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ABSTRACT. We consider k-hyponormality and n-contractivity (k, n = 1, 2, . . .)
as “weak subnormalities” for a Hilbert space operator. It is known that k-
hyponormality implies 2k-contractivity; we produce some classes of weighted
shifts including a parameter for which membership in a certain n-contractive
class is equivalent to k-hyponormality. We consider as well some extensions of
these results to operators arising as restrictions of these shifts, or from linear
combinations of the Berger measures associated with the shifts.
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1. INTRODUCTION

There has been considerable recent study of k-hyponormality and
n-contractivity (with k and n positive integers) as two examples of “weak subnor-
malities” for Hilbert space operators. (For k-hyponormality, the better-established
study, see the foundational paper [4], and, for a sampling, [5], [6], [7], and [8]; for
more recent n-contractivity work see [1], [10], [11], and [13]; further weak subnor-
malities which we do not consider here are to be found, for example, in [12] and
[14].) We are concerned in this paper with the question of what membership in a
k-hyponormal class implies about membership in some n-contractive class, and
vice versa. We begin with some definitions.

Let H be a separable complex Hilbert space and T a bounded linear op-
erator on H. Recall that T is normal if T∗T = TT∗ and T is subnormal if T is
the restriction of a normal operator to an invariant subspace (see [3]). As a yet
weaker condition, authors as noted above have considered k-hyponormality: T
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is k-hyponormal, k = 1, 2, . . ., if
I T∗ T∗2 . . . T∗k

T T∗T T∗2T . . . T∗kT
T2 T∗T2 T∗2T2 . . . T∗kT2

...
...

...
Tk T∗Tk T∗2Tk . . . T∗kTk

 > 0.

When k = 1, we call the operator simply hyponormal, and the condition
reduces to the familiar T∗T > TT∗. The study of these classes is motivated in part
by the following Bram–Halmos characterization of subnormality (see [2] and [9]).

THEOREM 1.1. T is subnormal if and only if it is k-hyponormal for all k.

There is an alternative characterization of subnormality (under the mild re-
striction that the operator is a contraction: ‖T‖ 6 1) which motives another col-
lection of classes. We say T is n-contractive, n = 1, 2, . . . if

n

∑
j=0

(−1)j
(

n
j

)
T∗ jT j > 0.

Observe that “1-contractive” is simply “contractive.” The Agler–Embry charac-
terization is essentially to be found in [1] (using the notion of hypercontractivity,
which for this theorem is equivalent).

THEOREM 1.2. A contraction T is subnormal if and only if it is n-contractive for
all n.

Recent study has concerned these classes for various finite k, and, in partic-
ular, efforts to compare and contrast the k-hyponormal and n-contractive classes
(e.g., [13]). The situation may be captured in a “step-ladder,” with the natural
questions what achieving height k on one side says about where you are on the
other.

subnormal

1-HN

2-HN

3-HN

k-HN

1-C

2-C

3-C

n-C

2k-C

One “left-to-right” implication is not difficult: it is known that if T (contrac-
tive) is k-hyponormal then it is 2k-contractive ([13]). One cannot expect too much
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in the reverse direction, because it is possible to perturb a recursively generated
weighted shift so that 1-HN⇐ 2-HN⇔ subnormal but so that all the n-C classes
are distinct in n.

A standard testing ground for these questions has been the class of weighed
shifts, hearkening back to [19]. Consider `2 with its standard basis {ej}∞

j=0 (note
that we begin indexing at zero). Given a weight sequence α :

√
α0,
√

α1,
√

α2, . . .,
we define the weighted shift Wα on `2 by Wαej =

√
αjej+1, and extend by linearity.

The moments are γ0 = 1 and γj =
j−1
∏
i=0

αi, j > 1. Some particular shifts we consider

are the Agler shifts Aj, j = 2, 3, . . . having weight sequence αj :
√

1
j ,
√

2
j+1 , . . .,

and which were used by Agler as model operators for n-contractive operators
([1]). Observe that A2 is the Bergman shift.

A common device has been to take a weighted shift known to be subnormal
and to “perturb” it in some way. For example, one can introduce a parameter into
the m-th weight and consider what classes of interest result for various values of
the parameter; alternatively, one may form a “backstep extension” of a known
shift by prefixing one or more (parameter) weights to the weight sequence to
form a new one. We will consider perturbations in the zeroth weight, yielding a

weight sequence αj(x) :
√

x
j ,
√

2
j+1 , . . ., and write Aj(x) for the shift.

It is well-known that the tests for k-hyponormality or n-contractivity sim-
plify considerably for weighted shifts. A weighted shift is k-hyponormal if and
only if certain Hankel moment matrices are positive for m = 1, 2, . . . :

γm γm+1 γm+2 . . . γm+k
γm+1 γm+2 . . . γm+k+1
γm+2 . . . . . . γm+k+2

...
...

...
γm+k γm+k+1 . . . γm+2k

 > 0.

A weighted shift is n-contractive if and only if
n

∑
j=0

(−1)j
(

n
j

)
γm+j > 0, m = 0, 1, . . . .

It is easy to check that for perturbations in the zeroth weight (that is,
√

α0)
it is the m = 0 versions of these that are the only ones in question.

Recall finally that a weighted shift has an associated Berger measure; in
particular, there is a probability measure µj associated with each Agler shift Aj so
that

γn =

1∫
0

tndµj(t), n = 0, 1, . . . .

In fact, µj(t) = (j− 1)(1− t)(j−2).
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2. k-HYPONORMALITY AND n-CONTRACTIVITY FOR THE PERTURBED AGLER SHIFTS

We turn now to consideration of membership in these k-hyponormality and
n-contractivity classes for the various Agler Aj as perturbed in the zeroth weight
to Aj(x). Using the Berger measure, n-contractivity for some Aj(x) is easy: with
the γi those for Aj, one needs

0 6 1 +
n

∑
i=1

(−1)ix
(

n
i

)
γi = 1− x + x ·

n

∑
i=0

(−1)i
(

n
i

)
γi =

= 1− x + x ·
1∫

0

n

∑
i=0

(−1)i
(

n
i

)
tidµj(t) = 1− x + x ·

1∫
0

(1− t)ndµj(t).

Note for future use that this may be expressed as

(2.1) x 6
1

1−
∫ 1

0 (1− t)ndµj(t)
.

In any event, what results is that Aj(x) is n-contractive if and only if x 6 n+j−1
n .

The matter of k-hyponormality of Aj(x) is harder, as might be expected from
the fact that it is intrinsically a matrix condition. For k-hyponormality we need
(with the γi those for Aj)

1 xγ1 xγ2 . . . xγk
xγ1 xγ2 . . . xγk+1
xγ2 . . . . . . xγk+2

...
...

...
xγk xγk+1 . . . xγ2k

 > 0.

It is known (see [5]) that the set of x for which such a perturbation is k-
hyponormal is an interval of the form [0, x0], and (using the nested determinant
test) that x0 is the (unique) positive value for which the determinant of this matrix
is zero. It is clearly equivalent to find that positive value so that

det


1
x γ1 γ2 . . . γk

γ1 γ2 . . . γk+1
γ2 . . . . . . γk+2
...

...
...

γk γk+1 . . . γ2k

 = 0.

(There is an opportunity for an “off-by-one” error here: the matrix relevant to k-
hyponormality is of size k + 1 by k + 1 and not size k by k.) So consider the matrix
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Dk+1(y) defined by

Dk+1(y) :=


y γ1 γ2 . . . γk

γ1 γ2 . . . γk+1
γ2 . . . . . . γk+2
...

...
...

γk γk+1 . . . γ2k

 .

As well, set Hk+1 = Dk+1(1) and let Ĥk+1 be the lower right k by k submatrix
of Hk+1. (Note that these are just, respectively, a moment matrix of the origi-
nal unperturbed shift and one of its submatrices). Set dk+1(y) = det(Dk+1(y)),
hk+1 = det(Hk+1) and ĥk+1 = det(Ĥk+1).

LEMMA 2.1. One has dk(y) = (y− 1)ĥk + hk, k = 2, 3, . . ..

Proof. Observe that

dk(y) = y · ĥk + terms not involving y =: y · ĥk + fk.

But hk = dk(1) = ĥk + fk, so fk = hk − ĥk and the result follows.

It follows easily that the x we are interested in, for k-hyponormality, are

(2.2) x 6
1

1− hk+1
ĥk+1

.

Matters therefore come down to finding determinants of the moment ma-
trices, and certain special submatrices, for the original weighted shifts Aj. In the
case of the Bergman shift, j = 2, what results are the Hilbert matrix and a sub-
matrix. These are Cauchy matrices, and the determinants are available from that
theory. For general j, we need further tools.

We rely here on material from [17], in which one may find original refer-
ences. A sequence of polynomials (pn)n>0 is said to be (formally) orthogonal
if each pn has degree n and if there exists a linear functional L and a sequence
(cn)n>0 of non-zero numbers such that L(pn, pm) = cnδmn where δmn is the Kro-
necker delta. According to Favard’s theorem, there is an intrinsic test to see if a
family of polynomials is formally orthogonal.

THEOREM 2.2 (Theorem 12, [17]). Let (pn)n>0 be a sequence of monic polyno-
mials, with each pn having degree n. The sequence is (formally) orthogonal if and only if
there exist sequences (an)n>1 and (bn)n>1 with bn 6= 0 for all n > 1 such that

pn+1(x) = (an + x)pn(x)− bn pn−1(x), n > 1,

with p0(x) = 1 and p1(x) = x + a0.

We also have the following from [17].
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THEOREM 2.3 (Theorem 11, [17]). Let (ωn)n>0 be a sequence of numbers with

generating function
∞
∑

k=0
ωkxk written in the form

∞

∑
k=0

ωkxk =
ω0

1 + a0x− b1x

1+a1x− b2x2
1+a2x−···

.

Then the Hankel determinant det(ωi+j)06i,j6n−1 equals ωn
0 bn−1

1 bn−2
2 · · · b2

n−2bn−1.

The connection between the theorems is that if the (ωn)n>0 are the moments
L(xn) of the linear functional L, then the an and bn of the two theorems coincide,
and we have the following from Theorem 13 of [17].

THEOREM 2.4. Let (pn)n>0 be a sequence of monic polynomials as in Theorem 2.2
with associated linear functional L, with recurrence

(2.3) pn+1(x) = (an + x)pn(x)− bn pn−1(x), n > 1,

and initial conditions p0(x) = 1 and p1(x) = x + a0. Let (ωn)n>0 be the sequence of
moments L(xn) of L. Then

(2.4) det(ωi+j)06i,j6n−1 = ωn
0 bn−1

1 bn−2
2 · · · b2

n−2bn−1.

In our situation for k-hyponormality (and some Aj(x) with j fixed) we need
the determinants of the k + 1 by k + 1 moment matrix Hk+1 and its k by k subma-
trix Ĥk+1. For the first of these, the linear functional L will be integration against
µj(t) = (j− 1)(1− t)(j−2). For the Ĥ, it is clear that the appropriate linear func-
tional is integration against (j − 1)t2 · (1 − t)(j−2), since we want to produce a
matrix with γ2 as the upper left entry. A glance at the determinant formula (2.4)
makes it clear that, since we know ω̂0 = γ2 = 2

j(j+1) , we need not compute the
normalization explicitly. What is needed are the sequences of orthogonal poly-
nomials for these two cases, or, more precisely for our needs, the appropriate
sequences of coefficients bn appearing in the recurrences. Luckily, we need not
produce these by hand.

The polynomials we need are (versions of) the Jacobi polynomials, which
are available at [15]. There one finds the Jacobi polynomials, orthogonal with
respect to integration

1∫
−1

(·)(1− x)α(1 + x)β dx, α, β > −1.

Also to be found there is a normalized recurrence relation

xpn(x) = pn+1(x) +
β2 − α2

(2n + α + β)(2n + α + β + 2)
pn(x)

+
4n(n + α)(n + β)(n + α + β)

(2n + α + β− 1)(2n + α + β)2(2n + α + β + 1)
pn−1(x).(2.5)
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Upon the substitution x → 2t− 1, the polynomials pn(2t− 1) are orthogonal
with respect to

(2.6)
1∫

0

(·)(1− t)αtβ dt.

To achieve monotonicity we must take pn(2t−1)
2n ; using these polynomials, the re-

currence relation (2.5) yields that the bn of Theorems 2.2, 2.3, and 2.4 are

(2.7) bn =
n(n + α)(n + β)(n + α + β)

(2n + α + β)(2n + α + β)2(2n + α + β + 1)
.

From now on we view the j of Aj (some j > 2) as fixed, and suppress it
from the notation wherever possible. For hn+1 = det(Hn+1) we need coefficients
relevant to integration against µj(t) = (j− 1)(1− t)(j−2); observe that this is (a
normalized version of) the kernel in (2.6) with α = j− 2 and β = 0. From now
on we will reserve “bn” for the coefficients as in Theorems 2.2, 2.3, and 2.4 for
this kernel. For ĥn+1 = det(Ĥn+1) we need coefficients relevant to integration
against µ̂j(t) = (j− 1)(1− t)(j−2)t2; this is (a multiple of) the kernel in (2.6) with
α = j− 2 and β = 2. From now on we will use “b̂n” for the coefficients relevant
to this kernel.

We need a computational lemma.

LEMMA 2.5. For fixed j, and n = 2, 3, . . .,

(2.8) ĥn+1 =
(n + j− 1)(n + 1)

j− 1
hn+1.

Proof. The proof will be by weak induction; recall that we know that γ0 = 1
(this is ω0, the upper left hand entry in the matrix H), and also that ω̂0 = γ2 =

2
j(j+1) is the upper left hand entry in the matrix Ĥ. One may verify directly that

ĥ2 = ω̂1
0 = 2

j(j+1) and that h2 = ω2
0b1 = (j−1)2

(j−1)j2(j+1) , and this yields (2.8) in the

case n = 2. Similarly, using ĥ3 = ω̂2b̂1 and h3 = ω3b2
1b2 one obtains (2.8) for

n = 3.
For the induction step it is convenient to note (using the determinant for-

mula in (2.4)) that

hn+1 = hnω0b1 · · · bn = hnω0b1 · · · bn−1bn =
h2

nbn−1

hn−1
.

(Of course there is a similar result for ĥn+1.)

Then hn+2 =
h2

n+1bn+1
hn

, and, using weak induction,

ĥn+2 =
ĥ2

n+1b̂n

ĥn
=

[
(n+j−1)(n+1)

j−1

]2
h2

n+1b̂n[
(n+j−2)(n)

j−1

]
hn

.
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Then to verify (2.8) it suffices to show that

(2.9)
(n + j− 1)2(n + 1)2

n(n + j− 2)(j− 1)
b̂n =

(n + 2)(n + 2)
(j− 1)

bn+1,

and this is a straightforward computation using (2.7) keeping in mind that on the
right hand side of (2.9) α = j− 2 and β = 0 and on the left hand side α̂ = j− 2
and β̂ = 2.

Assembling what has gone before, we have the following.

THEOREM 2.6. The operator Aj(x), for some j > 2, is

(i) n-contractive if and only if x 6 n+j−1
n , and

(ii) n-hyponormal if and only if x 6 n(n+j)+j−1
n(n+j) .

It follows that Aj(x) is n-hyponormal if and only if it is n(n + j)-contractive.

Raúl Curto has well described one of the surprises of the two characteriza-
tions of subnormality (Bram–Halmos and Agler–Embry) in that the Agler–Embry
conditions have all the T∗’s “on the left,” and an operator satisfying all the condi-
tions is subnormal, hence hyponormal, which is an inequality with a T∗ “on the
right”. The theorem above is the only one of which we are aware of which a finite
number of Agler–Embry conditions succeed in producing a condition with a T∗

on the right; put differently, it is the only of which we are aware that provides an
implication from right to left on the “step-ladder” diagram.

3. SOME GENERALIZATIONS

We may generalize the theorem above somewhat in two ways. First, instead
of considering a perturbation in the zeroth weight of Aj, we could first compress
Aj to the canonical invariant subspace of codimension m (m = 1, 2, . . .). This
amounts to forming a new weighted shift Am

j by discarding the first m weights
of the weight sequence for Aj, so, for example, with j = 3 and m = 2 we consider

the shift with weight sequence
√

3
5 ,
√

4
6 , . . .. We may then perturb in the (new)

zeroth weight, yielding A2
j (x) with weight sequence

√
x·3
5 ,
√

4
6 , . . ., and consider

n-hyponormality and n-contractivity as before. It turns out that the result is not
too different from what is above.

THEOREM 3.1. Consider Am
j (x), the perturbation in the zeroth weight of the re-

striction of Aj (j = 2, 3, . . .) to the canonical invariant subspace of codimension m
(m = 1, 2, . . .). Then Am

j (x) is n(n + j)-contractive implies it is n-hyponormal.
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Proof. (sketch). The condition on x for n-contractivity is obtained, as be-
fore, using the Berger measure for Am

j , which is the normalization to a proba-

bility measure of tm(1 − t)j−2dt, namely µm
j (t) = (m+j−1)!

(j−2)!m! tm(1 − t)j−2dt. The

result is
1∫

0
(1− t)ndµ

j
m(t) = (m+j−1)!(n2+(n+1)j−2)!

(j−2)!(n2+(n+1)j+m−1)! . For n-hyponormality things

come down again to determinants of matrices Hn+1 = Hn+1(j, m) and Ĥn+1 =

Ĥn+1(j, m). These determinants arise from the coefficients in the orthogonal poly-
nomials for integration against (m+j−1)!

(j−2)!m! tm(1−t)j−2dt and (m+j−1)!
(j−2)!m! tm+2(1−t)j−2dt

respectively. The analog of Lemma 2.5 is that

hn

ĥn
=

(m + 1)!(j + m + 1)!(n− 1)!(j + n− 3)!
(j− 2)!(m + n)!(j + m + n− 2)!

,

which may be proved using the appropriate versions of (2.4) and induction on n.
A comparison of (2.1) and (2.2), and a little algebra, shows that it suffices to show
that

(m + j− 1)!(n2 + (n + 1)j− 2)!
(j− 2)!(n2 + (n + 1)j + m− 1)!

6
(m + 1)!(j + m + 1)!(n− 1)!(j + n− 3)!

(j− 2)!(m + n)!(j + m + n− 2)!
,

which is just a computation.

In an asymptotic sense, one can do better, as follows.

THEOREM 3.2. For any j, j > 2, and any n, n > 1, there exists M so that for all
m > M, Am

j (x) is (n2 + 1)-contractive implies Am
j (x) is n-hyponormal.

Proof. This follows as in the proof of the previous theorem by comparing
1∫

0
(1− t)n2+1dµ

j
m(t) and hn

ĥn
for m large.

We turn next to the consideration of (perturbations in the first weight of)
shifts that are some “combination” of the Bergman shift and another shift. The
approach will be through Berger measures; we will consider some shift whose
Berger measure is a linear (perhaps convex) combination of 1 ·dt (for the Bergman
shift) and some other measure. We might take as the other measure 2(1− t)dt
(the measure for A3); we might take 2tdt (the measure for A1

2, the restriction of
the Bergman shift to its canonical invariant subspace of codimension one). In fact
we will consider shifts with Berger measure

µε := (1 + (−1 + ε)t) ∗
( 2

1 + ε

)
dt.

It is an easy computation to see that the range ε ∈ [0, 1] yields the range λ ∈ [0, 1]
for convex combinations of the form (λ + (1− λ) ∗ 2(1− t))dt corresponding to
combinations of B = A2 and A3; the range ε ∈ [1, ∞] yields the range µ ∈ [0, 1]
for (µ + (1− µ)2t)dt corresponding to combinations of B = A2 and A1

2. Note
also that ε = 0 is the least value for which the measure of this form produces a
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probability measure, and ε > 1 yields the (normalized) measures of the form (a+
bt)dt for which both a and b are non-negative. Denote by Aε the corresponding
weighted shift and by Aε(x) the perturbation of Aε in which the zeroth weight is
multiplied by

√
x.

As in the proof of Theorem 3.1, or by a comparison of (2.1) and (2.2) and a
little algebra, what we need to compute for n-contractivity is the expression

1∫
0

(1− t)ndµε(t)

and what is needed for k-hyponormality of Aε(x) is the expression

hk+1

ĥk+1
.

As usual, the term relevant to n-contractivity is easy:

(3.1)
1∫

0

(1−t)ndµε(t)=
1∫

0

(1−t)n(1+(−1+ε)t) ∗
( 2

1+ε

)
dt =

2(1 + n + ε)

(1+n)(2+n)(1+ε)
.

The computations for what is needed for n-hyponormality of Aε(x) are con-
siderably more complicated, and we are greatly indebted to Christian Kratten-
thaler ([18]) for showing us the argument that follows. A computation of mo-
ments against the measure µε shows that to evaluate hn+1 = det(Hn+1) we must
compute

(3.2)
( 2

1 + ε

)n+1
det(ai,j + bi,j)06i,j6n

with
ai,j =

1
i + j + 1

and bi,j =
ε− 1

i + j + 2
.

Considering
det(ai,j + bi,j)06i,j6n

we may use column multilinearity to see that it equals

(3.3) ∑
S⊆{0,1,...,n}

det(c(S)i,j )06i,j6n

where c(S)i,j = ai,j if j ∈ S and c(S)i,j = bi,j otherwise.

Consider now some one of the matrices (c(S)i,j ). We claim that if there is any
column of this matrix consisting of bi,j’s to the left of a column consisting of ai,j’s
then the determinant is zero. In such a case, we may clearly find a column con-
sisting of bi,j’s so that the next column consists of ai,j’s. But it is easy to see that the
j-th column of the matrix (bi,j) is (ε− 1) times the (j + 1)-st column of the matrix
(ai,j), for j = 0, 1, . . . , n− 1. Therefore the determinant is zero as claimed, and for
the sum in (3.3) the only non-zero determinants that arise are from matrices with
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some number of initial columns all ai,j’s filled out with subsequent columns all
bi,j’s. It follows that the sum in (3.3) is equal to

(3.4)
n+1

∑
k=0

(ε− 1)(n+1−k)det
( 1

i + j + ηj,k + 1

)
06i,j6n

where ηj,k = 1 if j > k and is zero otherwise.

Fix k for the moment and consider the determinant of
(

1
i+j+ηj,k+1

)
06i,j6n

appearing in the previous sum. This matrix is a Cauchy matrix
(

1
xi+yj

)
06i,j6n

with xi = i + 1
2 and yj = j + 1

2 for j < k and yj = j + 1
2 + 1 if j > k. The Cauchy

determinant formula says that

det
( 1

xi + yj

)
06i,j6n

=
∏06i<j6n(xj − xi)(yj − yi)

∏06i,j6n(xi + yj)
.

Upon insertion of our xi and yj, and after considerable simplification, one obtains

det
( 1

i + j + ηj,k + 1

)
06i,j6n

=

(
n + 1

k

)(
n + k + 1

n + 1

)
(n + 1)! ∏n

i=0 i!3

∏2n+2
i=n+2 i!

.

It follows that the sum in (3.4) is equal to

(3.5)
n+1

∑
k=0

(ε− 1)(n+1−k)
(

n + 1
k

)(
n + k + 1

n + 1

)
(n + 1)! ∏n

i=0 i!3

∏2n+2
i=n+2 i!

.

Using the binomial theorem to expand (ε− 1)(n+1−k) we obtain

(n + 1)! ∏n
i=0 i!3

∏2n+2
i=n+2 i!

n+1

∑
k=0

n+1−k

∑
`=0

ε`(−1)n+1−k−`
(

n + 1− k
`

)(
n + 1

k

)(
n + 1 + k

n

)
.

Interchanging the order of summation yields

(3.6)
(n + 1)! ∏n

i=0 i!3

∏2n+2
i=n+2 i!

n+1

∑
`=0

ε`(−1)n+1−`
n+1−`
∑
k=0

(−1)−k
(

n + 1− `

k

)(
n + 1 + k

k

)
.

It turns out that the inner sum is a hypergeometric function: with (a)k denoting
the Pochhammer rising factorial (a)k = a(a + 1) · · · (a + k − 1), a computation
shows that

n+1−`
∑
k=0

(−1)−k
(

n + 1− `

k

)(
n + 1 + k

k

)
= 2F1(n + 2, `− n− 1; 1; 1)(3.7)

=
∞

∑
k=0

(n + 2)k(`− n− 1)k · 1k

(1)kk!
.

Upon using Chu–Vandermonde summation (see, for example, [16]), one obtains
n+1−`
∑
k=0

(−1)−k
(

n + 1− `

k

)(
n + 1 + k

k

)
= (−1)n+1−`

(
n + 1
`

)
,
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and therefore finally that (using the previous equation, (3.2), (3.5), and (3.6))

(3.8) hn+1 = det(Hn+1) =
( 2

1 + ε

)n+1 (n + 1)! ∏n
i=0 i!3

∏2n+2
i=n+2 i!

n+1

∑
`=0

ε`
(

n + 1
`

)2
.

We need as well ĥn+1 = det(Ĥn+1), where Ĥn+1 is the n by n lower right
submatrix of Hn+1 as in the discussion before Lemma 2.1. The computation is
similar to what is above, and we merely give a few points along the way. The
determinant becomes

det(Ĥn+1) =
( 2

1 + ε

)n n

∑
k=0

(ε− 1)(n−k)det
( 1

i + j + ηj,k + 3

)
06i,j6n−1

with ηj,k as above. With xi = i + 3
2 and yj = j + 3

2 for j < k and yj = j + 3
2 + 1 if

j > k, one again has a Cauchy matrix for each of the matrices whose determinants
appear in the sum. One computes that

det
( 1

i + j + ηj,k + 3

)
06i,j6n−1

= (n + 1)
(

n + k + 2
n

)(
n
k

)
∏n

i=0 i!3

∏2n+2
i=n+3 i!

.

Inserting, reordering the sum, and simplifying using the appropriate hypergeo-
metric function, it follows that

(3.9) ĥn+1 = det(Ĥn+1) =
( 2

1 + ε

)n (n + 1)∏n
i=0 i!3

∏2n+2
i=n+3 i!

n

∑
`=0

ε`
(

n
`

)(
n + 2
`

)
.

We may finally compare k-hyponormality and n-contractivity. Using the
analogs of (2.1) and (2.2) in our situation, we may show that the n(n + 3) con-
tractivity cutoff is less than or equal to the n-hyponormality cutoff for any ε > 0,
and therefore deduce that n(n+ 3)-contractivity implies n-hyppnormality for our
combination, by checking

1∫
0

(1− t)n(n+3)(1 + (−1 + ε)t) ∗
( 2

1 + ε

)
dt 6

hn+1

ĥn+1
.

This is to check that

ĥn+1 ·
2(ε + n(n + 3) + 1)

(1 + n(n + 3))(2 + n(n + 3))(1 + ε)
6 hn+1.

Each side of the proposed inequality is a sum of terms with power εj with
0 6 j 6 n + 1. It turns out, conveniently, that the needed inequality holds term
by term in the εj, as shown by a modest computation. We have therefore obtained
the following.

THEOREM 3.3. For ε > 0, let Aε be the weighted shift corresponding to the Berger

(probability) measure µε := (1 + (−1 + ε)t) ∗
(

2
1+ε

)
dt, and let Aε(x) denote the per-

turbation of Aε in which the zeroth weight is multiplied by
√

x, with x a parameter. Then
Aε(x) is n(n + 3)-contractive implies Aε(x) is n-hyponormal.
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Note finally that with ε = 0 the combination reduces to A3 for which n(n +
3)-contractivity is equivalent to n-hyponormality. Thus the theorem cannot be
improved to “n(n + 2)-contractivity” in its current form.

One might also ask about the other direction: what level of contractivity
does n-hyponormality imply (perhaps for some ranges of ε)? This is to check for
what p

hn+1

ĥn+1
6

1∫
0

(1− t)p(1 + (−1 + ε)t) ∗
( 2

1 + ε

)
dt,

which is

(3.10) hn+1 6 ĥn+1 ·
2(ε + p + 1)

(1 + p)(2 + p)(1 + ε)
.

As ε = 1 yields the operator A2(x), for which n-hyponormality is equivalent
to n(n + 2)-contractivity, one could hope for no better, but since for both op-
erators A2(x) and A3(x) in the conbination n-hyponormality yields n(n + 2)-
contractivity, it seems reasonable to hope for that. It is perhaps surprising to find
that n-hyponormality does not imply n(n + 2)-contractivity in the simplest way.
If we compute both sides of the proposed inequality (3.10), it turns out that the
inequality does not hold in the simplest “term by term in powers of ε” even for ε
in the range 0 < ε 6 1, as was true in the (analogous) proof leading up to Theo-
rem 3.3. (This may be shown by a computation with n = 11 and the coefficients
of ε10.) It turns out, however, that the result is true nonetheless.

PROPOSITION 3.4. Let Aε(x) be as in the hypothesis of Theorem 3.3. Suppose
0 6 ε 6 1. Then Aε(x) is n-hyponormal implies Aε(x) is n(n + 2)-contractive.

Proof. The result is trivial for ε zero or one. From computations in the proof
leading up to Theorem 3.3 it is clear that we require positivity of

(3.11) ĥn+1 ·
2(ε + n(n + 2) + 1)

(1 + n(n + 2))(2 + n(n + 2))(1 + ε)
− hn+1

which is a polynomial of degree n+ 1 in ε. Denote this polynomial
n+1
∑
`=0

a`ε`, where

we have suppressed the dependence of the coefficients on n. A modest computa-
tion shows that

a` = Kn,` · [(n + 2)2(n + 1)2(n + 3− `)(n + 1− `) + `2(n + 2)2

− (n + 1)2(1 + (n + 1)2)(n + 3− `)(n + 2− `)], 1 6 ` 6 n,

where Kn,` is positive. This reduces the sign of a` to that of the second term in
the product above, which is a quadratic in `. One computes a1 is positive and an
is negative, and it follows readily that there is M so a` > 0 for 0 6 ` < M and
a` 6 0 for M 6 ` 6 n + 1. (One checks separately that a0 > 0 and an+1 6 0.)
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Since ε=1 yields A2(x) for which n-hyponormality and n(n+2)-contractivity
are equivalent, we have the expression in (3.11) is zero at ε = 1. It follows then
that

n+1

∑
`=0

a` = 0.

But since, in
n+1
∑
`=0

a`ε`, the positive coefficients occur for lower powers of ` than the

negative coefficients, we have the positivity required.

A little thought makes it clear that the argument just given, trivially mod-
ified, shows that for ε > 1, if Aε(x) is n(n + 2)-contractive it is n-hyponormal.
In fact there is again a certain “term by term” version of the needed inequality,
and we turn to proving this slightly stronger result. Recall that ε in the range
[1, ∞] corresponds to operators arising from (perturbations in the first weight of)
convex combinations of A2 and A1

2 (where the latter is the restriction of A2 to the
canonical coinvariant subspace of codimension one). These in turn are equivalent
to operators arising from (the normalization of) measures of the form (1+ c ∗ t)dt,
with c > 0. It is term by term in this c that the needed inequality holds.

PROPOSITION 3.5. Let Ac be the weighted shift with the Berger probability mea-

sure
(

2
2+c

)
(1 + c ∗ t)dt, c > 0, and let Ac(x) be the shift obtained by multiplying the

zeroth weight of Ac by
√

x. Then if Ac(x) is n(n + 2)-contractive it is n-hyponormal.

Proof. The argument is very like the argument leading up to Theorem 3.3,
and we merely give a sketch. Computations show that the relevant matrix whose
determinant is needed for hn+1 is almost as in (3.2) but with 2

1+ε replaced by the
normalizing factor 2

2+c and with c replacing ε − 1 in the bi,j. The computations
are similar but easier (with, for example, no need to use the binomial theorem);
further computations are then tedious but familiar; in establishing a final posi-
tivity concerning the coefficients of cn+1−k, it is useful to employ the substitution
n→ k + j.

Since c = 0 corresponds to A2, it is easy to see that n(n + 1)-contractivity is
not sufficient for the result above.

The question of what n-hyponormality implies in the way of m-contractivity
in the ε > 1 realm (equivalently, the c > 0 realm) is less tractable than for 0 6
ε 6 1. The hope that n-hyponormality would imply, for all ε > 1, n(n + p)-
contractivity for some p turns out to be false, failing at large n. It is known that
n-hyponormality implies 2n-contractivity in general ([13]), and the result holds in
fact term by term in ε. Implications of the general form n-hyponormality implies
(2n + p)-contractivity do not hold for p > 0, although the set of n for which they
fail (for fixed p) is a finite set of small n. We leave further such investigations to
the interested reader.
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