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)vqv∗p)

· (1− (φ⊗ idQ)(qi) + (φ⊗ idQ)(qi)vpv∗q)〉.
Moreover, one also has

‖ψ⊗ idQ(x)− v∗p(φ⊗ idQ(x))vp‖ <
δ′2
4

, ∀x ∈ H0′ ⊗Hp′ ⊗Hq′ and

‖ψ⊗ idQ(x)− v∗q(φ⊗ idQ)(x)vq‖ <
δ′2
4

, ∀x ∈ H0′ ⊗Hp′ ⊗Hq′ .

Hence

‖[vpv∗q, φ(x)⊗ 1Q]‖ <
δ′2
2

< δ2, ∀x ∈ H′.

Thus Bott(φ⊗ idQ, vpv∗q) is well defined on the subgroup generated by P . More-
over, a direct calculation shows that

bott1(φ⊗ idQ, vpv∗q) ◦ (ı∞)∗1(z)

=bott1(φ⊗ idQ, cp) ◦ (ı∞)∗1(z) + bott1(φ⊗ idQ, wp) ◦ (ı∞)∗1(z)

+ bott(φ⊗ idQ, upu∗q) ◦ (ı∞)∗1(z) + bott1(φ⊗ idQ, w∗q) ◦ (ı∞)∗1(z)

+ bott1(φ⊗ idQ, c∗q) ◦ (ı∞)∗1(z)

=(jp)∗0 ◦ bott1(φ⊗ idMp , cp) ◦ (ıp)∗1(z)
+(jp)∗0 ◦ bott1(φ⊗idMp , wp) ◦ (ıp)∗1(z)+bott(φ⊗idQ, upu∗q)◦(ı∞)∗1(z)

+ (jq)∗0 ◦ bott1(φ⊗ idMq , w∗q) ◦ (ıq)∗1(z)
+ (jq)∗0◦bott1(φ⊗ idMq , c∗q) ◦ (ıq)∗1(z)

=(jp)∗0◦bott1(φ⊗ idMp , wp) ◦ (ıp)∗1(z) + bott(φ⊗ idQ, upu∗q) ◦ (ı∞)∗1(z)

+ (jq)∗0◦bott1(φ⊗ idMq , w∗q) ◦ (ıq)∗1(z)
=−(jp)∗0 ◦ θp ◦ (ıp)∗1(z) + ((jp)∗0 ◦ θp ◦ (ıp)∗1

+ (jq)∗0 ◦ θq ◦ (ıq)∗1)− (jq)∗0 ◦ θq ◦ (ıq)∗1(z)
=0 for all z ∈ G(P)1,0.
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The same argument shows that bott0(φ ⊗ idQ, vpv∗q) = 0 on G(P)0,0. Now, for
any g ∈ G(P)1,∞,0, there is z ∈ G(P)1,0 and integers k, m such that (k/m)z = g.
From the above,

bott1(φ⊗ idQ, vpv∗q)(mg) = kbott1(φ⊗ idQ, vpv∗q)(z) = 0.

Since K0(B⊗Q) is torsion free, it follows that

bott1(φ⊗ idQ, vpv∗q)(g) = 0

for all g∈G(P)1,∞,0. So it vanishes on P∩K1(A⊗Q). Similarly, on P∩K0(A⊗Q),

bott0(φ⊗ idQ, vpv∗q)|P∩K0(A⊗Q) = 0.

Since Ki(B⊗Q,Z/mZ) = {0} for all m > 2, we conclude that

Bott(φ⊗ idQ, vpv∗q)|P = 0

on the subgroup generated by P .
Since [φ] = [ψ] in KL(A, B), φ] = ψ] and φ‡ = ψ‡, one has that

[φ⊗ idQ] = [ψ⊗ idQ] in KL(A⊗Q, B⊗Q),

(φ⊗ idQ)] = (ψ⊗ idQ)] and (φ⊗ idQ)
‡ = (ψ⊗ idQ)

‡.

Therefore, by 5.10 of [21], φ⊗ idQ and ψ⊗ idQ are approximately unitarily
equivalent. Thus there exists a unitary u ∈ B⊗Q such that

(5.29) ‖u∗(φ⊗ idQ)(c)u− (ψ⊗ idQ)(c)‖ <
δ′2
8

for all c ∈ E ∪H′.

It follows that

‖uv∗p(φ(c)⊗ 1Q)vpu∗ − ψ(c)⊗ 1Q‖ <
δ′2
2
+

δ′2
8
∀c ∈ G ′.

By the choice of δ′2 andH′, Bott(φ⊗ idQ, vpu∗) is well defined on [ι](K(C′)), and

|τ(bott1(φ⊗ idQ, vpu∗)(z))| < δ2

2
, ∀τ ∈ T(B), ∀z ∈ G.

By Theorem 4.4, there exists a unitary yp ∈ B⊗Q such that

‖[yp, (φ⊗ idQ)(h)]‖ <
δ

2
, ∀h ∈ H,

and Bott(φ⊗ idQ, yp) = Bott(φ⊗ idQ, vpu∗) on the subgroup generated by P .
For each 1 6 i 6 m, define

ζi,ypuv∗p = 〈(1n − (φ⊗ idQ)(pi) + ((φ⊗ idQ)(pi))ypuv∗p)

· (1n − (φ⊗ idQ)(qi) + ((φ⊗ idQ)(qi))vpu∗y∗p)〉,

and define the map Γ : Zm → U(B⊗Q)/CU(B⊗Q) by Γ(xi) = ζi,ypuv∗q .
Applying Corollary 4.3 to C and G(Q), there is a unitary c∈B⊗Q such that

‖[c, (φ⊗ idQ)(h)]‖ <
δ

4
∀h ∈ H, Bott(φ⊗ idQ, c)|P = 0,
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and for any 1 6 i 6 k,

dist(ζ ′i,c∗ , Γ(xi)) 6
γ

2
,

where

ζ ′i,c∗ = 〈(1n − (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)c∗)

· (1n − (φ⊗ idQ)(qi) + (φ⊗ idQ)(qi)c)〉.

Consider the unitary v = cypu, one has that

‖[v, (φ⊗ idQ)(h)]‖ < δ, for all h ∈ H and Bott(φ⊗ idQ, vv∗p) = 0

on the subgroup generated by P , and for any 1 6 i 6 m,

(5.30) dist(ζi,vv∗p , 1n) <
γ

2
,

where

ζi,vv∗p = 〈(1n − (φ⊗ idQ)(pi) + ((φ⊗ idQ)(pi))vv∗p)

· (1n − (φ⊗ idQ)(qi) + ((φ⊗ idQ)(qi))vpv∗)〉.

By the construction of ∆, it is clear that

µτ◦(ψ⊗1)(Oa) > ∆(a)

for all a, where Oa is any open ball of X with radius a; in particular, it holds for
all a > d. Applying Theorem 4.2 to C and (φ⊗ idQ)|C, one obtains a continuous
path of unitaries v(t) in B⊗Q such that v(0) = 1 and v(t1) = vv∗p, and

(5.31) ‖[zp(t), (φ⊗ idQ)(c)]‖ <
ε

2
∀x ∈ E , ∀t ∈ [0, t1].

Note that

Bott(φ⊗ idQ, vqv∗) = Bott(φ⊗ idQ, vqv∗pvpv∗)

= Bott(φ⊗ idQ, vqv∗p) + Bott(φ⊗ idQ, vpv∗) = 0 + 0 = 0(5.32)

on the subgroup generated by P , and for any 1 6 i 6 m,

dist(ζi,vqv∗ , 1) 6 dist(ζi,vqv∗p , 1) + dist(ζi,vpv∗ , 1)

= γ, (by (5.28) and (5.30))

where

ζi,vqv∗ = 〈(1− (φ⊗ idQ)(pi) + (φ⊗ idQ)(pi)vqv∗)

· (1− (φ⊗ idQ)(qi) + (φ⊗ idQ)(qi)vv∗q)〉.

Since
‖[vv∗q, (φ⊗ idQ)(c)]‖ < δ, ∀c ∈ H,
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Theorem 4.2 implies that there is a path of unitaries zq(t) : [tm−1, 1]→ U(A⊗Q)
such that zq(tm−1) = vv∗q, zq(1) = 1 and

(5.33) ‖[zq(t), φ⊗ idQ(c)]‖ <
ε

8
, ∀t ∈ [tm−1, 1], ∀c ∈ E .

Consider the unitary

v(t) =


zp(t)vp if 0 6 t 6 t1,
v if t1 6 t 6 tm−1,
zq(t)vq if tm−1 6 t 6 tm.

Then, for any ti, 0 6 i 6 m, one has that

(5.34) ‖v∗(ti)(φ⊗ idQ)(c)v(ti)− (ψ⊗ idQ)(c)‖ <
ε

2
, ∀c ∈ E .

Then for any t ∈ [tj, tj+1] with 1 6 j 6 m− 2, one has

‖v∗(t)(φ⊗ id(a⊗ b(t)))v(t)− ψ⊗ id(a⊗ b(t))‖
= ‖v∗(φ(a)⊗ b(t))v− ψ(a)⊗ b(t)‖

< ‖v∗(φ(a)⊗ b(tj))v− ψ(a)⊗ b(tj)‖+
ε

4
<

ε

4
+

ε

4
<

ε

2
.(5.35)

For any t ∈ [0, t1], one has that for any a ∈ F1 and b ∈ F2,

‖v∗(t)(φ⊗ id(a⊗ b(t)))v(t)− ψ⊗ id(a⊗ b(t))‖
= ‖v∗pz∗p(t)(φ(a)⊗ b(t))zp(t)vp − ψ(a)⊗ b(t)‖

< ‖v∗pz∗p(t)(φ(a)⊗ b(t0))zp(t)vp − ψ(a)⊗ b(t0)‖+
ε

2

< ‖v∗p(φ(a)⊗ b(t0))vp − ψ(a)⊗ b(t0)‖+ 3
ε

4
< 3

ε

4
+

ε

4
= ε.(5.36)

The same argument shows that for any t ∈ [tm−1, 1], one has that for any
a ∈ F1 and b ∈ F2,

(5.37) ‖v∗(t)(φ⊗ id(a⊗ b(t)))v(t)− ψ⊗ id(a⊗ b(t))‖ < ε.

Therefore, one has

‖v(φ⊗ id( f ))v− ψ⊗ id( f )‖ < ε for all f ∈ F .

REMARK 5.7. In fact, using the same argument as the lemma above, one has
the following: Let A and B be two unital stably finite C∗-algebras. Assume that,
for any UHF-algebra U of infinite type,

(i) the approximately unitarily equivalence classes of the monomorphisms
from A ⊗ U to B ⊗ U is classified by the induced elements in KL(A ⊗ U, B ⊗
U), the induced maps on traces, together with the induced maps from U∞(A⊗
U)/CU∞(A⊗U) to U∞(B⊗U)/CU∞(B⊗U),

(ii) B⊗U satisfies Theorem 4.4 with respect to any embedding of A⊗U,
(iii) B⊗U satisfies a homotopy lemma, such as Theorem 4.2 or Lemma 8.4 of

[15], for any embedding of A⊗U to B⊗U,
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then, for any monomorphisms φ, ψ : A → B, the maps φ ⊗ id and ψ ⊗ id from
A⊗Zp,q to B⊗Zp,q are approximately unitarily equivalent if and only if

(5.38) [φ] = [ψ] in KL(A, B), φ] = ψ] and φ‡ = ψ‡.

THEOREM 5.8. Let A be a Z-stable C∗-algebra such that A ⊗ Mr is an AH-
algebra for any supernatural number r of infinite type, and let B ∈ C be a unital separable
Z-stable C∗-algebras. If φ and ψ are two monomorphisms from A to B with

(5.39) [φ] = [ψ] in KL(A, B), φ] = ψ] and φ‡ = ψ‡,

then, for any ε > 0 and any finite subset F ⊆ A, there exists a unitary u ∈ B such that

(5.40) ‖u∗φ(a)u− ψ(a)‖ < ε for all a ∈ F .

Proof. Let α : A → A⊗Z and β : Z → Z ⊗Z be isomorphisms. Consider
the map

ΓA : A
α // A⊗Z

id⊗β // A⊗Z ⊗Z α−1⊗id// A⊗Z .

Then Γ is an isomorphism. However, since β is approximately unitarily equiva-
lent to the map

Z 3 a 7→ a⊗ 1 ∈ Z ⊗Z ,

the map ΓA is approximately unitarily equivalent to the map

A 3 a 7→ a⊗ 1 ∈ A⊗Z .

Hence the map ΓB ◦ φ ◦ ΓA is approximately unitarily equivalent to φ⊗ idZ . The
same argument shows that ΓB ◦ ψ ◦ ΓA is approximately unitarily equivalent to
ψ⊗ idZ . Thus, in order to prove the theorem, it is enough to show that φ⊗ idZ is
approximately unitarily equivalent to ψ⊗ idZ .

Since Z is an inductive limit of C∗-algebras Zp,q, it is enough to show that
φ ⊗ idZp,q is approximately unitarily equivalent to ψ ⊗ idZp,q , and this follows
from Lemma 5.6.

6. THE RANGE OF APPROXIMATE EQUIVALENCE CLASSES OF HOMOMORPHISMS

Now let A and B be two unital C∗-algebras in N ∩ C. Theorem 5.8 states
that two unital monomorphisms are approximately unitarily equivalent if they
induce the same element in KLTe(A, B)++ (see Definition 2.4) and the same map
on U(A)/CU(A). In this section, we will discuss the following problem: Suppose
that one has κ∈KLTe(A, B)++ and a continuous homomorphism γ :U(A)/CU(A)
→ U(B)/CU(B) which is compatible with κ. Is there always a unital monomor-
phism φ : A → B such that φ induces κ and φ‡ = γ? At least in the case that
K1(A) is free, Theorem 6.10 states that such φ always exists.
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LEMMA 6.1. Let A and B be two unital infinite dimensional separable stably fi-
nite C∗-algebras whose tracial simplexes are non-empty. Let γ : U∞(A)/CU∞(A) →
U∞(B)/CU∞(B) be a continuous homomorphism, hi : Ki(A)→ Ki(B) (i = 0, 1) be ho-
momorphisms for which h0 is positive, and let λ : Aff(T(A))→ Aff(T(B)) be an affine
map so that (h0, h1, λ, γ) are compatible. Let p be a supernatural number. Then γ in-
duces a unique homomorphism γp : U∞(Ap)/CU∞(Ap)→ U∞(Bp)/CU∞(Bp) which
is compatible with (hp)i (i = 0, 1) and γp, where Ap = A⊗Mp and Bp = B⊗Mp, and
(hp)i : Ki(A)⊗Qp → Ki(B)⊗Qp is induced by hi (i = 0, 1). Moreover, the diagram

U∞(A)/CU∞(A)
γ→ U∞(B)/CU∞(B)

↓
ı‡p

↓(ı′p)‡

U∞(Ap)/CU∞(Ap)
γp→ U∞(Bp)/CU∞(Bp)

commutes, where ıp : A → Ap and ı′p : B → Bp are the maps induced by a 7→ a⊗ 1
and b 7→ b⊗ 1, respectively.

Proof. Denote by A0 = A, Ap = A ⊗ Mp, B0 = B and Bp = B ⊗ Mp. By
a result of K. Thomsen ([31]), using the de la Harpe and Skandalis determinant,
one has the following short exact sequences:

0→Aff(T(Ai))/ρA(K0(Ai))→U∞(Ai)/CU∞(Ai)→K1(Ai)→0, i=0, p, and

0→Aff(T(Bi))/ρA(K0(Bi))→U∞(Bi)/CU∞(Bi)→K1(Bi)→0, i=0, p.

Note that, in all these cases, Aff(T(Ai))/ρA(K0(Ai)) and Aff(T(Bi))/ρA(K0(Bi))
are divisible groups, i = 0, p. Therefore the exact sequences above splits. Fix split-
ting maps si : K1(Ai) → U∞(A)/CU∞(Ai) and s′i : K1(Bi) → U∞(Bi)/CU∞(Bi),
i = 0, p, for the above two splitting short exact sequences. Let ıp : A→ Ap be the
homomorphism defined by ıp(a) = a⊗ 1 for all a ∈ A and ı′p : B→ Bp be the ho-

momorphism defined by ı′p(b) = b⊗ 1 for all b ∈ B. Let ı‡p : U∞(A)/CU∞(A) →
U∞(Ap)/CU∞(Ap) and (ı′p)‡ : U∞(B)/CU∞(B) → U∞(Bp)/CU∞(Bp) be the in-
duced maps. The map ıp induces the following commutative diagram:

0→ Aff(T(A))/ρA(K0(A)) → U∞(A)/CU∞(A) → K1(A) → 0
↓
(ıp)]

↓
ı‡p

↓(ıp)∗1
0→ Aff(T(Ap))/ρA(K0(Ap)) → U∞(Ai)/CU∞(Ap) → K1(Ap) → 0.

Since there is only one tracial state on Mp, one may identify T(A) with
T(Ap) and T(B) with T(Bp). One may also identify ρAp

(K0(Ap)) with

RρA(K0(A))

which is the closure of those elements r[̂p] with r ∈ R. Note that (hp)i : Ki(A⊗
Mp) → Ki(B⊗Mp) (i = 0, 1) is given by the Künneth formula. Since γ is com-
patible with λ, γ maps RρA(K0(A))/ρA(K0(A)) into RρB(K0(B))/ρB(K0(B)).
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Note that

ker(ıp)∗1 = {x ∈ K1(A) : px = 0 for some factor p of p} and

ker(ı′p)∗1 = {x ∈ K1(B) : px = 0 for some factor p of p}.(6.1)

Therefore

ker(ı‡
p)={x + s0(y) : x ∈ RρA(K0(A))/ρA(K0(A)), y ∈ ker((ıp)∗1)} and

ker(ı′p)
‡ ={x+s′0(y) : x∈RρA(K0(B))/ρB(K0(B)), y∈ker((ı′p)∗1)}.(6.2)

If y ∈ ker((ıp)∗1), then, for some factor p of p, py = 0. It follows that pγ(s0(y)) =
0. Therefore γ(s0(y)) must be in ker((ı′p)‡). It follows that

(6.3) γ(ker(ı‡
p)) ⊂ ker((ı′p)

‡).

This implies that γ induces a unique homomorphism γp such that the following
diagram commutes and the lemma follows:

U∞(A)/CU∞(A)
γ→ U∞(B)/CU∞(B)

↓
ı‡p

↓(ı′p)‡

U∞(Ap)/CU∞(Ap)
γp→ U∞(Bp)/CU∞(Bp).

LEMMA 6.2. Let A and B be two unital infinite dimensional separable stably fi-
nite C∗-algebras whose tracial simplexes are non-empty. Let γ : U∞(A)/CU∞(A) →
U∞(B)/CU∞(B) be a continuous homomorphism, hi : Ki(A) → Ki(B) (i = 0, 1) be
homomorphisms and λ : Aff(T(A)) → Aff(T(B)) be an affine homomorphism which
are compatible. Let p and q be two relatively prime supernatural numbers such that
Mp ⊗ Mq = Q. Denote by ∞ the supernatural number associated with the product p
and q. Let EB : B → B⊗ Zp,q be the embedding defined by EB(b) = b⊗ 1, ∀b ∈ B.
Then

(πt ◦ EB)
‡ ◦ γ = γ∞ ◦ ı‡

∞ for all t ∈ (0, 1),(6.4)

(π0 ◦ EB)
‡ ◦ γ = γp ◦ ı‡p, and(6.5)

(π1 ◦ EB)
‡ ◦ γ = γq ◦ ı‡q,(6.6)

with the notation of 6.1, where πt : Zp,q → Q is the point-evaluation at t.

Proof. Fix z ∈ U∞(B)/CU∞(B). Let u ∈ Un(B) for some integer n > 1 such
that u = z in U∞(B)/CU∞(B). Then

(6.7) E‡
B(z) = u⊗ 1.

In other words, E‡
B(z) is represented by w(t) ∈ Mn(B⊗Zp,q) for which

(6.8) w(t) = u⊗ 1 for all t ∈ [0, 1].

Therefore, for any t ∈ (0, 1), πt ◦ E‡
B(z) may be written as

(6.9) πt ◦ E‡
B(z) = u⊗ 1 in U∞(B⊗Q)/CU∞(B⊗Q).
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This implies that

(6.10) πt ◦ E‡
B(z) = (ı∞)‡(z) for all z ∈ U∞(B)/CU∞(B),

where ı∞ : B→B⊗Q is defined by ı∞(b)=b⊗1 for all b∈B. It follows from 6.1 that

(6.11) (πt ◦ EB)
‡ ◦ γ = γ∞ ◦ ı‡

∞ for all t ∈ (0, 1).

The identities (6.5) and (6.6) for end points exactly follow from the same argu-
ments.

The following is standard (see the proof of 9.6 of [18]).

LEMMA 6.3. Let C and A be two unital separable stably finite C∗-algebras, and
let φ1, φ2, φ3 : C → A be three unital homomorphisms. Suppose that

(6.12) [φ1] = [φ2] = [φ3] in KL(C, A), (φ1)] = (φ2)] = (φ3)].

Then

(6.13) Rφ1,φ3 = Rφ1,φ2 + Rφ2,φ3 .

LEMMA 6.4. (cf. Theorem 4.2 of [23]) Let A be a unital infinite dimensional sep-
arable simple C∗-algebra with T(A) 6 1, let C ⊂ A be a unital C∗-subalgebra which
is a unital AH-algebra an let ı : C → A be the embedding. For any λ ∈ Hom(K1(C),
ρA(K0(A))), there exists φ ∈ Inn(C, A) such that there are homomorphisms θi : Ki(C)
→ Ki(Mı,φ) with (π0)∗iθi = idKi(C), i = 0, 1, and the rotation map Rı,φ : K1(C) →
Aff(T(A)) is given by

(6.14) Rı,φ(x) = ρA(x− θ1((π0)∗1(x)) + λ ◦ (π0)∗1(x)) for all x ∈ K1(Mı,φ).

In other words,

(6.15) [φ] = [ı] in KK(C, A)

and the rotation map Rı,φ : K1(Mı,ψ)→ A f f (T(A)) is given by

(6.16) Rı,φ(a, b) = ρA(a) + λ(b)

for some identification of K1(Mı,ψ) with K0(A)⊕ K1(C).

Proof. This follows from the proof of Theorem 4.2 of [23]. In Theorem 4.2 of
[23], it is assumed that ρA(K0(A)) is dense in Aff(T(A)). However, in fact, it is
the condition λ(K1(C)) ⊂ ρA(K0(A)) that is used. Note that, by Theorem 3.10 of
[25], A has property (B1) and (B2) associated C and a constant ∆C (3.6 and 3.8 of
[23]) . Thus this lemma follows exactly the same proof.

LEMMA 6.5. Let A be a unital AH-algebra and let B be a unital separable simple
amenable C∗-algebra with TR(B) 6 1. Suppose that φ1, φ2 : A → B are two monomor-
phisms such that

(6.17) [φ1] = [φ2] in KK(A, B), (φ1)] = (φ2)] and φ
‡
1 = φ

‡
2 .
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Then there exists a monomorphism β : φ2(A) → B such that [β ◦ φ2] = [φ2] in
KK(A, B), (β ◦ φ2)] = φ2], (β ◦ φ2)

‡ = φ
‡
2 and β ◦ φ2 is asymptotically unitarily

equivalent to φ1. Moreover, if

H1(K0(A), K1(B)) = K1(B),

they are strongly asymptotically unitarily equivalent, where

H1(K0(A), K1(B)) = {x ∈ K1(B) : ψ([1A])= x for some ψ ∈ Hom(K0(A), K1(B))}.

Proof. By Lemma 6.4, there is a monomorphism β ∈ Inn(φ2(A), B) such that
[β] = [ı] in KK(φ2(A), B) and

Rı,β = −Rφ1,φ2

where ı is the embedding of φ2(A) to B and Rı,β is viewed as a homomorphism
from K1(A) = K1(φ2(A)) to Aff(T(B)). In other words

(6.18) Rφ2,β◦φ2 = −Rφ1,φ2 .

One also has that

(6.19) [φ2] = [β ◦ φ2] in KK(A, B), (β ◦ φ2)] = (φ2)] and (β ◦ φ2)
‡ = φ

‡
2 .

Thus

(6.20) [φ1] = [β ◦ φ2] in KK(A, B), (φ1)] = (β ◦ φ2)] and φ
‡
1 = (β ◦ φ2)

‡.

It follows from 6.3 and (6.18) that

Rφ1,β◦φ2 = Rφ1,φ2 + Rφ2,β◦φ2 = 0.

Therefore, it follows from Theorem 4.2 of [25] that the map φ1 and β ◦ φ2 are
asymptotically unitarily equivalent.

In the case that H1(K0(A), K1(B)) = K1(B), it follows from Theorem 4.4 of
[25] that β ◦ φ2 and φ1 are strongly asymptotically unitarily equivalent.

LEMMA 6.6. Let C and A be two unital separable stably finite C∗-algebras. Sup-
pose that φ, ψ : C → A are two unital monomorphisms such that

(6.21) [φ] = [ψ] in KL(C, A), φ] = ψ] and Rφ,ψ = 0.

Suppose that {U(t) : t ∈ [0, 1)} is a piecewise smooth and continuous path of unitaries
in A with U(0) = 1 such that

(6.22) lim
t→1

U∗(t)φ(u)U(t) = ψ(u)

for some u ∈ U(C) and suppose that there exists w ∈ U(A) such that ψ(u)w∗ ∈
U0(A). Let

Z = Z(t) = U∗(t)φ(u)U(t)w∗ if t ∈ [0, 1)

and Z(1) = ψ(u)w∗. Suppose also that there is a piecewise smooth continuous path of
unitaries {z(s) : s ∈ [0, 1]} in A such that z(0) = φ(u)w∗ and z(1) = 1. Then, for
any piecewise smooth continuous path {Z(t, s) : s ∈ [0, 1]|} ⊂ C([0, 1], A) of unitaries
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such that Z(t, 0) = Z(t) and Z(t, 1) = 1, there is f ∈ ρA(K0(A)) such that, for all
t ∈ [0, 1] and τ ∈ T(A),

(6.23)
1

2π
√
−1

1∫
0

τ
(dZ(t, s)

ds
Z(t, s)∗

)
ds =

1
2π
√
−1

1∫
0

τ
(dz(s)

ds
z(s)∗

)
ds + f (τ).

Proof. Define

(6.24) Z1(t, s) =


U∗(t− 2s)φ(u)U(t− 2s)w∗ for s ∈ [0, t/2),
φ(u)w∗ for s ∈ [t/2, 1/2),
z(2s− 1) for s ∈ [1/2, 1],

for t ∈ [0, 1) and define

(6.25) Z1(1, s) =


ψ(u)w∗ for s = 0,
U∗(1− 2s)φ(u)U(1− 2s)w∗ for s ∈ (0, 1/2),
z(2s− 1) for s ∈ [1/2, 1].

Thus {Z1(t, s) : s ∈ [0, 1]} ⊂ C([0, 1], A) is a piecewise smooth continuous path
of unitaries such that Z1(t, 0) = Z(t) and Z1(t, 1) = 1. Thus, there is an element
f1 ∈ ρA(K0(A)), such that, for all τ ∈ T(A) and for all t ∈ [0, 1],

f1(τ) =
1

2π
√
−1

1∫
0

τ
(dZ(t, s)

ds
Z(t, s)∗

)
ds− 1

2π
√
−1

1∫
0

τ
(dZ1(t, s)

ds
Z1(t, s)∗

)
ds.

On the other hand, let V(t) = U(t)∗φ(u)U(t) for t ∈ [0, 1) and V(1) = ψ(u).
For any s ∈ [0, 1), since U(0) = 1, U(t) ∈ U(C([0, s], A))0 (for t ∈ [0, s]). There
there are a1, a2, . . . , ak ∈ U([0, s], A)sa such that

U(t) =
k

∏
j=1

exp(iaj(t)) for all t ∈ [0, s].

Then a straightforward calculation shows that

(6.26)
s∫

0

dV(t)
dt

V∗(t)dt = 0.

We also have, for all τ ∈ T(A),

(6.27)
1

2π
√
−1

1∫
0

τ
(dV(t)

dt
V∗(t)

)
dt = Rφ,ψ([V])(τ) =: f (τ) ∈ ρA(K0(A)).
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Then

1
2π
√
−1

1/2∫
0

τ
(dZ1(1, s)

ds
Z1(1, s)∗

)
ds =

1
2π
√
−1

1/2∫
0

τ
(dV(2s− 1)

ds
V(2s− 1)∗

)
ds

= Rφ,ψ([V])(τ) = f (τ) for all τ ∈ T(A).(6.28)

One computes that, for any τ∈T(A) and for any t∈[0, 1), by applying (6.28),

1
2π
√
−1

1∫
0

τ
(dZ1(t, s)

ds
Z1(t, s)∗

)
ds

=
1

2π
√
−1

[ t/2∫
0

τ
( (d(U∗(t− 2s)φ(u)U(t− 2s)w∗)

ds

(U∗(t− 2s)φ(u)U(t− 2s)w∗)∗)ds +
1/2∫

t/2

τ
(dZ1(t, s)

ds
Z1(t, s)∗

)
ds

+

1∫
1/2

τ
(dz(s− 1)

ds
z(2s− 1)∗

)
ds
]

=
1

2π
√
−1

[ t/2∫
0

dV(t− 2s)
ds

V(t− 2s)∗ds+
1∫

1/2

τ
(dz(2s− 1)

ds
z(2s− 1)∗

)
ds
]

=0+
1

2π
√
−1

1∫
1/2

τ
(dz(2s−1)

ds
z(2s−1)∗

)
ds=

1
2π
√
−1

1∫
0

τ
(dz(s)

ds
z(s)∗

)
ds.(6.29)

It then follows from (6.28) that

1
2π
√
−1

1∫
0

τ
(dZ1(1, s)

ds
Z1(1, s)∗

)
ds

=
1

2π
√
−1

[ 1/2∫
0

τ
(dZ1(1, s)

ds
Z1(1, s)∗

)
ds+

1∫
1/2

τ
(dz(2s−1)

ds
z(2s−1)∗

)
ds
]

= f (τ) +
1

2π
√
−1

1∫
0

τ
(dz(s)

ds
z(s)∗

)
ds.(6.30)

The lemma follows.

REMARK 6.7. Note that the Lemma 6.6 applies to Mn(C) and Mn(A) for all
integer n > 1. So it works for all u ∈ Un(C).
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LEMMA 6.8. Let A be a unital C∗-algebra satisfying that A ⊗ Mr is an AH-
algebra for all supernatural number r with infinite type (in particular, all AH-algebra
satisfies this property), and let B be a unital simple C∗-algebra in N ∩ C. Let κ ∈
KLe(A, B)++ and λ : Aff(T(A)) → Aff(T(B)) be an affine homomorphism which
are compatible (see Definition 2.4). Then there exists a unital homomorphism φ : A→ B
such that

[φ] = κ and (φ)] = λ.

Moreover, if γ ∈ U∞(A)/CU∞(A) → U∞(B)/CU∞(B) is a continuous homomor-
phism which is compatible with κ and λ, then one may also require that

(6.31) φ‡|U∞(A)0/CU∞(A) = γ|U∞(A)0/CU∞(A) and (φ)‡ ◦ s1 = γ ◦ s1 − h,

where s1 : K1(A)→ U∞(A)/CU∞(A) is a splitting map (see 2.3), and the following is
a homomorphism:

h : K1(A)→ RρB(K0(B))/ρB(K0(B)).
Moreover, we have the following, where EB is as defined in 6.2:

(6.32) (φ⊗ idZp,q)
‡ ◦ s1 = EB ◦ γ ◦ s1 − h.

Proof. Let p and q be two relative prime supernatural numbers of infinite
type such that Q = Mp⊗Mq. Let Ap = A⊗Mp, Aq = A⊗Mq, Bp = B⊗Mp and
Bq = B⊗Mq. Then Ap and Aq are AH-algebras, and TR(Bp) 6 1 and TR(Bq) 6
1. Let κp ∈ KL(Ap, Bp), κq ∈ KL(Ap, Bp), λp : Aff(T(Ap)) → Aff(T(Bp)), λq :
Aff(T(Aq)) → Aff(T(Bq)), γp : U(Ap)/CU(Ap) → U(Bp)/CU(Bp) and γq :
U(Aq)/CU(Aq)→ U(Bq)/CU(Bq) be induced by κ, λ and γ, respectively. Note
that Ap, Aq, Bp and Bq are all unital AH-algebras. Moreover, since Mr

∼= Mr⊗Mr,
for any supernatural number r of infinite type (see 2.5), Bp and Bq are unital
simple AH-algebras of slow dimension growth. It follows from Corollary 6.11 of
[21] that there is a unital homomorphism φp : Ap → Bp such that

(6.33) [φp] = κp in KL(Ap, Bp), (φp)
‡ = γp and (φp)] = λp.

For the same reason, there is also a unital homomorphism ψq : Aq→Bq such that

(6.34) [ψq] = κq in KL(Aq, Bq), (ψq)
‡ = γq and (ψq)] = λq.

Define φ = φp ⊗ idMq and ψ = ψq ⊗ idMp . From above, one has that

[φ] = [ψ] in KL(A⊗Q, B⊗Q), φ] = ψ] and φ‡ = ψ‡.

Since both Ki(B⊗Q) are divisible (i = 0, 1), one actually has

[φ] = [ψ] in KK(A⊗Q, B⊗Q).

It follows from 6.5 that there is β0 ∈ Inn(ψ(A⊗ Q), B⊗ Q) such that if ıψ(A⊗Q)

denotes the embedding of ψ(A⊗Q) into B⊗Q,

[β0] = [ıψ(A⊗Q)] in KK(ψ(A⊗Q), B⊗Q),(6.35)

(β0)] = (ıψ(A⊗Q))] and (β0)
‡ = (ıψ(A⊗Q))

‡
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such that φ and β0 ◦ ψ are strongly asymptotically unitarily equivalent (since in
this case H1(K0(A⊗Q), K1(B ⊗ Q)) = K1(B ⊗ Q)). Note that one may identify
T(Bq), T(Bp) and T(B⊗Q). Moreover,

ρB⊗Q(K0(B⊗Q)) = RρB(K0(B)) = ρBq(K0(Bq)).

Denote by ıp : Bq → B⊗Q the embedding a 7→ a⊗ 1Mp , and note that the image
of ıp ◦ ψq is in the image of ψ. Thus, by 3.5, Rβ0◦ıp◦ψq,ıp◦ψq

is in

Hom(K1(Mβ0◦ıp◦ψq,ıp◦ψq
), ρBq(K0(Bq))).

Note that

[β0 ◦ ıp ◦ ψq] = [ıp ◦ ψq] in KK(Aq, Bq).

By 6.4, there exists α ∈ Inn(ψq(Aq), Bq) such that

[α] = [ıψq(Aq)] in KK(Bq, Bq),

where ıψq(Aq) is the embedding of ψq(Aq) into Bq, and

Rα,ıψq(Aq)
= −Rβ0◦ıp◦ψq,ıp◦ψq

.

As computed in the proof of 6.5, one has that

[ıp ◦ α ◦ ψq] = [β0 ◦ ıp ◦ ψq] in KK(Aq, B⊗Q),(6.36)

(ıp ◦ α ◦ ψq)] = (β0 ◦ ıp ◦ ψq)] and (ıp ◦ α ◦ ψq)
‡ = (β0 ◦ ıp ◦ ψq)

‡, and(6.37)

Rıp◦α◦ψq ,β0◦ıp◦ψq
= 0.

It follows from 7.2 and Theorem 4.2 of [25] that ıp ◦ α ◦ ψq and β0 ◦ ıp ◦ ψq
are strongly asymptotically unitarily equivalent.

Consider the maps

(β0 ◦ ıp ◦ ψq)⊗ idMp , ı ◦ β0 ◦ ψ : A⊗Mq ⊗Mp → (B⊗Mq ⊗Mp)⊗Mp,

where ı : B⊗Q→ (B⊗Q)⊗Mp is the embedding b→ b⊗ 1Mp for all b ∈ B⊗Q.
Identify β0 ◦ ψ(B ⊗ Mq ⊗ Mp) ⊗ Mp with β0 ◦ ψ(B) ⊗ β0 ◦ ψ(Mq) ⊗ β0 ◦

ψ(Mp) ⊗ Mp, and consider the automorphism θ on β0 ◦ ψ(B) ⊗ β0 ◦ ψ(Mq) ⊗
β0 ◦ ψ(Mp)⊗Mp defined by

θ : a⊗ b⊗ c⊗ d 7→ a⊗ b⊗ d⊗ c.

Then

[θ|β0(Mq)⊗β0(Mp)⊗Mp
] = [idβ0(Mq)⊗β0(Mp)⊗Mp

] in

KK(β0(Mq)⊗β0(Mp)⊗Mp, β0(Mq)⊗β0(Mp)⊗Mp).

Since K1(β0(Mq)⊗β0(Mp)⊗Mp) = {0}, it follows from Theorem 4.2 of [25] that
θ|β0(Mq)⊗β0(Mp)⊗Mp

is strongly asymptotically unitarily equivalent to the identity
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map. Therefore θ is strongly asymptotically unitarily equivalent to the identity
map. Note that for any a ∈ A, b ∈ Mq, and c ∈ Mp, one has

θ((β0 ◦ ıp ◦ ψq)⊗ idMp)(a⊗ b⊗ c)) = θ(β0(ψq(a⊗ b)⊗ 1Mp)⊗ c)

= β0(ψq(a⊗ b)⊗ c)⊗ 1Mp

= ı ◦ β0 ◦ ψ(a⊗ b⊗ c).(6.38)

Thus, the map (β0 ◦ ıp ◦ ψq) ⊗ idMp is strongly asymptotically unitarily
equivalent to ı ◦ β0 ◦ ψ.

Define a map Ψq : A⊗Mq ⊗Mp → B⊗Mq ⊗Mp ⊗Mp by

(6.39) Ψq : a⊗ b⊗ c 7→ α(ψq(a⊗ b))⊗ c⊗ 1Mp .

Note that for all a⊗ b⊗ c ∈ A⊗Mq ⊗Mp,

(6.40) ((ıp ◦ α ◦ ψq)⊗ idMp)(a⊗ b⊗ c) = α(ψq(a⊗ b))⊗ 1Mp ⊗ c.

Then the same argument as above shows that Ψq is strongly asymptotically uni-
tarily equivalent to (ıp ◦ α ◦ ψq)⊗ idMp .

Since φ and β0 ◦ ψ are strongly asymptotically unitarily equivalent, one has
that the map ı ◦ φ is strongly asymptotically unitarily equivalent to ı ◦ β0 ◦ ψ, and
hence strongly asymptotically unitarily equivalent to (β0 ◦ ıp ◦ ψq) ⊗ idMp , and
therefore strongly asymptotically unitarily equivalent to (ıp ◦ α ◦ ψq) ⊗ idMp . It
follows that the map ı ◦ φ is strongly asymptotically unitarily equivalent to Ψq.
Thus there is a continuous path of unitaries {w(t) : t ∈ [0, 1)} in B⊗Mq ⊗Mp ⊗
Mp with w(0) = 1 such that

lim
t→1

w∗(t)(ı ◦ φ(a))w(t) = Ψq(a), ∀a ∈ A⊗Q.

Pick an isomorphism χ′ : Mp ⊗ Mp → Mp, and consider the induced iso-
morphism χ : B⊗Mq ⊗Mp ⊗Mp → B⊗Mq ⊗Mp. Note that (χ′)−1 is strongly
asymptotically unitarily equivalent to the map ı′ : Mp → Mp ⊗ Mp defined by
a 7→1 ⊗ a. Then, it is straightforward to verify that χ ◦ ı ◦ φ is strongly asymp-
totically unitarily equivalent to φ, and χ ◦Ψq is strongly asymptotically unitarily
equivalent to (α ◦ ψq)⊗ idMp . Thus, there is a continuous path of unitaries u(t) in
B⊗Mp ⊗Mq (one can be made it into piecewise smooth; see Lemma 4.1 of [18])
such that u(0) = 1 and

(6.41) lim
t→1

ad u(t) ◦ φ(a) = (α ◦ ψq)⊗ idMp(a) for all a ∈ A⊗Q.

This provides a unital homomorphism Φ : A⊗Zp,q → B⊗Zp,q such that,
for each t ∈ (0, 1),

(6.42) πt ◦Φ(a) = ad u(t) ◦ φ(a(t)) for all a ∈ A⊗Zp,q.

Denote by ϑ a unital embedding Z → Zp,q, and let j : Zp,q → Z be a unital
homomorphism induced by the stationary inductive limit

Zp,q
ϑ→ Zp,q

ϑ→ Zp,q
ϑ→ · · · → Z
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given by 3.4 of [29], where the map ϑ is regarded as its restriction to Zp,q.
As in the proof of 7.1 of [33] (note that it follows from the same proof that

Proposition 4.6 of [33] also works for homomorphisms which are not necessary
being injective),

((idB ⊗ j) ◦Φ ◦ (idA ⊗ ϑ))∗i = κi i = 0, 1,(6.43)

((idB ⊗ j) ◦Φ ◦ (idA ⊗ ϑ))] = λ.(6.44)

In fact, one has that

(6.45) Φ](a⊗ b)(τ ⊗ µ) = γ(a(τ))µ(b) for all a ∈ Asa and b ∈ (Zp,q)sa.

By considering ((idB ⊗ j) ◦ Φ ◦ (idA ⊗ i)) ⊗ idC(Xk)
: A ⊗ C(Xk) → B ⊗

C(Xk) for some suitable compact metric spaces Xk, the same argument shows
that, in fact,

(6.46) [(idB ⊗ j) ◦Φ ◦ (idA ⊗ ϑ)] = κ.

Define the map H = (idB ⊗ j) ◦ Φ ◦ (idA ⊗ ϑ). Then [H] = κ in KL(A, B)
and H] = λ.

Note that it follows from (6.45) that

(6.47) Φ‡|U(A)0/CU(A) = E‡
B ◦ γ|U(A)0/CU(A).

Let z ∈ U(A)/CU(A). Then, one has

(6.48) H‡ = γ∞ = ı‡∞ ◦ γ.

On the other hand, for each z ∈ U(A)/CU(A), there is a unitary w ∈ B⊗ Zp,q
such that

(6.49) πt(w) = πt′(w) for all t, t′ ∈ [0, 1] and E‡
B ◦ γ(z) = w.

Since πt(w) ∈ B is constant, one may use w for its evaluation at t. Let v0 ∈ U(A)
be such that v0 = z. For any t ∈ (0, 1), define

(6.50) Z(t) = πt ◦Φ(v0)w∗ = u(t)∗φ(v0)u(t)w∗.

Let Z(t, s) be a piecewise smooth continuous path of unitaries in B⊗ Zp,q such
that Z(t, 0) = Z(t) and Z(t, 1) = 1. Denote by τ0 the unique tracial state in T(Mr),
where r is a supernatural number. For each sµ ∈ T(Zp,q), one may write

sµ(a) =
1∫

0

τ0(a(t))dµ(t),

where µ is a probability Borel measure on [0, 1].
Then, for τ ∈ T(B) and sµ ∈ T(Zp,q), by applying 6.6,

Det(Z)(τ ⊗ sµ)

=
1

2π
√
−1

1∫
0

(τ ⊗ sµ)
(dZ(t, s)

ds
Z(t, s)∗

)
ds
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=
1

2π
√
−1

1∫
0

1∫
0

(τ ⊗ τ0)
(dZ(t, s)

ds
Z(t, s)∗

)
dµ(t)ds

=

1∫
0

( 1
2π
√
−1

1∫
0

(τ ⊗ τ0)
(dZ(t, s)

ds
Z(t, s)∗

)
)ds
)

dµ(t)

=

1∫
0

Det(φ(v0)w∗)(τ)dµ(t) + f (τ) for some f ∈ ρB(K0(B)).(6.51)

By 6.2 and (6.42),

(6.52) Det(Z)(τ⊗sµ)=Det(φ(v0)w∗)(τ)+ f (τ)∈RρB(K0(B))⊆Aff(T(B⊗Zp,q).

Thus, Φ‡(z)(EB ◦ λ(z)∗) defines a homomorphism from the group

U(A)/CU(A)

into RρB(K0(B))/ρB(K0(B)) which will be denoted by h. By (6.46),

(6.53) h|U(A)0/CU(A) = 0.

Thus h induces a homomorphism h : K1(A)→ RρB(K0(B))/ρB(K0(B)).

In [18], it was shown that, given two unital separable simple C∗-algebras A
and B in N ∩ C, if there is an isomorphism on the Elliott invariant, i.e.,

(K0(A), K0(A)+, [1A], K1(A), T(A), rA) ∼= (K0(B), K0(B)+, [1B], T(B), rB),

then A ∼= B. The following corollary is a more general statement.

COROLLARY 6.9. Let A and B be two unital separable C∗-algebras inN ∩C. Sup-
pose that there is a homomorphism κi : Ki(A) → Ki(B) such that κ0 is order preserving
and κ0([1A]) 6 [1B] and there is a continuous affine map λ : Aff(T(A)) → Aff(T(B))
which is compatible with κ0. Then there is a homomorphism φ : A→ B such that

(φ)∗i = κi, i = 0, 1 and φ] = λ.

Proof. Consider the splitting short exact sequence:

0→ ExtZ(K∗(A), K∗+1(B))→ KK(A, B)→ Hom(K∗(A), K∗(B))→ 0.

There exists an element κ ∈ KK(A, B) such that the image of κ in

Hom(K∗(A), K∗(B))

is exactly the same as that κ∗. Let κ in KL(A, B) be the image of κ. There is a pro-
jection p ∈ B such that [p] = κ0([1A]). Let B1 = pBp. Then κ ∈ KLe(A, B1)

++ and
λ and κ are compatible. It follows from 6.8 that there is a unital homomorphism
φ : A→ B1 ⊂ B such that

[φ] = κ and φ] = λ.
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THEOREM 6.10. Let C be a unital C∗-algebra such that C⊗Mr is an AH-algebra
for all supernatural number r with infinite type, and let A be a unital simple C∗-algebra
in N ∩ C which is Z-stable. Then, for any κ ∈ KLTe(C, A)++ and a continuous homo-
morphism γ : U∞(C)/CU∞(C) → U∞(A)/CU∞(A) which are compatible, there is a
unital monomorphism φ : C → A such that

([φ], φ]) = κ and φ‡ = γ,

provided that
(i) K1(C) is a free group, or

(ii) RρA(K0(A))/ρA(K0(A)) = {0}, or
(iii) RρA(K0(A))/ρA(K0(A)) is torsion free and K1(C) is finitely generated.

Proof. It follows from 6.8 that there is a unital monomorphism ψ : C → A
such that

(ψ, ψ]) = κ, ψ‡|U(C)0/CU(C) = λ|U(C)0/CU(C), and

(ψ⊗ idZp,q)
‡ ◦ s1 = E‡

B ◦ γ ◦ s1 − h,(6.54)

where h : K1(C) → RρA(K0(A))/ρA(K0(A)) is a homomorphism . If K1(C) is
free, there exists a homomorphism h1 : K1(C) → RρA(K0(A)) which induces h1.
In the case that

RρA(K0(A))/ρA(K0(A))

is torsion free and K1(C) is finitely generated, then one also obtains a such h1.
Since RρA(K0(A)) is torsion free, h1 induces a homomorphism

h1 : K1(C)/(Tor(K1(C)))→ RρA(K0(A)).

Since the map from K1(C)/(Tor(K1(C)))→ (K1(A)/(Tor(K1(A)))⊗Qp is injec-
tive, one obtains a homomorphism h1,p : K1(C⊗Mp)→RρA(K0(A)) such that

(6.55) h1 = h1,p ◦ (ıp)∗1,

where ır : A→ A⊗Mr is the embedding so that ır(a) = a⊗ 1 for all a ∈ A (r is a
supernatural number). Similarly, there is a homomorphism h1,q : K1(C⊗Mq)→
RρA(K0(A)) such that

(6.56) h1 = h1,q ◦ (ıq)∗1.

Put C′r = ((ψ⊗ idMr)(C ⊗ Mr)), where r is a supernatural number. It fol-
lows from 6.4 that there is a monomorphism β0 ∈ Inn(C′p, Ap) such that

[β0] = [ıC′p ] in KK(C′p, Ap),

(β0)] = ıC′p ], β
‡
0 = ıC′p

‡ and Rψ⊗idMp ,β0◦(ψ⊗idMp )
= h1,p,(6.57)

where ıC′p is the embedding of C′p.
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Similarly, there is a monomorphism β1 ∈ Inn(C′q, Aq) such that

[β1] = [ıC′q ] in KK(C′q, Aq),

(β1)] = ıC′q ], β
‡
1 = ıC′q

‡ and Rψ⊗idMq ,β1◦(ψ⊗idMq )
= h1,q,(6.58)

where ıC′q is the embedding of C′q.
As in the proof of 6.8, by applying 6.5 and its proof, one has a monomor-

phism β2 ∈ Inn(β1 ◦ (ψ ⊗ idMq)(Cq), Aq) and a piecewise smooth continuous
path of unitaries {U(t) : t ∈ [0, 1)} of A⊗Q such that U(0) = 1 and

[(β2 ◦ β1 ◦ (ψ⊗ idMq))] = [β0 ◦ (ψ⊗ idMp)] in KK(Cq, Aq),

(β2 ◦ β1 ◦ (ψ⊗ idMq))] = (β0 ◦ (ψ⊗ idMp))] and

(β2 ◦ β1 ◦ (ψ⊗ idMq))
‡ = (β0 ◦ (ψ⊗ idMp))

‡.(6.59)

Moreover, if denote by ψ0 = β0 ◦ (ψ ⊗ idMp) and ψ1 = (β2 ◦ β1 ◦ (ψ ⊗
idMq)), one has that

(6.60) lim
t→1

U(t)∗(ψ0 ⊗ idMq)(a)U(t) = (ψ1 ⊗ idMp)(a)

for all a ∈ A⊗Q. In particular,

(6.61) Rψ0⊗idMq ,ψ1⊗idMp
= 0.

Let Φ : A⊗Zp,q → A⊗Zp,q be defined by

Φ(a⊗ b)(t)=U∗(t)((ψ0⊗idMq(a⊗b(t)))U(t)) for all t∈ [0, 1) and

Φ(a⊗ b)(1) = ψ1 ⊗ idMp(a⊗ b(1)),(6.62)

for all a⊗ b ∈ A⊗Zp,q.
We claim that

(6.63) Φ‡ ◦ (EA ◦ ψ)‡ ◦ s1 = (EA)
‡ ◦ γ ◦ s1.

To compute Φ‡, let x ∈ s1(K1(C)) and v0 ∈ U(C) such that v0 = x. There is
w ∈ U(A⊗Zp,q)/CU(A⊗Zp,q) such that w(t) = w(t′) for all t, t′ ∈ [0, 1] and

(6.64) E‡
A ◦ γ ◦ s1(x) = w.

Let Z = (Φ ◦ (ψ ⊗ idZp,q)(v0))w∗ ∈ A ⊗ Zp,q. Note that Z ∈ U(A ⊗ Zp,q)0.
Suppose that there is a piecewise smooth continuous path {Z(t, s) : s ∈ [0, 1]} ⊂
A⊗Zp,q such that Z(t, 0) = Z(t) and Z(t, 1) = 1. Then

Det(Z(t, s))

=Det(Φ ◦ ((ψ⊗idZp,q)(v0))(ψ⊗idZp,q(v0)
∗))+Det((ψ⊗idZp,q)(v0)w∗)

=Det(Φ ◦ ((ψ⊗ idZp,q)(v0))(ψ⊗ idZp,q(v0)
∗)) + h ◦ s1(x).(6.65)
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It follows from 6.6 that

Det(Φ ◦ ((ψ⊗idZp,q)(v0))(ψ⊗idZp,q(v0)
∗))=Det(β0 ◦ ψ(v0)ψ(v0)

∗)+ρA(K0(A))

=Rβ0◦ψ,ψ([v0]) + ρA(K0(A))

=−h1,p ◦ s1(x) + ρA(K0(A)).(6.66)

Therefore, by (6.55) and by (6.65),

Det(Z(t, s))(τ ⊗ sµ) ∈ ρA(K0(A)).

This proves the claim.
Regard ψ as a map to A⊗Z . Denote by j : Zp,q → Z the unital homomor-

phism induced by the stationary inductive limit decomposition of Z , and denote
by ϑ : Z → Zp,q the unital embedding induced by tensoringZ (Zp,q isZ-stable).
Consider

φ = (idA ⊗ j) ◦Φ ◦ (idA ⊗ ϑ) ◦ ψ.

One then checks that

[ψ] = [φ] in KL(C, A), φ] = ψ] and φ‡ = γ.

REMARK 6.11. It follows from Proposition 3.6 of [17] that, if TR(A)61, then

RρA(K0(A))/ρA(K0(A)) = {0}.

So Theorem 6.10 recovers a version of Theorem 8.6 of [18].
Now suppose that in 6.10,

U∞(C)/CU∞(C) = U∞(C)0/CU∞(C)⊕ G1 ⊕ Tor(K1(C)),

where G1 is identified with a free subgroup of K1(C). From the proof of Theo-
rem 6.10, we see that, if κ∈KLTe(C, A)++ and γ :U∞(C)/CU∞(C)→U(A)/CU(A)
which is compatible to κ are given, there is a unital monomorphism φ : C → A
such that ([φ], φ]) = κ and, for all z ∈ Tor(K1(C)),

φ|U∞(C)0/CU∞(C)⊕G1
= γ|U∞(C)0/CU∞(C)⊕G1

and

φ‡(z)−γ(z) ∈ RρA(K0(A))/ρA(K0(A)).
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