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ABSTRACT. Recently we showed that all solvable virtually nilpotent groups
have strongly quasidiagonal C∗-algebras, while together with Carrión and
Dadarlat we showed that most wreath products fail to have strongly quasidi-
agonal C∗-algebras. These two results raised the question of whether or not
strong quasidiagonality could characterize virtual nilpotence among finitely
generated groups. This note provides examples of groups of the form Z3 oZ2

that are not virtually nilpotent yet have strongly quasidiagonal C∗-algebras.
Moreover we show these examples are the “simplest" possible by proving that
a group of the form Zd oZ is virtually nilpotent if and only if its group C∗-
algebra is strongly quasidiagonal.
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1. INTRODUCTION

This paper continues our study of strongly quasidiagonal groups from [10]
and we refer the reader to the introduction of [10] for more motivation and the
definitions used here. Although the questions we consider are also interesting for
general groups, in this work we restrict our attention to discrete groups.

This investigation grew out of a question asked by Don Hadwin in [12]:
“Which groups have strongly quasidiagonal C∗-algebras?" A few pages after Had-
win’s question, Rosenberg showed in an appendix that if G is not amenable,
then C∗(G) is not strongly quasidiagonal. On the amenable side of things, we
showed in [10] that C∗(G) is strongly quasidiagonal if G is virtually nilpotent.
On the other hand, together with Carrión and Dadarlat [5], we showed that many
(amenable) wreath products are not strongly quasidiagonal. These results raised
the question of whether or not for finitely generated groups (see Corollary 1.7 of
[10] and following discussion) strong quasidiagonality of C∗(G) could character-
ize virtual nilpotence (or perhaps supramenability) of G.
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In this paper we show that strong quasidiagonality cannot characterize vir-
tual nilpotence — even among the polycyclic groups. In particular, we give ex-
amples of groups of the form Zm o Zn where m > 3 and n > 2 that are not
virtually nilpotent but are strongly quasidiagonal. This result relies heavily on
Daniel Berend’s investigation of commutative endomorphic actions on tori [3].

On the other hand we show that groups of the form Z3 oZ2 are the “sim-
plest" possible, non-virtually nilpotent, polycyclic, strongly quasidiagonal groups
by proving that groups of the form Zd o Z are strongly quasidiaognal if and
only if they are virtually nilpotent. It is interesting to note that in the case of
G = Zd o Z the question of strong quasidiagonality can be reduced to a fam-
ily of problems of diophantine approximation where, roughly speaking, “good"
approximations correspond to the strong quasidiagonality of G while “bad" ap-
proximations correspond to G not being strongly quasidiagonal.

2. CONSTRUCTION OF EXAMPLES

All groups considered in this paper are of the form Zm oZn. We then real-
ize the group C∗-algebra of Zm oZn as a C∗-crossed product via C∗(Zm oZn) ∼=
C∗(Zm)oZn ∼= C(Ẑm)oZn. Archbold and Spielberg showed [1] that when ana-
lyzing the ideal structure of crossed products, topological freeness of the action is
a desirable property. Let us recall that a group G of homeomorphisms of a locally
compact space X is topologically free if for any finite subset F ⊆ G \ {e}, the set⋂

α∈F
{x ∈ X : α(x) 6= x}

is dense in X. Since Ẑm is connected, all of our examples will be topologically free.

LEMMA 2.1. Let G be a connected topological group and H a group of continuous
automorphisms of G. Then the action of H on G is topologically free.

Proof. Let α ∈ H, and define the subgroup F(α) = {x ∈ G : α(x) = x} 6 G.
If F(α)c is not dense, then F(α) contains a non-empty open subset, hence F(α)
contains an open neighborhood of the identity. Since G is connected, any open
neighborhood of the identity generates G, hence F(α) = G or α = id. Topological
freeness then follows from the fact that F(α)c is open.

LEMMA 2.2. Let G = Zn oZm for some m, n > 1. Suppose that every infinite
Zm-invariant subset of Ẑn is dense. Then C∗(G) is strongly quasidiagonal.

Proof. Let π be a unitary representation of G that is faithful on C∗(Zn). By
Lemma 2.1, the induced action of Zm on Ẑn is topologically free. By Theorem 1 of
[1] and the fact that Zm is amenable, it follows that π is faithful on C∗(G). Since
Ẑn is connected and π is faithful, the spectrum of π( f ) is connected for every f ∈
C(Ẑn). In particular, π(C(Ẑn)) contains no non-trivial compact operators. Again
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by Theorem 1 of [1] it follows that π(C∗(G)) contains no non-trivial compact
operators.

Since π is faithful and π(C∗(G)) has trivial intersection with the compacts,
by Voiculescu’s theorem [23] (see also [7]) π is approximately unitarily equivalent
to the left regular representation of G. Since G is polycyclic, it is residually finite
(see [19]). By a well-known result of Bekka [2], since G is amenable the group C∗-
algebra C∗(G) is residually finite dimensional, thus the left regular representation
is quasidiagonal, forcing π to be quasidiagonal as well.

Suppose now that π is a unitary representation that is not faithful on C∗(Zn).
Then ker(π) ∩ C∗(Zn) corresponds to a closed Zm-invariant subset of Ẑn. By as-
sumption this set must be finite (otherwise π would be faithful on C∗(Zn)). In
this case one sees that π(C∗(G)) is a subhomogeneous C∗-algebra. Since all irre-
ducible representations of a subhomogeneous C∗-algebras are finite dimensional,
it is clear that all subhomogeneous C∗-algebras are strongly quasidiagonal and in
particular that π is a quasidiagonal representation.

It is not obvious that there exist any pairs Zn,Zm with action satisfying the
above lemma. Thankfully, Daniel Berend (building on earlier work of Fursten-
berg [11]) classified all endomorphic commutative semigroup actions on tori that
satisfy the condition in Lemma 2.2 which we will use to build a specific example.
Let us recall

THEOREM 2.3 ([3], Theorem 2.1). Let Σ be a commutative semigroup of endo-
morphisms of Tn. Then every infinite Σ-invariant subset of Tn is dense if and only if all
three of the following conditions are satisfied:

(i) There is a σ ∈ Σ such that the characteristic polynomial of σn is irreducible over
Z for all n > 1.

(ii) For every common eigenvector v of Σ there is a σ ∈ Σ such that the corresponding
eigenvalue λ of σ has |λ| > 1.

(iii) There are σ1, σ2 ∈ Σ such that σn
1 = σm

2 for m, n ∈ Z implies that m = n = 0.

For the convenience of the reader we construct an explicit example of a non
virtually nilpotent group satisfying Berend’s conditions.

THEOREM 2.4. There is an action ϕ of Z2 on Z3 such that the semidirect product
Z3 oϕ Z2 is strongly quasidiagonal and not virtually nilpotent.

Proof. Our example is derived from elementary algebraic number theory
and the results and terminology used can be found in any text on the subject, for
example [17].

Let α be a root of p(t) = t3 + t2 − 2t− 1 (or any monic cubic with integer
coefficients and distinct irrational roots). Let Q(α) be the field generated by Q and
α, and let A ⊆ Q(α) be the ring of algebraic integers. Since [Q(α) : Q] = 3, we
have A (as an additive abelian group) is isomorphic to Z3 (see Theorem 6.2.J.2 of
[17]). Let U be the multiplicative group of units of A. By Dirichlet’s units theorem
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(see Theorem 10.4.J.1 of [17]), U is finitely generated and the torsion free part of
U has rank 2. We consider U 6 GL(3,Z) by letting elements of U act on A ∼= Z3

by multiplication.
Since α(α2 + α− 2) = 1, we have α ∈ U. Moreover since 1, α, α2 are linearly

independent over Q, by considering the action of α on Q − span{1, α, α2} we
see that the characteristic polynomial of α ∈ GL(3,Z) is p(t). From this it easily
follows that α satisfies condition (i) of Theorem 2.3 and that for each eigenvector
of α either α or α−1 will satisfy condition (ii). Since α has infinite order and the
torsion free part of U has rank 2, it follows that there is a β ∈ U such that α and β

generate a copy of Z2.
Letting Σ ∼= Z2 be the group generated by α and β we see that Σ satisfies

all the hypotheses of Theorem 2.3. Let ϕ : Z2 → Aut(Z3) be the action of U on
A by multiplication, restricted to Σ. Since α has an eigenvalue with modulus not
equal to one, it follows that Z3 oϕ Z2 is not virtually nilpotent (in fact it contains
a free subsemigroup on 2 generators [18]). By Lemma 2.2, Z3 oϕ Z2 is strongly
quasidiagonal.

3. THE NEED FOR TWO AUTOMORPHISMS

The question of whether or not a C∗-algebra of the form C(X)oZ is strongly
quasidiagonal can be reduced to a question about the relationship between the
backwards and forward orbits of points in X (see Theorem 25 of [12] and [15], [20]
for some precursors and related variations). In the specific case of C∗(Zd oZ) ∼=
C(Ẑd)oZ, the question about orbits reduces to a family of diophantine approx-
imation questions. In this section we will see that “good" approximations corre-
spond to strongly quasidiagonal groups and “bad" approximations correspond
to non-strongly quasidiagonal groups.

Let x ∈ R. We write ‖x‖ = dist(x,Z). A general question in the theory
of diophantine approximation concerns the distribution of sequences of the form
‖tnξ‖. The specific instance of this question addressing our concerns asks,

(Q) “Given a sequence of real numbers tn, when does there exist a ξ ∈ R and
ε > 0 such that ‖tnξ‖ > ε for all n > 1?"

In relation to strong quasidiagonality of Zd o Z, two types of sequences
appear: (i) (finite families of) real valued polynomials evaluated at n = 1, 2, . . .
and (ii) sequences of exponential growth. In case (i) the answer to (Q) is always
no by the following theorem of Cook.

THEOREM 3.1 ([6], Theorem). Let d, R > 1 be integers. Let p1, . . . , pR be poly-
nomials with real coefficients, no constant term and degree bounded by d. Then there are
constants C, ε > 0 depending only on d and R such that for every integer N, there is an
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integer 0 6 n 6 N such that

max
i=1,...,n

{‖pi(n)‖} <
C
Nε

.

With Cook’s result one can prove strong quasidiagonality of virtually nilpo-
tent groups of the form Zd oZ (or just use [10]).

In case (ii) the answer to (Q) is always yes. Independently, Khintchine [14],
Pollington [16] and de Mathan [8] showed that for any lacunary sequence ((tn) is
lacunary if there is an r > 1 so tn+1/tn > r for all n > 1) the answer to (Q) is yes
(in fact, they proved stronger statements).

Recently, the preprint [13] appeared with a simplified proof of (a weaker
version of) the Khintchine–Pollington–de Mathan result. A reading of their proof
reveals that it can be easily adapted to prove the following variant:

LEMMA 3.2. Let tn be a sequence of real numbers and r, C>1 such that C−1rn6
tn6Crn for all n>1. Then there is a ξ∈R and an ε>0 such that ‖tnξ‖> ε for all n>1.

Using the above lemma we can produce non quasidiagonal representations
of non virtually nilpotent groups of the form Zd oZ.

Recall that a unital C∗-algebra A is finite if x∗x = 1 implies xx∗ = 1 for all
x ∈ A.

THEOREM 3.3. Let G = Zd oα Z. The following are equivalent:
(i) G is virtually nilpotent.

(ii) C∗(G) is strongly quasidiagonal.
(iii) Every quotient of C∗(G) is finite.

Proof. It is well-known that (ii) implies (iii) for any C∗-algebra (see for exam-
ple [4]). It was shown in [10] that (i) implies (ii). For the illumination of the rela-
tionship between “good" approximations and strong quasidiagonality of groups
of the form Zd oZ we now outline an alternate, and more direct, proof that (i)
implies (ii).

To this end suppose that G is virtually nilpotent. Then there is some n ∈
N so 1 is the only eigenvalue of αn. Note that if αn satisfies the hypotheses of
Theorem 25 in [12] then so does α. Therefore assume that 1 is the only eigenvalue
of α, from which it follows that (1− α) is a nilpotent matrix. By basic facts about
linear algebra and free abelian groups we may assume that α is upper triangular
with 1’s along the diagonal. From this it follows that there are polynomials pij for
1 6 i < j 6 d such that pij(0) = 0 and, for all n > 0,

(αn)ij =


0 if i > j,
1 if i = j,
pij(n) if i < j.
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Let θ ∈ Td ∼= Ẑd and choose real numbers θ1, . . . , θd so θ = (exp(2πiθj))
d
j=1.

Consider the real polynomials

qi(x) =
d

∑
j=i+1

pij(x)θj for i = 1, . . . , d− 1.

Let α also denote the induced action on Ẑd. One sees that for n > 0 we have

αn(θ) = θ · (exp(2πi(q1(n))), . . . , exp(2πi(qd−1(n))), 1)

= θ · (exp(2πi(‖q1(n)‖)), . . . , exp(2πi(‖qd−1(n)‖)), 1).

By Theorem 3.1 we can find n large enough so

(exp(2πi(‖q1(n)‖)), . . . , exp(2πi(‖qd−1(n)‖)), 1)

is as close to (1, . . . , 1) as we like. Hence we can choose n large enough so αn(θ) is
as close to θ = α0(θ) as we like. Hence G is strongly quasidiagonal by Theorem 25
of [12].

In order to prove (iii) implies (i) suppose that G is not virtually nilpotent.
By [24] (see also [22]), it follows that α has an eigenvalue λ with modulus greater
than 1. For a vector w ∈ Cd we write wi ∈ C for the i-th entry of w. Suppose first
that λ ∈ R. Without loss of generality, let w ∈ Rd be an eigenvector with w1 = 1.
By [16] there is an ε > 0 and a ξ ∈ R such that ‖ξλn‖ > ε for all n > 0. Since
λ > 1 we have

lim
n→∞

α−n(ξw)1 → 0,

while
αn(ξw)1 mod 1 ∈ [ε, 1− ε] for all n > 1.

It now easily follows from Theorem 25 of [12] (see also [20]) that G has a quotient
that is not finite.

Suppose now that λ ∈ C \ R. We mention that if the modulus of λ is suf-
ficiently large, then we can apply Theorem 1.2(b) of [9] and take real parts to
complete the proof as in the real case. For the general case, let w ∈ Cd be an
eigenvector for α associated with λ. Since the entries of α are real, it follows that
λ is an eigenvalue for α with eigenvector w. Without loss of generality suppose
that w1 = 1 and w2 = a + bi with b 6= 0.

Set v = 1/2(w + w). We have

lim
n→∞

α−n(v) = 0 ∈ Rd,

and for every n > 1

αn(v)1 = Re(λn), αn(v)2 = aRe(λn)− bIm(λn).

Since |Re(λn)|2 + |Im(λn)|2 = |λ|2n, it follows that the sequence

tn = max{|Re(λn)|, |aRe(λn)− bIm(λn)|}
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satisfies the hypotheses of Lemma 3.2. Let ξ, ε be as in Lemma 3.2. It then follows
that for n ∈ N we have either αn(ξv)1 ∈ [ε, 1 − ε]mod1 or αn(ξv)2 ∈ [ε, 1 −
ε]mod1. Again it now easily follows from Theorem 25 of [12] that G has a quotient
that is not finite.
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