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ABSTRACT. In the late 1980’s Marc Rieffel introduced a notion of properness
for actions of locally compact groups on C∗-algebras which, among other
things, allows the construction of generalised fixed-point algebras for such ac-
tions. In this paper we give a simple characterisation of Rieffel proper actions
and use this to obtain several (counter) examples for the theory. In particu-
lar, we provide examples of Rieffel proper actions α : G → Aut(A) for which
properness is not induced by a nondegenerate equivariant ∗-homomorphism
φ : C0(X)→M(A) for any proper G-space X. Other examples, based on ear-
lier work of Meyer, show that a given action might carry different structures
for Rieffel properness with different generalised fixed-point algebras.
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1. INTRODUCTION

In [21] Marc Rieffel introduced a notion of proper actions (which we call
Rieffel proper actions below) of a group G on a C∗-algebra A which allows the con-
struction of a generalised fixed-point algebra AG together with a natural Morita
equivalence bimodule between this algebra and a suitable ideal of the reduced
crossed product A oα,r G. Rieffel’s notion of properness depends on a choice of a
dense ∗-subalgebra A0 of A which must satisfy a number of quite technical condi-
tions (see Section 2 below). One of these conditions requires that for all ξ, η ∈ A0
the functions

t 7→ 〈〈ξ |η〉〉(t) := ∆(t)−1/2ξ∗αt(η)

lie in L1(G, A) ⊆ A oα,r G. Rieffel’s conditions allow the construction of a cor-
responding generalised fixed-point algebra AG ⊆ M(A) and an equivalence bi-
module F (A0) between AG and the closed ideal IA0 ⊆ A or G generated by all
elements of the form {〈〈ξ |η〉〉 : ξ, η ∈ A0}.
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In this paper we show that an action α : G → Aut(A) is Rieffel proper if and
only if there exists a dense subspace (not necessarily a subalgebra) R ⊆ A which
satisfies the following single condition:

(P1) For all ξ, η ∈ R the functions t 7→ ξ∗αt(η) and t 7→ ∆(t)−1/2ξ∗αt(η) belong
to L1(G, A).

If A0 ⊆ A is a dense ∗-subalgebra which satisfies Rieffel’s original condi-
tions, it also satisfies (P1). We show that, conversely, if R is as above, then there
is a canonical construction of a dense ∗-subalgebra AR which satisfies Rieffel’s
conditions. As easy corollaries we get the following useful results:

(i) Assume A and B are G-algebras such that there exists a nondegenerate
G-equivariant ∗-homomorphism φ : A → M(B). Then, if A is Rieffel proper, so
is B.

(ii) If A is a Rieffel proper G-algebra and B is a Rieffel proper H-algebra, then
A⊗ν B is a Rieffel proper G× H-algebra, where ⊗ν might denote the minimal or
maximal tensor product.

These basic results seem to have been not noticed for general Rieffel proper
G-algebras, although the first of these results is well known in the case A = C0(X)
for some proper G-space X. Indeed, most standard examples of Rieffel proper ac-
tions of a group G on a C∗-algebra B, like dual actions of groups on crossed prod-
ucts by coactions, come naturally equipped with a nondegenerate G-equivariant
∗-homomorphism φ : C0(X) → M(B) for some proper G-space X, and actions
with this extra property have been studied extensively in the literature (e.g., see
[2], [3], [4], [9], [10]). Following [2], [3], [4], we shall call such actions to be weakly
proper. It has been shown in [2] that weakly proper actions enjoy many prop-
erties which are (so far) unknown for general Rieffel proper actions. The most
remarkable one is that they allow analogous constructions of the Hilbert Aoα,r G-
module F (A0) for the universal crossed products Aoα G := Aoα,u G and of cor-
responding universal generalised fixed-point algebras AG

u with many interesting
properties. Looking at the vast number of examples of weakly proper actions, we
were wondering, whether every Rieffel proper action is also weakly proper.

In Section 3 we show that this is not the case. Using our characterisation
of Rieffel proper actions together with Rieffel’s deformation C0(Rn)J of C0(Rn)
by a skew-symmetric matrix J ∈ Mn(R), we show that the dual action of the
Pontrjagin dual Ĝ of an abelian locally compact group G on any twisted group
algebra C∗(G, ω) attached to any 2-cocycle ω ∈ Z2(G,T) is Rieffel proper. On the
other hand, if G is connected, we can show that this dual action is weakly proper
only if ω is similar to the trivial cocycle. This shows that there are many natural
examples of Rieffel proper actions which are not weakly proper.

In the final section (Section 4) we study the question whether the gener-
alised fixed-point algebra AG for a Rieffel proper action α : G → Aut(A) is in-
dependent of the choice of the dense subalgebra A0 ⊆ A (or the dense subspace
R ⊆ A of our condition (P1)). Indeed, examples for a dependence on similar
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structures have been constructed already by Ralf Meyer in the setting of “con-
tinuously square-integrable actions”, which we here call “Exel–Meyer proper ac-
tions”; these are based on the theory of square-integrable actions (see [8], [15],
[16]) and generalise Rieffel proper actions. Using our main result, we show that
many of Meyer’s examples are also Rieffel proper, hence also provide examples
for the dependence of the fixed-point algebra AG on the choice of the dense sub-
algebra A0 in this setting. To our knowledge, this provides the first examples for
this dependence in the setting of Rieffel proper actions.

2. RIEFFEL PROPER ACTIONS

Suppose G is a locally compact group acting by a strongly continuous ho-
momorphism α : G → Aut(A) on the C∗-algebra A. Then, in Definition 1.2 of
[21], Rieffel defines this action to be proper (which we call Rieffel proper) if there
exists a dense G-invariant ∗-subalgebra A0 of A such that for all ξ, η ∈ A0:

(P1) the functions t 7→ ∆(t)−1/2ξ∗αt(η) and t 7→ ξ∗αt(η) belong to L1(G, A);
(P2) there is a (necessarily unique) element m = AG 〈ξ |η〉 in

M(A)G,α := {m ∈ M(A) : αt(m) = m for all t ∈ G}

such that AG 〈ξ |η〉ζ =
∫
G

αt(ξη∗)ζ dt for all ζ ∈ A0; and

(P3) m · A0 ⊆ A0 and A0 ·m ⊆ A0 for m = AG 〈ξ |η〉 as in (P2).

Given such A0, Rieffel shows in [21] that AG,α := span{AG 〈ξ | η〉 : ξ, η ∈
A0} ⊆ M(A) is a C∗-subalgebra ofM(A) and that A0 equipped with the inner
product AG 〈ξ |η〉 completes to give a left Hilbert AG,α-module F (A0) :=A0. The
C∗-algebra AG,α (or simply AG if the action α is clear) is called the generalised fixed-
point algebra for the proper action α (with respect to A0). Clearly, if G is compact,
this coincides with the classical fixed-point algebra for any dense A0 ⊆ A. Rieffel
also shows that F (A0) carries a right Hilbert module structure over the reduced
crossed product A oα,r G in such a way that F (A0) is a Hilbert AG,α − A oα,r G-
bimodule.

The moduleF (A0) can be concretely described as the completion of A0 with
respect to the Hilbert AG,α − A oα,r G-bimodule structure given by the formulas:

〈〈ξ |η〉〉Aoα,rG(t) := ∆(t)−1/2ξ∗αt(η), ξ, η ∈ A0, t ∈ G,

ξ ∗ ϕ :=
∫
G

∆(t)−1/2αt(ξϕ(t−1))dt,

AG 〈ξ |η〉ζ :=
∫
G

αt(ξη∗)ζdt,

m · ξ := ma (product inM(A)).
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Here the first formula gives an element in L1(G, A) ⊆ A oα,r G and the second
formula works for all ϕ ∈ L1(G, A) for which the integral provides an element in
A0. The bimoduleF (A0) is always full as a left Hilbert AG,α-module, but the right
inner product is not full in general since the ideal I = span{〈〈A0 | A0〉〉AorG} ⊆
Aor G may be proper. The action α : G → Aut(A) is called saturated (with respect
to A0) if this ideal is all of A oα,r G. Then F (A0) becomes a Morita equivalence
between AG,α and A oα,r G. In general, F (A0) becomes a Morita equivalence
between AG,α and the ideal I = span{〈〈A0 |A0〉〉AorG} ⊆ A or G.

REMARK 2.1. We should note that the module F (A0) described above is ac-
tually the dual of the A oα,r G− AG,α module as constructed originally by Rieffel
in [21].

It is tempting to write AG 〈ξ | η〉 as a sort of integral
∫
G

αt(ξη∗)dt. Although

this integral cannot converge as a Bochner integral in general, one can make sense
of it as a strict-unconditional integral as defined in [7], [8]:

DEFINITION 2.2. One says that a measurable function f : G → A is strictly
unconditionally integrable if the net of Bochner integrals

∫
K

f (t)dt for K running

over all compact subsets of G (ordered by inclusion) converges in the strict topol-
ogy ofM(A); the strict limit is then denoted by

∫
G

su f (t)dt.

If (A, α) is a G-algebra, an element ξ ∈ A is called square-integrable if the
function t 7→ αt(ξξ∗) is strictly unconditionally integrable. We write Asi for the
space of all square-integrable elements of A. The space of integrable elements Ai is
then defined as the linear span of Asi A∗si, i.e., linear combinations of elements of
the form ξη∗ with ξ, η ∈ Asi. The G-algebra (A, α) is integrable if Ai (or equiva-
lently Asi) is dense in A.

Rieffel calls integrable actions also “proper” in [25], but as shown in [16] this
class of actions is strictly bigger than the Rieffel proper actions of [21] as recalled
above.

In Proposition 4.6 of [25] Rieffel shows that (P1) and the density of A0 imply
the existence of the strict-unconditional integrals

∫
G

su
αt(ξη∗)dt, so that A0 ⊆ Asi

and hence A is an integrable G-algebra. More precisely, the proof of Proposi-
tion 4.6 in [25] shows the following:

PROPOSITION 2.3. SupposeR is a dense subspace (not necessarily a ∗-subalgebra)
such that the functions t 7→ ξ∗αt(η) belong to L1(G, A) for all ξ, η ∈ R. Then the in-
tegrals

∫
G

su
αt(ξη∗)dt exist for all ξ, η ∈ R. In particular, if R ⊆ A satisfies Rieffel’s

condition (P1), it also satisfies (P2).

REMARK 2.4. (i) The above proposition can be shown by using the follow-
ing general fact: an increasing net (ai) of positive elements inM(A) converges



RIEFFEL PROPER ACTIONS 53

in the strict topology if and only if the increasing net (b∗aib) converges in the
norm of A for all b in a dense subset D ⊆ A. This follows from Result 3.4 of [13]
and the easily verified fact that the set of all b ∈ A such that (b∗aib) converges in
norm is closed in A. Now, in the setting of the proposition, apply this to the net
of integrals

∫
K

αt(ξξ∗)dt for K ⊆ G varying over the compact subsets directed by

inclusion and use D = R. This gives the existence of
∫
G

su
αt(ξξ∗)dt for all ξ ∈ R

and the integrals
∫
G

su
αt(ξη∗)dt then exist by the polarization identity.

(ii) The above proposition has been generalised in Proposition 6.5 of [16],
where it is shown that the strict-unconditional integrability of t 7→ αt(ξη∗) fol-
lows from the assumption that the functions t 7→ ξ∗αt(η) belong to A oα,r G in a
suitable sense (by interpreting these functions as kernels of certain “Laurent op-
erators”, as explained in [16] or in [8]; see also Section 4 below) for ξ, η in a dense
subspace of A.

A similar idea also implies the strict-unconditional integrability of t 7→
αt(ξη∗) if the functions t 7→ ∆(t)−1/2ξ∗αt(η) belong to A oα,r G for all ξ, η in
a dense subspace of A.

The proposition shows that there are some redundancies in Rieffel’s original
definition of a proper action in [21]. Indeed, next we show that only the first
condition (P1) is necessary in order to get a Rieffel proper action. For this we first
need to fix some notations.

Given any elements ξ, η ∈ A, we shall always write 〈〈ξ | η〉〉 for the con-
tinuous function [t 7→ ∆(t)−1/2ξ∗αt(η)], even if this is not in L1(G, A) or in
A oα,r G. Also, given ξ ∈ A and ϕ : G → A a measurable function, we write
ξ ∗ ϕ :=

∫
G

∆(t)−1/2αt(ξϕ(t−1))dt whenever this makes sense. We shall use the

notation:

L1
∆(G, A) := L1(G, A) ∩∆1/2L1(G, A) ∩∆−1/2L1(G, A)

= { f ∈ L1(G, A) : ∆−1/2 f and ∆1/2 f ∈ L1(G, A)}.

It is easy to verify the relations:

∆p( f ∗ g) = (∆p f ) ∗ (∆pg), (∆p f )∗ = ∆−p f ∗

for any power p ∈ R. In particular it follows that L1
∆(G, A) is a ∗-subalgebra of

L1(G, A). It is a dense subalgebra because it contains Cc(G, A).

PROPOSITION 2.5. An action (A, α) is Rieffel proper if and only if there is a dense
subspaceR ⊆ A such that for all ξ, η ∈ R, we have

(P1) 〈〈ξ |η〉〉 = (t 7→ ∆(t)−1/2ξ∗αt(η)) ∈ L1(G, A) ∩∆−1/2L1(G, A).
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In this case, 〈〈R|R〉〉 ⊆ L1
∆(G, A) and A0 := span(R∗ L1

∆(G, A)) · (R∗ L1
∆(G, A))∗

is a dense ∗-subalgebra of A which satisfies Rieffel’s conditions (P1)–(P3). Hence (A, α)
is Rieffel proper with respect to A0.

Proof. If the action is Rieffel proper with respect to a dense ∗-subalgebra
A0, we simply take R = A0. Conversely, given R as in the proposition, we will
show that A0 = span(R ∗ L1

∆(G, A)) · (R ∗ L1
∆(G, A))∗ satisfies Rieffel’s condi-

tions (P1)–(P3). For this we will see that if R ⊆ A is a dense subspace of A
satisfying (P1), then 〈〈R |R〉〉 ⊆ L1

∆(G, A). Moreover, R̃ := spanR ∗ L1
∆(G, A) is

then automatically a G-invariant dense right ideal of A also satisfying

〈〈R̃ | R̃〉〉 ⊆ L1
∆(G, A).

Then, A0 := span R̃R̃∗ is a G-invariant dense ∗-subalgebra of A contained in R̃
which satisfies (P1)–(P3).

Given ξ, η∈R, we have 〈〈ξ |η〉〉∗=〈〈η | ξ〉〉 and (∆1/2〈〈ξ |η〉〉)∗=∆−1/2〈〈η | ξ〉〉,
where involution is taken inside L1(G, A). Therefore, 〈〈R | R〉〉 ⊆ L1(G, A) ∩
∆−1/2L1(G, A) is equivalent to 〈〈R | R〉〉 ⊆ L1(G, A) ∩ ∆1/2L1(G, A) and hence
also equivalent to 〈〈R|R〉〉 ⊆ L1

∆(G, A).
Now, given f , g ∈ L1

∆(G, A), we have 〈〈ξ ∗ f | η ∗ g〉〉 = f ∗ ∗ 〈〈ξ | η〉〉 ∗ g.
Since L1

∆(G, A) is a ∗-subalgebra of L1(G, A), it follows that R̃ = R ∗ L1
∆(G, A)

satisfies 〈〈R̃ | R̃〉〉 ⊆ L1
∆(G, A). That R̃ is a right ideal follows from the identity

(ξ ∗ f ) · a = ξ ∗ ( f · a), where f · a(t) := f (t)αt(a). And that R̃ is G-invariant
follows from αt(ξ ∗ f ) = ξ ∗ (t · f ), where (t · f )(s) := ∆(t)1/2 f (st). It follows
that A0 = span R̃R̃∗ ⊆ R̃ is a G-invariant dense ∗-subalgebra of A. Since (P1)
and (hence also) (P2) hold for R̃, they also hold for A0 ⊆ R̃. Finally notice that

AG 〈R̃ | R̃〉R̃ = R̃ ∗ 〈〈R̃ | R̃〉〉AoG ⊆ R̃ ∗ L1
∆(G, A) ⊆ R̃

so that AG 〈A0 |A0〉A0 ⊆ AG 〈R̃ | R̃〉R̃R̃∗ ⊆ R̃R̃∗ ⊆ A0, i.e., (P3) holds for A0.

One can also use the subspace R̃ above, or more generally, any dense sub-
spaceR ⊆ A satisfying

(2.1) 〈〈R|R〉〉 ⊆ L1
∆(G, A) and R ∗ L1

∆(G, A) ⊆ R

to build a pre-Hilbert AG,α − A oα,r G-bimodule F0(R). More precisely, if R is
such a subspace, we can view R as a right pre-Hilbert module over L1

∆(G, A) ⊆
Aoα,r G with (ξ, η) 7→ 〈〈ξ |η〉〉 as the inner product and the “convolution” ξ ∗ ϕ =∫
G

∆(t)−1/2αt(ξϕ(t−1))dt as the right action. That these are indeed well-defined

operations and have the correct properties (in particular, that 〈〈ξ | ξ〉〉 is positive
in A oα,r G) follows from the same arguments as used by Rieffel in [21]. Also, the
same arguments show that

AG
0 := span AG 〈R|R〉 = span

{∫
G

su
αt(ξη∗)dt : ξ, η ∈ R

}
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is a ∗-subalgebra ofM(A)G, and that the multiplication inM(A) and the pairing
(ξ, η) 7→ AG 〈ξ | η〉 give R the structure of a pre-Hilbert AG

0 -L1
∆(G, A)-bimodule.

Defining then AG to be the closure of AG
0 inM(A), and completing R with re-

spect to the norm coming from one of the inner products, one gets a Hilbert
AG-Aoα,r G-bimoduleF (R). We should also point out that such ideas have been
already performed in [16] in a slightly more general context for Hilbert modules
and where the inner products 〈〈ξ |η〉〉 do not necessarily lie in L1

∆(G, A), but only
in Aoα,r G in general. We refer to Section 4 for a more detailed discussion of this.

PROPOSITION 2.6. Let R ⊆ A be a dense subspace satisfying (2.1), and define
R̃ := spanR ∗ L1

∆(G, A) ⊆ R and A0 := span R̃R̃∗. Then all Hilbert bimodules
F (R), F (R̃) and F (A0) are canonically isomorphic.

Proof. The inclusions A0 ⊆ R̃ ⊆ R extend to embeddings

F (A0) ↪→ F (R̃) ↪→ F (R)

of Hilbert A oα,r G-modules. To show that these embeddings are isomorphisms,
it is enough (by the Rieffel correspondence theorem ([20], Corollary 3.33)) to show
that the ideals

span〈〈A0 |A0〉〉 ⊆ span〈〈R̃ | R̃〉〉 ⊆ span〈〈R|R〉〉

of A oα,r G coincide. To see this first observe from a simple computation that

(2.2) 〈〈ξ ∗ f |η ∗ g〉〉 = f ∗ ∗ 〈〈ξ |η〉〉 ∗ g and 〈〈ξa |ηb〉〉 = iA(a)∗〈ξ |η〉iA(b)

for all ξ, η ∈ R, f , g ∈ Cc(G, A), and a, b ∈ A, where (iA(a) f )(t) := a f (t) and
( f iA(a))(t) := f (t)αt(a). Note that the latter formulas determine the canonical
inclusion iA : A→M(Aoα,r G). Since R̃∗ is a dense left ideal of A, there exists a
bounded right approximate unit (ei) of A in R̃∗. It follows then from the second
equation in (2.2) that

〈〈ξei |ηei〉〉 = iA(e∗i )〈〈ξ |η〉〉iA(ei)→ 〈〈ξ |η〉〉,

for all ξ, η ∈ R̃, which shows that span〈〈A0 | A0〉〉 = span〈〈R̃ | R̃〉〉. Choosing a
self-adjoint approximate unit (ϕi) of A oα,r G in Cc(G, A) ⊆ L1

∆(G, A), we get

〈〈ξ ∗ ϕi |η ∗ ϕi〉〉 = ϕi ∗ 〈〈ξ |η〉〉 ∗ ϕi → 〈〈ξ |η〉〉

for all ξ, η ∈ R, which proves span〈〈R̃ | R̃〉〉 = span〈〈R|R〉〉.

REMARK 2.7. Let (A, α) be a G-algebra and suppose that A0 ⊆ A is a
G-invariant dense ∗-subalgebra of A which satisfies Rieffel’s conditions
(P1)–(P3). It is not clear whether these conditions imply that A0 ∗ L1

∆(G, A) ⊆ A0,
hence it is not necessarily true that A0 satisfies (2.1). However, it is clear that
R̃ := A0 ∗ L1

∆(G, A) must be contained in the intersection of Rieffel’s module
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F (A0) = A0 with A. Using approximate units (ϕi) in Cc(G, A) as above, it fol-
lows that we get F (A0) = F (R̃) = F (R̃R̃∗), so we see that applying our pro-
cedure to R := A0 leads to the original Hilbert bimodule F (A0) of Rieffel’s and
the corresponding fixed-point algebra.

The following facts, which apparently have not been noticed before in the
literature, are now easy consequences of our characterisation of Rieffel proper
actions and will be used frequently in this paper. For notation, if (A, α) is a
G-algebra and if R ⊆ A is as in Proposition 2.5, then we shall say that α : G →
Aut(A) is Rieffel proper with respect toR ⊆ A.

COROLLARY 2.8. Suppose that α : G → Aut(A) is Rieffel proper with respect to
the dense subspace RA ⊆ A. Let (B, β) be another G-algebra and let Φ : A → M(B)
be a nondegenerate G-equivariant ∗-homomorphism. Then β : G → Aut(B) is Rieffel
proper with respect toRB := Φ(RA)B ⊆ B. Moreover, there is a canonical isomorphism
of Hilbert B oβ,r G-modules:

F (RB) ∼= F (RA)⊗ΦorG B oβ,r G,

where Φ or G : A oα,r G → M(B oβ,r G) denotes the (nondegenerate) ∗-homomor-
phism associated to Φ. In particular, if A is saturated with respect to RA, then B is
saturated with respect toRB.

Proof. Since Φ is nondegenerate, RB is dense in B. Let x, y ∈ RA, b, c ∈ B
and let ξ = Φ(x)b and η = Φ(y)c. Then s 7→ 〈〈x | y〉〉(s) ∈ L1

∆(G, A), and hence
we get s 7→ 〈〈ξ | η〉〉(s) = bΦ(〈〈x | y〉〉(s))βs(c) ∈ L1

∆(G, B). The final assertion
is a particular case of Corollary 7.1 in [16] by using the canonical isomorphism
B ∼= A⊗Φ B as G-equivariant Hilbert B-modules and the fact that Rieffel proper
actions are proper in the sense of Exel–Meyer, as we shall explain in Section 4
below.

COROLLARY 2.9. Suppose that α : G → Aut(A) and β : H → Aut(B) are
Rieffel proper with respect to RA ⊆ A and RB ⊆ B, respectively. Then α⊗ β : G ×
H → Aut(A⊗ν B) is proper with respect toRA �RB ⊆ A⊗ν B, where “⊗ν” denotes
the minimal or maximal tensor product of A with B.

Proof. If ξ1, ξ2 ∈ RA and η1, η2 ∈ RB, then

〈〈ξ1 ⊗ η1 | ξ2 ⊗ η2〉〉(s, h) = 〈〈ξ1 | ξ2〉〉(s) · 〈〈η1 |η2〉〉(h)

lies in L1
∆(G× H, A⊗ν B).

Notice that the above proof also applies to any other C∗-tensor product A⊗ν

B for which the tensor product action α⊗ β : G×H → Aut(A⊗ν B) makes sense.

COROLLARY 2.10. Suppose that N is a compact normal subgroup of G and let
α̃ : G/N → Aut(A) be Rieffel proper with respect toRA ⊆ A. Then the inflated action
α := inf α̃ : G → Aut(A) is also Rieffel proper with respect toRA.
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Proof. This follows immediately from the fact that in this situation a func-
tion f : G/N → A is integrable if and only if the function f ◦ q is integrable over
G, where q : G → G/N denotes the quotient map.

3. PROPERNESS OF DUAL ACTIONS ON TWISTED GROUP ALGEBRAS

Recall that for any abelian locally compact group G and any Borel 2-cocycle
ω ∈ Z2(G,T) the twisted group algebra C∗(G, ω) is a C∗-completion of the Ba-
nach algebra L1(G, ω) consisting of all L1-functions on G with convolution and
involution twisted by ω as follows:

f ∗ω g(t) =
∫
G

f (s)g(t− s)ω(s, t− s)ds and f ∗(s) = ω(s,−s) f (−s).

The same convolution formula defines a ∗-representation

λω : L1(G, ω)→ B(L2(G)); λω( f )ξ = f ∗ω ξ

(which makes sense for ξ ∈ L1(G) ∩ L2(G)) and then

C∗(G, ω) := λω(L1(G, ω)) ⊆ B(L2(G)).

There is a canonical dual action ω̂ : Ĝ → Aut(C∗(G, ω)) of the dual group Ĝ on
C∗(G, ω) which is given on the dense subalgebra L1(G, ω) by

ω̂χ( f ) = χ · f , ∀χ ∈ Ĝ, f ∈ L1(G, ω).

We want to show in this section that this action is always Rieffel proper.
For a detailed study of twisted group algebras of abelian groups we re-

fer to the paper [1]. Note that two cocycles ω and ω′ are called similar (or co-
homologous) if there exists a Borel function c : G → T such that ω′(s, t) =

c(s)c(t)c(st)ω(s, t) for all s, t ∈ G. In this case the mapping f 7→ c · f (pointwise
multiplication) on L1-functions extends to an isomorphism C∗(G, ω) ∼= C∗(G, ω′)
which commutes with the dual actions. Thus for our purposes it is enough to fix
any representative of ω under similarity, or, equivalently, to look at classes in
H2(G,T) = Z2(G,T)/∼.

If ω ∈ Z2(G,T), then there is a continuous homomorphism hω : G → Ĝ
given by

hω(s)(t) = ω(s, t)ω(t, s).
It is shown in [1] that two cocycles ω and ω′ on the abelian group G are similar if
and only if hω = hω′ . Moreover, if

Sω := ker hω = {s ∈ G : ω(s, t) = ω(t, s) ∀t ∈ G}
denotes the symmetrizer group of ω, then Baggett and Kleppner show in Theo-
rem 3.1 of [1] that ω is always similar to a cocycle inflated from some cocycle ω̃
on G/Sω.



58 ALCIDES BUSS AND SIEGFRIED ECHTERHOFF

In what follows, we shall need the following basic fact on computing the
cohomology group H2(G,T) = Z2(G,T)/∼ for abelian groups G, which is actu-
ally a very special case of Mackey’s formula ([14], Proposition 9.6) together with
Propositions 1.4 and 1.6 of [12].

LEMMA 3.1. Suppose G = H× N is the direct product of the abelian locally com-
pact groups H and N such that one of them is locally euclidean. Then every cocycle
ω ∈ Z2(G,T) is similar to a product ωH · ωη · ωN , where ωH and ωN are the restric-
tions of ω to H and N, respectively, and η : H × N → T is a continuous bi-character
and ωη((h1, n1), (h2, n2)) = η(h1, n2).

We also need the following well-known fact:

LEMMA 3.2. Suppose that K is a compact abelian group. Then every cocycle ω ∈
Z2(K,T) is similar to a cocycle inflated from a finite quotient K/N of K.

Proof. Just observe that the kernel Sω of hω : K → K̂ is open in K and hence
has finite index in K. The result then follows from the above discussions.

It follows from p. 314 of [1] that every cocycle on Rn is similar to one of the
form ωJ(s, t) = e2πi〈Js,t〉 for a unique skew-symmetric matrix J ∈Mn(R) and that
C∗(Rn, ωJ) is commutative if and only if J = 0. In this case it follows from an
easy exercise on Fourier transforms that

C∗(Rn, ωJ) = C∗(Rn) ∼= C0(R̂n) ∼= C0(Rn)

and the dual action of Rn ∼= R̂n on C∗(Rn) is transformed to the translation action
on C0(Rn). It is clear that this action is Rieffel proper.

In order to show that the dual actions of Rn on C∗(Rn, ωJ) are Rieffel proper
for all skew-symmetric J, we want to rely on Rieffel’s study of his J-deformed al-
gebras C0(Rn)J of C0(Rn). For this let S(Rn) be the Schwartz space of rapidly
decreasing functions on Rn equipped with the translation action τ of Rn. In [22],
[23] Rieffel considers the deformed multiplication ×J on S(Rn) given by the for-
mula

f ×J g(x) =
∫
Rn

∫
Rn

f (x− Ju)g(x− v)e2πi〈u,v〉 dv du.

We should note that in general this iterated integral only exists in the given order,
and that Fubini’s theorem cannot be applied to it! We write S(Rn)J for S(Rn)
equipped with this multiplication. Rieffel shows that together with the involution
f ∗(x) := f (x), S(Rn)J becomes a ∗-algebra and there is a canonical faithful ∗-
representation LJ : S(Rn)J → B(L2(Rn)) by bounded operators given by the
formula LJ( f )ξ = f ×J ξ for ξ ∈ S(Rn) ⊆ L2(Rn). The completion C0(Rn)J :=
S(Rn)J with respect to the operator norm of B(L2(G)) is the J-deformation of
C0(Rn).

Rieffel shows in Section 2 of [23] that the translation action τ of Rn on
S(Rn)J extends to an action (denoted τJ) of Rn on C0(Rn)J which is Rieffel proper
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with respect to the dense subalgebra S(Rn)J . The following lemma extends the
above isomorphism C∗(Rn) ∼= C0(Rn) to the case of non-zero J. The lemma must
be known by Rieffel (see p. 70 of [24]), but we did not find an explicit proof in
the literature. In what follows we write S(Rn, ωJ) for the dense subalgebra of
L1(Rn, ωJ) consisting of Schwartz functions.

LEMMA 3.3. For every skew-symmetric matrix J, the Fourier transform

F : S(Rn)J → S(Rn, ωJ), f 7→ f̂

extends to a τJ-ω̂J-equivariant isomorphism Φ : C0(Rn)J → C∗(Rn, ωJ).

Proof. Recall that

f̂ (u) =
∫
Rn

f (s)e−2πi〈s,u〉 ds.

Then, for f , g ∈ S(Rn) one checks the formula f̂ ×J g = f̂ ∗ω ĝ (mentioned by
Rieffel in p. 70 of [24]) as follows: First observe that

f ×J g(x) =
∫
Rn

∫
Rn

f (x− Ju)g(x− v)e2πi〈v,u〉 dv du

v 7→x−v
=

∫
Rn

∫
Rn

f (x− Ju)g(v)e2πi〈x−v,u〉 dv du

=
∫
Rn

f (x− Ju)ĝ(u)e2πi〈x,u〉 du.

Applying the Fourier transform to this expression gives

f̂ ×J g(z) =
∫
Rn

∫
Rn

f (x− Ju)ĝ(u)e2πi〈x,u−z〉 du dx

x 7→x+Ju
=

∫
Rn

∫
Rn

f (x)ĝ(u)e−2πi〈x+Ju,z−u〉 dx du

=
∫
Rn

f̂ (z− u)ĝ(u)e−2πi〈Ju,z−u〉 du

u 7→z−u
=

∫
Rn

f̂ (u)ĝ(z− u)e2πi〈Ju,z−u〉 du

= f̂ ∗ωJ ĝ(z),

where in the second to last equation we used Jt = −J. The formula also shows
that the Plancherel isomorphism F : L2(Rn) → L2(Rn) induces a unitary equiv-
alence between λω ◦Φ and LJ , which implies that Φ is isometric with respect to
the C∗-norms.



60 ALCIDES BUSS AND SIEGFRIED ECHTERHOFF

As mentioned before, the above lemma combined with the results in Sec-
tion 2 of [23] yields the following:

COROLLARY 3.4. The dual action of Rn on C∗(Rn, ωJ) is Rieffel proper with
respect to S(Rn, ωJ).

We now use this fact to prove:

THEOREM 3.5. Let G be any second countable abelian group and let ω ∈ Z2(G,T).
Then the dual action ω̂ : Ĝ → Aut(C∗(G, ω)) is Rieffel proper and saturated.

Proof. Recall first that the structure theorem for abelian locally compact
groups says that G is isomorphic to a direct product Rn × H for some n ∈ N0
such that H contains a compact open subgroup K (e.g. see Theorem 4.2.1 of [6]).

Let ω̃ denote the restriction of ω to Rn × K. There are no non-trivial bichar-
acters η : Rn × K → T, since any such η would induce a nontrivial homomor-
phism from K into R̂n ∼= Rn. It follows from Lemma 3.1 that ω̃ is similar to the
product ωRn · ωK, where ωRn and ωK denote the restrictions of ω to Rn and K,
respectively. It follows then from Lemma 3.2 that, after passing to a finite-index
subgroup K̃ ⊆ K, if necessary, we may assume without loss of generality, that ωK
is similar to 1K. This implies that

C∗(Rn × K, ω̃) ∼= C∗(Rn, ωRn)⊗ C∗(K) ∼= C∗(Rn, ωRn)⊗ C0(K̂).

Since the dual action of R̂n ∼= Rn on C∗(Rn, ωRn) is proper with respect to
S(Rn, ωRn) and the action of K̂ on C0(K̂) is proper with respect to Cc(K̂), it follows
from Corollary 2.9 that the dual action of R̂n × K ∼= Rn × K̂ on C∗(Rn × K, ω̃) is
proper with respect to D0 := S(Rn, ωRn) � F−1

K (Cc(K̂)), where FK : C∗(K) →
C0(K̂) denotes the Fourier transform for K.

Since L := Rn × K is an open subgroup of G, the dual group L̂ is a quo-
tient of Ĝ with respect to the compact (normal) subgroup N := Ĝ/L. Hence
it follows from Corollary 2.10 that the inflation of the dual action of R̂n × K on
C∗(Rn × K, ω̃) to Ĝ is also Rieffel proper. Now, the restriction of the ω-regular
representation λω : G → U (L2(G)) to Rn × K induces a Ĝ-equivariant nonde-
generate ∗-homomorphism intoM(C∗(G, ω)), and hence the dual action of Ĝ on
C∗(G, ω) is Rieffel proper with respect to

C∗(G, ω)0 := λω(D0)C∗(G, ω)

by Corollary 2.8.
Finally, to see that the dual action is also saturated, we simply note that

C∗(G, ω)oω̂ Ĝ is isomorphic to the compact operators on L2(G), which follows
from general Takesaki–Takai duality for crossed products by twisted actions [18].
Since K(L2(G)) is simple, the C∗(G, ω) oω̂ Ĝ-valued inner product on
F (C∗(G, ω)0) must be full.
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Given any action α : G → Aut(A) of the abelian locally compact group G
on the C∗-algebra A together with a 2-cocycle ω ∈ Z2(G,T), we can form the
Busby–Smith twisted action (α, ω · 1A) of G on A (we refer to [17] for details on
crossed products by Busby–Smith twisted actions). It is then easily seen that the
canonical embedding of G intoM(A oα,ω G) is an ω-representation, and there-
fore integrates to give a Ĝ-equivariant ∗-homomorphism

φ : C∗(G, ω)→M(A oα,ω G).

Thus, as a direct consequence of Corollary 2.8, we get:

COROLLARY 3.6. Let (A, α) be any action of a second countable locally compact
abelian group G on a C∗-algebra A and let ω be any Borel 2-cocycle on G. Then the dual
action α̂ω of Ĝ on the twisted crossed product A oα,ω G is Rieffel proper and saturated.

Recall that an action α : G → Aut(A) is called weakly proper if there exists
a locally compact proper G-space X together with a nondegenerate ∗-homomor-
phism φ : C0(X) → M(A). It is well known that every weakly proper action
is Rieffel proper. This has first been observed by Rieffel in [25], but follows also
easily from Corollary 2.8 since for proper G-spaces X the corresponding action of
G on C0(X) is Rieffel proper with respect to A0 = Cc(X).

As mentioned in the introduction, weakly proper actions enjoy a number
of nice properties which are unknown for general Rieffel proper actions. On the
other hand, so far it seemed to be open (at least to us), whether the class of Ri-
effel proper actions really differs from the class of weakly proper actions, since
most standard examples of Rieffel proper actions given in the literature, like dual
actions on ordinary crossed products, are also weakly proper.

In what follows next, we show that dual actions on twisted group algebras
C∗(G, ω) for connected abelian groups G are weakly proper if and only if the
cocycle ω is similar to the trivial cocycle 1G, hence providing many examples of
Rieffel proper actions which are not weakly proper.

We should note that the notion “weakly proper” has been introduced by
the authors in [2] in order to differentiate them from proper actions in the (very
strong) sense of Kasparov in which we have a proper G-space X together with a
nondegenerate ∗-homomorphism φ : C0(X)→ ZM(A), where ZM(A) denotes
the center of the multiplier algebraM(A).

We need the following lemma, in whichM(C∗(G, ω))Ĝ denotes the classical
fixed-point algebra:

M(C∗(G, ω))Ĝ = {m ∈ M(C∗(G, ω)) : ω̂χ(m) = m ∀χ ∈ Ĝ}.

LEMMA 3.7. For any abelian locally compact group we haveM(C∗(G, ω))Ĝ =C.

Indeed, this lemma is a special case of a much more general result for locally
compact quantum groups given by Vainerman and Vaes in Theorem 1.11 of [26].
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For readers which are not familiar with quantum group techniques we present a
direct proof here:

Proof of Lemma 3.7. Consider the regular representation λω : C∗(G, ω) →
B(L2(G)) as introduced above. Since this is a nondegenerate representation, it ex-
tends to a faithful representation ofM(C∗(G, ω)) on B(L2(G)) which is then con-
tained in the double commutant vN(C∗(G, ω)) = λω(C∗(G, ω))′′ ⊆ B(L2(G)).
Let us define the right regular ω-representation ρω : G → U (L2(G)) by

(ρω(s)ξ)(r) = ω(r− s, s)ξ(r− s).

Then a short (but tricky) computation using the cocycle identity

ω(s, t)ω(s + t, r) = ω(s, t + r)ω(t, r)

for s, t, r ∈ G shows that ρω(s) commutes with λω(t) (given by the formula
(λω(t)ξ)(r)=ω(t, r−t)ξ(r−t)) for all t∈G and hence with λω( f )=

∫
G

f (t)λω(t)dt

for all f ∈ L1(G, ω). This shows that ρω(s) ∈ vN(C∗(G, ω))′.
Recall now that the dual action ω̂ : Ĝ → Aut(C∗(G, ω)) is given by ω̂χ( f ) =

χ · f for χ ∈ Ĝ, f ∈ L1(G, ω). Let U : Ĝ → U (L2(G)) be the unitary representation
given by Uχξ = χ · ξ. Then a short computation shows that

λω(ω̂χ( f )) = Uχλω( f )Uχ

and hence the action extends uniquely to an action on vN(C∗(G, ω)) via ω̂χ(T) :=
UχTUχ. If T ∈ vN(C∗(G, ω)) is invariant under this action, it follows that T
commutes with Uχ for all χ ∈ Ĝ. Taking the integrated form, it follows that T
commutes with U(C∗(Ĝ)) ⊆ B(L2(G)). But if we identify C∗(Ĝ) with C0(G) by
Gelfand transformation and Pontrjagin duality, a short computation shows that
U(C∗(Ĝ)) = M(C0(G)), where M : C0(G) → B(L2(G)) denotes the representa-
tion by multiplication operators.

Hence we conclude that every T in the fixed-point algebra vN(C∗(G, ω))Ĝ

must commute with M(C0(G))∪ ρω(G). Now define a new cocycle ω̃ ∈ Z2(G,T)
by ω̃(s, t) = ω(t, s). The cocycle identity for ω directly translates into the cocycle
identity for ω̃ and one easily checks that ρω = λω̃. Consider the twisted dynam-
ical system (C0(G), G, τ, ω̃) in the sense of Busby & Smith (e.g. see [17]). One
then checks that (M, ρω) is a covariant representation of this system on L2(G)
whose integrated form maps Cc(G × G) ⊆ L1(G, C0(G)) onto a dense subspace
of K(L2(G)). Since T commutes with (M, ρω), it also commutes with K(L2(G)),
which implies that T ∈ C1.

Since a generalised fixed-point algebra AG for a G-algebra A, if exists, must
lie in the classical fixed-point algebraM(A)G ofM(A), we directly get:

COROLLARY 3.8. The generalised fixed-point algebra C∗(G, ω)Ĝ with respect to
any dense subspace R ⊆ C∗(G, ω) which implements Rieffel properness of the dual
action of Ĝ on C∗(G, ω) as in Proposition 2.5 is isomorphic to C.
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We use the above result to show:

PROPOSITION 3.9. Let G be a connected abelian group and let ω ∈ Z2(G,T).
Then the dual action of Ĝ on C∗(G, ω) is weakly proper if and only if ω is similar to the
trivial cocycle 1G.

Proof. If ω is trivial, then C∗(G, ω) ∼= C0(Ĝ) with the usual translation ac-
tion of Ĝ, which is weakly proper.

Suppose now that ω is nontrivial. By the structure theorem for locally com-
pact abelian groups we have G ∼= Rn × K for some connected compact group K.
As in the proof of Theorem 3.5 we can argue that ω is similar to a cocycle ωRn · 1K,
and hence C∗(G, ω) ∼= C∗(Rn, ωRn)⊗ C0(K̂). Assume now that there exists a Ĝ-
equivariant nondegenerate ∗-homomorphism φ : C0(X) → M(C∗(G, ω)). Then
the restriction of the dual action to the factor R̂n in Ĝ = R̂n × K̂ induces the struc-
ture a weakly proper action of Rn ∼= R̂n on C∗(G, ω) ∼= C∗(Rn, ωRn)⊗C0(K̂) such
that the action on the second factor is trivial. Evaluation of the second factor at
the trivial character 1K ∈ K̂ induces an Rn-equivariant quotient map C∗(G, ω)→
C∗(Rn, ωRn), which then induces the structure ϕ : C0(X) → M(C∗(Rn, ω)) of a
weakly proper action of Rn on C∗(Rn, ωRn).

We need to show that this is impossible. For this observe that Rn equipped
with the translation action of Rn is a model for the universal proper Rn-space,
i.e., if X is any proper Rn-space, then there exists an Rn-equivariant continuous
map ψ : X → Rn. This follows from the well know fact that any proper Rn-
space is a principal (i.e., locally trivial) Rn-bundle (e.g., by Palais’s slice theorem),
and that any principal Rn-bundle is trivial by contractibility of Rn (e.g., see [11]).
Hence we obtain a nondegenerate Rn-map ψ∗ : C0(Rn) → Cb(X) = M(C0(X))
by ψ∗( f ) = f ◦ ψ and composing this with ϕ we may assume without loss of
generality that X = Rn (see also Remark 3.13(d) of [3]).

Assuming this we see that our assumption implies that C∗(Rn, ω) is a weak-
ly proper Rn oRn-algebra and hence it follows from Landstad duality for coac-
tions of Rn (see Theorem 3.3 of [19] or [2]), which in the present case is just Land-
stad duality for actions of R̂n ∼= Rn, that there exists an action α of Rn on the gen-
eralised fixed-point algebra C∗(Rn, ω)R

n
such that C∗(Rn, ω) ∼= C∗(Rn, ω)R

n oα

Rn. But it follows from the construction of this fixed-point algebra (e.g., see [2])
that it must lie in the classical fixed-point algebraM(C∗(Rn, ω))R

n
which is C by

Lemma 3.7. But the only action on C is the trivial one, and we conclude that

C∗(Rn, ω) ∼= CoRn ∼= C∗(Rn)

is commutative, which contradicts the fact that ω is nontrivial.

Since actions of compact groups K are always proper in any given sense
(they are always Kasparov proper for the proper K-space {pt}), it is clear that for
discrete groups G the dual actions of Ĝ on C∗(G, ω) are always weakly proper.
Indeed, this observation can be extended as follows:
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REMARK 3.10. Let G be an abelian locally compact group with decompo-
sition G = Rn × H such that H has a compact open subgroup. Suppose that
ω is a 2-cocycle on G such that the restriction of ω to Rn is trivial. Then as
in the proof of Theorem 3.5 we may argue that there exists an open subgroup
M = Rn × K such that the restriction of ω to M is trivial. Then the dual action
of M̂ on C∗(M, ω) ∼= C0(M̂) is weakly proper (with X = M̂). Using the fact that
M̂ = Ĝ/N for the compact subgroup N := Ĝ/M, we see that the translation
action of Ĝ on M̂ is proper, too. Hence, the restriction of λω to M provides a Ĝ-
equivariant imbedding of C0(M̂) ∼= C∗(M, ω) into C∗(G, ω), which proves that
the dual action of Ĝ on C∗(G, ω) is weakly proper.

Of course one might wonder, whether the converse of this observation is
true: Is the dual action of Ĝ on C∗(G, ω) weakly proper if and only if the restric-
tion of ω to Rn is trivial?

Note that there exist quite interesting twisted group algebras given by such
examples. For instance, let ω be the Heisenberg-cocycle on R×Q given by the
formula

ω((s, q), (t, r)) = e2πisr.

Then the twisted group algebra C∗(R×Q, ω) is isomorphic to the crossed prod-
uct C0(R)oQ where Q acts by translation on R. Since this action is minimal (i.e.,
all orbits are dense), this algebra is simple.

4. EXEL–MEYER PROPER ACTIONS AND COUNTEREXAMPLES

In this section we want to use our characterisation of Rieffel proper ac-
tions to show that certain examples of Exel–Meyer proper actions as discussed
by Meyer in [16] are actually Rieffel proper. This will provide us with examples
in which a given G-algebra (A, α) has infinitely many different dense subspaces
Ri ⊆ A, i ∈ I, such that α : G → Aut(A) is Rieffel proper with respect to all Ri
as in Proposition 2.5 but with pairwise non-isomorphic generalised fixed-point
algebras. As we shall see, such examples can even occur if all such Rieffel proper
actions are saturated. In this case all fixed-point algebras have to be Morita equiv-
alent, since they are Morita equivalent to A or G.

We start with a brief introduction to the theory of Exel–Meyer proper actions
as defined by Exel and Meyer in [8] and [15], [16]. Such actions provide generali-
sations of Rieffel proper actions which still allow the construction of generalised
fixed-point algebras AG.

Let (B, β) be a G-algebra. In what follows we realise the left regular repre-
sentation λB : Cc(G, B)→ L(L2(G, B)) by the formula

(4.1) λB
ϕ( f )|t :=

∫
G

∆(s)−1βt−1(ϕ(ts−1)) f (s)ds ϕ ∈ Cc(G, B), f ∈ L2(G, B).
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Recall that the reduced crossed product B oβ,r G can be defined as the closure of
λB(Cc(G, B)) inside L(L2(G, B)). More generally, we say that a continuous func-
tion ϕ : G → B is a bounded symbol if the integral operator λB

ϕ of (4.1), which makes
always sense for f ∈ Cc(G, B), extends to an adjointable operator in L(L2(G, B)).
Such an integral operator is called Laurent operator with symbol ϕ, a terminology
introduced in [8]. We shall often identify bounded symbol functions ϕ with the
corresponding operator λB

ϕ.
Assume now that (E , γ) is a G-equivariant Hilbert B-module. Given ξ ∈ E ,

we define linear operators:

|ξ〉〉 : Cc(G, B)→ E , |ξ〉〉 f :=
∫
G

∆(t)−1/2γt−1(ξ) f (t)dt,

and

〈〈ξ| : E → C(G, B), 〈〈ξ|η(t) := ∆(t)−1/2〈γt−1(ξ) |η〉.

We say that ξ is square integrable if |ξ〉〉 extends to an adjointable operator L2(G, B)
→ E . This is equivalent to saying that the continuous function 〈〈ξ|η lies in
L2(G, B); and in this case 〈〈ξ| is automatically the adjoint operator of |ξ〉〉. It is
easy to see that |ξ〉〉 and 〈〈ξ| are G-equivariant operators with respect to the given
G-action γ on E and the β-compatible G-action (ρ⊗ β)t( f )(s) := ∆(t)1/2βt( f (st))
on the Hilbert B-module L2(G, B).

The G-equivariant Hilbert B-module (E , γ) is called square integrable if the
space Esi of square-integrable elements is dense in E . The theory of square-
integrable modules is developed in detail by Meyer in [15], [16]. Actually, in
the papers [15], [16] the modular function and the inverses do not show up in the
definition of |ξ〉〉 or 〈〈ξ|, i.e., γt(ξ) appears in place of ∆(t)−1/2γt−1(ξ) above. The
reason is that Meyer always equips L2(G) with the left regular representation λ
of G, while we use the right regular representation ρ instead. The above formulas
translate into Meyer’s formulas via the unitary intertwiner

U : L2(G)→ L2(G); (U f )(t) := ∆(t)−1/2 f (t−1)

between λ and ρ. The operators |ξ〉〉 ◦U and U ◦ 〈〈ξ| are then exactly the operators
used by Meyer in [16]. Our convention follows the paper [8] by Exel, from which
the basic ideas in [16] are built.

A G-algebra (A, α), when viewed as a G-equivariant Hilbert A-module in
the canonical way, is square-integrable if and only if it is integrable in the sense
of Definition 2.2. More generally, it is proved in [15] that a G-equivariant Hilbert
B-module (E , γ) is square integrable if and only if the G-algebra of compact oper-
ators A = K(E) with G-action α = Adγ is integrable. Moreover, if ξ, η ∈ Esi, then
the rank-one operator |ξ〉〈η| ∈ K(E) defined by |ξ〉〈η|ζ = ξ〈η | ζ〉B is α-integrable
and ∫

G

su
αt(|ξ〉〈η|)dt = |ξ〉〉〈〈η|,
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where |ξ〉〉〈〈η| denotes the composition |ξ〉〉 ◦ 〈〈η| ∈ LG
A(A) =M(A)G.

To see the connection of integrability with Rieffel properness it is impor-
tant to describe in detail the composition 〈〈ξ| ◦ |η〉〉 for all ξ, η ∈ Esi, which is a
G-equivariant operator on L2(G, B), that is, an element of the fixed-point algebra
M(B ⊗ K(L2G))G = LG

B (L2(G, B)). In general, if ξ, η ∈ E , we define 〈〈ξ | η〉〉
to be the continuous function t 7→ ∆(t)−1/2〈ξ | γt(η)〉. We then compute for
f ∈ Cc(G, B):

〈〈ξ| ◦ |η〉〉( f )|t = ∆(t)−1/2〈γt−1(ξ) | |η〉〉 f 〉

=
∫
G

∆(ts)−1/2〈γt−1(ξ) |γs−1(η)〉 f (s)ds

=
∫
G

∆(s)−1βt−1(∆(ts−1)−1/2〈ξ |γts−1(η)〉) f (s)ds

=
∫
G

∆(s)−1βt−1(〈〈ξ |η〉〉(ts−1)) f (s)ds

= λB
〈〈ξ|η〉〉( f )|t,

so that we get the equation 〈〈ξ | η〉〉 = 〈〈ξ| ◦ |η〉〉 for ξ, η ∈ Esi if we iden-
tify the symbol 〈〈ξ | η〉〉 = [t 7→ ∆(t)−1/2〈ξ | γt(η)〉] with the corresponding
Laurent operator λB

〈〈ξ|η〉〉. It is easy to see that for every bounded symbol func-

tion ϕ ∈ C(G, B), λB
ϕ is always an element of the fixed-point C∗-subalgebra

LG(L2(G, B)) =M(B⊗K(L2G))G. In particular, B oβ,r G ⊆ M(B⊗K(L2G))G,
where G acts on B⊗K(L2G) via β⊗Adρ. But for a bounded symbol ϕ, the Lau-
rent operator λB

ϕ need not be in B oβ,r G. The following definition is the main
point of the above discussion:

DEFINITION 4.1 (Exel–Meyer). We say that a subspaceR ⊆ Esi of a G-equi-
variant Hilbert B-module (E , γ) is relatively continuous if 〈〈R | R〉〉 ⊆ B oβ,r G.
We say that the action (E , γ) is Exel–Meyer proper if there is a dense relatively
continuous subspaceR ⊆ E .

In particular, if (A, α) is a G-C∗-algebra, we say that α is Exel–Meyer proper
if there is a dense relatively continuous subspaceR ⊆ Asi, where we view (A, α)
as a G-equivariant Hilbert A-module.

In the above form, these actions were introduced by Meyer in [16], but the
essential ideas are already contained in Exel’s paper [8] who defined relative con-
tinuity only for actions of locally compact abelian groups on C∗-algebras. The
Exel–Meyer proper actions are, in a sense, the most general proper actions which
allow the construction of generalised fixed-point algebras:

DEFINITION 4.2. The generalised fixed-point algebra associated to a relatively
continuous subspace R ⊆ E is, by definition, the C∗-subalgebra Fix(E ,R) of
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LG(E) =M(K(E))G generated by the operators |ξ〉〉〈〈η| =
∫
G

su|γt(ξ)〉〈γt(η)|dt

with ξ, η ∈ R.

The generalised fixed-point algebra Fix(E ,R) is always Morita equivalent
to an ideal in B oβ,r G. The construction of the bimodule F (R) implementing
this equivalence can be performed essentially in the same way as we did for Ri-
effel proper actions: take R̃ := R ∗ Cc(G, B) and endow it with the usual right
Cc(G, B)-convolution action and the inner product 〈〈· | ·〉〉 and complete it to a
right Hilbert B oβ,r G-module F (R). The algebra of compact operators on F (R)
is then canonically isomorphic to Fix(E ,R) with left action induced by the left
action of L(E) on R and the left-inner product (ξ, η) 7→ |ξ〉〉〈〈η|. The details can
be found in Section 6 of [16].

If (E , γ) is a G-equivariant Hilbert (B, β)-module, there is an important con-
nection between relatively continuous dense subsetsRE ⊆ Esi and relatively con-
tinuous dense subsets RK ⊆ K(E)si given as follows: If RE ⊆ Esi is relatively
continuous, then it is shown in Corollary 7.2 of [16] that

RK := span{|ξ〉〈η| : ξ ∈ RE , η ∈ E}

is a dense relatively continuous subset of K(E)si with respect to the action α =
Adγ such that the corresponding Hilbert K(E)oAdγ,r G-module F (RK) satisfies

F (RK) ∼= F (RE )⊗BorG (E∗ or G).

In particular, since K(E∗ or G) is an ideal in B or G, it follows that

K(E)G : = Fix(K(E),RK) = K(F (RK)) = K(F (RE )⊗BorG (E∗ or G))

= K(F (RE )) = Fix(E ,RE ).
(4.2)

Conversely, if (A, α) is any square-integrable G-C∗-algebra, φ : A → L(E) is a
nondegenerate G-equivariant ∗-homomorphism, and RA ⊆ Asi is a dense rel-
atively continuous subspace of A, then it is shown in Corollary 7.1 of [16] that
RE := φ(RA)E is a dense relatively continuous subspace of Esi such that

F (RE ) ∼= F (RA)⊗AorG (E or G)

as Hilbert B or G-modules. In particular, if A = K(E) we get

Fix(E ,RE ) = K(F (RE )) ∼= K(F (RK)) = Fix(K(E),RK) = K(E)G.

We now want to discuss a similar correspondence between subsetsRE ⊆ E
and RK ⊂ K(E) which induce Rieffel properness as in Proposition 2.5. Moti-
vated by the above discussion on relatively continuous subsets, we introduce the
following:

DEFINITION 4.3. Let (E , γ) be a G-equivariant Hilbert (B, β)-module. Then
a subset R ⊆ E is said to be relatively L1 if for each ξ, η ∈ R the function 〈〈ξ |
η〉〉 = [s 7→ ∆(s)−1/2〈ξ |γs(η)〉B] lies in L1

∆(G, B).
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Of course, if (A, α) is a G-algebra, viewed as a G-equivariant Hilbert (A, α)-
module, then a subset R ⊆ A is relatively L1 in the sense of the above definition
if and only if it satisfies condition (P1) of Proposition 2.5. Hence there exists a
dense relatively L1 subspace R ⊆ A if and only if the action α : G → Aut(A) is
Rieffel proper. Motivated by Proposition 2.5 we introduce the following:

DEFINITION 4.4. Suppose that (E , γ) is a G-equivariant Hilbert
(B, β)-module. We say that the action γ : G → Aut(E) is Rieffel proper if there
exists a dense relatively L1-subspaceR ⊆ E .

It follows directly from the definition and the fact that L1(G, B) ⊆ B or G
that every dense relatively L1-subspaceR ⊆ E is also relatively continuous in the
sense of Exel–Meyer. Therefore it follows from the results of Meyer in [16] that
R̃ = R ∗ Cc(G, B) completes to a Hilbert B oβ,r G-module F (R) with respect to
the B or G-valued inner product

〈〈ξ |η〉〉 = (s 7→ ∆(s)−1/2〈ξ |γs(η)〉) ∈ L1(G, B) ⊆ B or G.

Since Cc(G, B) is dense in L1
∆(G, B) ⊆ Bor G, it follows that every element inR∗

L1
∆(G, B) can be approximated by elements in R ∗ Cc(G, B) in the norm induced

by the Bor G-valued inner product 〈〈· | ·〉〉. Hence, ifRA ⊆ A is a dense relatively
L1-subspace of a G-C∗-algebra (A, α), then F (RA) coincides with the module as
discussed preceding Proposition 2.6. In particular, the corresponding fixed-point
algebras coincide.

LEMMA 4.5. Suppose that (E , γ) is a G-equivariant Hilbert (B, β)-module and
thatRE ⊆ E is a dense relatively L1-subspace of E . Then

RK := span{|ξ〉〈η| : ξ ∈ RE , η ∈ E}

is a dense relatively L1-subspace of K(E) such that

F (RK) ∼= F (RE )⊗BorG (E∗ or G).

Conversely, if (A, α) is a G-C∗-algebra such that there exists a nondegenerate G-equi-
variant ∗-homomorphism φ : A → L(E) and if RA is a dense relatively L1-subspace of
A, thenRE = φ(RA)E is a dense relatively L1-subspace of E such that

F (RE ) ∼= F (RA)⊗AorG (E or G).

Proof. For the proof we only need to check the L1 conditions for RK and
RE , respectively, since everything else will follow from the corresponding results
for Exel–Meyer proper actions as discussed above.

So suppose thatRE ⊆ E is a relatively L1-subspace of E . Recall that |ξ〉〈η| ∈
K(E) is the operator defined by

|ξ〉〈η|ζ = ξ · 〈η | ζ〉B
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for all ζ ∈ E . Then a short computation shows that for ξ, ξ ′, η, η′ ∈ E we get the
equation

|ξ〉〈η| ◦ |ξ ′〉〈η′| = |ξ · 〈η | ξ ′〉B〉〈η′|.
Using this we get for all ξ, ξ ′ ∈ RE and η, η′ ∈ E that

(|ξ〉〈η|)∗ ◦Adγs(|ξ ′〉〈η′|) = |η〉〈ξ| ◦ |γs(ξ
′)〉〈γs(η

′)| = |η · 〈ξ |γs(ξ
′)〉B〉〈γs(η

′)|,

from which it follows that

‖(|ξ〉〈η|)∗ ◦Adγs(|ξ ′〉〈η′|)‖ 6 ‖〈ξ |γs(ξ
′)〉B‖‖η‖‖η′‖.

Since ξ, ξ ′ ∈ RE , the right hand side of this equation (and hence also the left hand
side) defines a function in L1

∆(G,K). HenceRK is relatively L1.
Conversely, ifRA ⊆ A is relatively L1 and if a, b ∈ RA and ξ, η ∈ E , then

s 7→ ‖〈φ(a)ξ |γs(φ(b)η)〉B‖ = ‖〈φ(αs(b∗)a)ξ |γs(η)〉B‖ 6 ‖αs(b∗)a‖‖ξ‖‖η‖

lies in L1
∆, henceRE = φ(RA)E is relatively L1.

We shall now use the above correspondence between dense relatively
L1-subspaces of E and dense relatively L1-subspaces of K(E) to study certain
examples of Meyer in Section 8 of [16] in the context of Rieffel proper actions. For
this we let (B, β) = (C, id), the complex numbers with trivial G-action. Then a
G-equivariant Hilbert C-module is a pair (H, u) where H is a Hilbert space and
u : G → U (H) is a unitary representation of G on H. Using the above lemma it
follows that, if we can find dense relatively L1-subspaces Ri ⊆ H, i = 1, 2, with
non-isomorphic fixed-point algebras Fix(H,Ri) = K(F (Ri)), then the action
Adu : G → Aut(K(H)) will be Rieffel proper with respect to the correspond-
ing subspaces Ri

K = |Ri〉〈H| ⊆ K(H), i = 1, 2, with non-isomorphic modules
F (Ri

K) and non-isomorphic fixed-point algebras

K(H)G
i = K(F (Ri

K))
∼= Fix(H,Ri),

which follows from Lemma 4.5 together with (4.2).
Following Meyer in Section 8 of [16] we look at the particular case where

G = Zk and (H, u) = (`2(Zk)n, ρn), where ρn denotes the n-fold direct sum of
the right regular representation ρ : Zk → U (`2(Zk)) (here we replace λ, used in
Section 8 of [16], by ρ to make the example compatible with our general policies
as explained at the beginning of this section).

Assume thatR ⊆ `2(Zk)n is a dense relatively L1-subspace. Then the corre-
sponding C∗(Zk)-valued inner product 〈〈ξ |η〉〉 onR is given by the function

m 7→ 〈〈ξ |η〉〉(m) = 〈ξ |ρn
m(η)〉 =

n

∑
i=1

(
∑

ν∈Zk

ξ i(ν)ηi(ν + m)
)
=

n

∑
i=1

ξ i ∗ ηi(m),

for ξ, η ∈ R, where ξi, ηi denote the i-th components of ξ and η, respectively.
Using Fourier transform everywhere turns `2(Zk)n into L2(Tk)n and C∗(Zk) into
C(Tk), and the C∗(Zk)-valued inner product onR ⊆ `2(Zk)n is transformed into
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the C(Tk)-valued inner product on the subspace R̂ = {ξ̂ : ξ ∈ R} ⊂ L2(Tk)n

with inner product

〈〈ξ̂ | η̂〉〉C(Tk)(z) =
n

∑
i=1

ξ̂ i · η̂i(z).

The Plancherel isomorphism `2(Zk)n ∼= L2(Tk)n intertwines the right regular rep-
resentation ρ of Zk on `2(Zk) with the unitary representation ρ̂ given by

(ρ̂mξ)(z) = z−mξ(z) ∀z ∈ Tk, m ∈ Zk,

where z−m := z−m1
1 · z−m2

2 · · · z−mk
k ∈ T. The dense relatively continuous sub-

spaces R̂ ⊆ L2(Tk)n with respect to the unitary representation ρ̂ n have been
studied in detail by Meyer in Section 8 of [16] and by Buss and Meyer in [5]. In
particular, we are interested in the following two special examples:

EXAMPLE 4.6. Consider the case n = 1. Let S ⊆ Tk be an open dense
subspace of Tk with full Haar measure. Then we get the following chain of dense
subsets in L2(Tk) ∼= `2(Zk):

R̂S = C∞
c (S) ⊆ Cc(S) ⊆ L2(S) = L2(Tk),

where C∞
c (S) denotes the set of smooth functions with compact supports on S.

Then the C(Tk)-valued inner products 〈〈ξ |η〉〉C(Tk) = ξ · η all lie in

C∞
c (S) ⊆ IS := C0(S) ⊆ C(Tk).

Since the inverse Fourier-transform of any smooth function on Tk lies in `1(Zk)

we see that the preimage RS of R̂S under the Fourier transform is a dense rela-
tively L1-subspace of `2(Zk). As in Section 8 of [16] one checks that the module
F (R̂S) is isomorphic to the standard C0(S)-C0(S) equivalence bimodule C0(S),
thus the generalized fixed-point algebra K(`2(Zk))Z

k ,Adρ = Fix(`2(Zk),RS) is
also isomorphic to C0(S). Since there exist infinitely many non-homeomorphic
open dense subsets S ⊆ Tk, there exist infinitely many non-isomorphic gener-
alised fixed-point algebras for the Rieffel proper action

Adρ : Zk → Aut(K(`2(Zk)).

One might observe that in the above example only the case S = Tk provides
a structure of a saturated Rieffel proper action in which the corresponding Hilbert
C∗(Zk)-module F (RS) is full. But the following slight alteration of another ex-
ample given by Meyer in Section 8 of [16] yields examples of different saturated
Rieffel proper structures with non-isomorphic fixed-point algebras:

EXAMPLE 4.7. We are now looking at structuresR ⊆ `2(Zk)n. Again we du-
alise in order to consider subspaces R̂ ⊆ L2(Tk)n. Suppose that p : V → Tk is an
n-dimensional complex hermitian vector bundle over Tk. Then the Hilbert space
L2(Tk,V) of L2-sections of V is isomorphic to L2(Tk)n. The easiest way to see this
is to choose a partition {Ai : 1 6 i 6 m} of Tk with measurable sets Ai ⊆ Tk
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such that V|Ai
∼= Ai × Cn. Then both spaces are isomorphic to

m⊕
i=1

L2(Ai)
n. As

pointed out in p. 190 of [16], the subspace R̂V := C(Tk,V) ⊆ L2(Tk,V) of con-
tinuous sections of the vector bundle V is a dense relatively continuous subset
of L2(Tk,V) ∼= L2(Tk)n with full C(Tk) ∼= C∗(Zk)-valued inner product, which
makes it into a C(Tk, End(V))-C(Tk) equivalence bimodule. Hence the inverse
image RV of R̂V under the Plancherel isomorphism is a dense relatively contin-
uous subset of `2(Zk)n with corresponding generalised fixed-point algebra

Fix(`2(Zk)n,RV ) ∼= C(Tk, End(V)).
Now, if p : V → Tk is a smooth vector bundle, we can look at the subspace

R∞
V := {ξ ∈ `2(Zk)n : ξ̂ ∈ C∞(Tk,V)}.

Then the C(Tk)-valued inner product 〈〈ξ̂ | η̂〉〉C(Tk) for ξ, η ∈ R∞
V lies in C∞(Tk)

and therefore 〈〈ξ | η〉〉 = F−1(〈〈ξ̂ | η̂〉〉C(Tk)) ∈ `1(Zk), where F−1 denotes in-
verse Fourier transform. Hence R∞

V is a dense relatively L1-subspace of `2(Zk)n.
Since every continuous section ξ̂ : Tk → V can be approximated by smooth
sections with respect to the C(Tk)-valued inner product, the module F (R∞

V ) co-
incides with F (RV ), hence the corresponding generalised fixed-point algebra is
also C(Tk, End(V)). In particular, in case of the trivial bundle V = Tk × Cn the
fixed-point algebra will be C(Tk,Mn(C)).

Thus, in order to find different structures for saturated Rieffel properness
of the action Adρn : Zk → Aut(K(`2(Zk)n)) with non-isomorphic fixed-point
algebras, it suffices to find smooth n-dimensional vector bundles V over Tk such
that C(Tk, End(V)) is not isomorphic to C(Tk,Mn(C)). As pointed out on the
bottom of p. 190 in [16], if k = n = 2 and if L1 is a smooth realisation of the
line bundle on T2 corresponding to the generator of H2(T2,Z), which is given by
gluing (T× [0, 1])×C at the endpoints with respect to the smooth function

T× {0} ×C→ T× {1} ×C : (z, 0, v) 7→ (z, 1, zv),

then for V = C ⊕ L1 we have C(Tn, End(V)) 6 ∼= C(Tn,M2(C)). More gener-
ally, if we let Lm denote the line bundle over T2 given by gluing (T× [0, 1])×C
at the endpoints with respect to the smooth function (z, 0, v) 7→ (z, 1, zmv), for
m ∈ Z, and putting Vm = C ⊕ Lm, then similar arguments as used by Meyer
show that the corresponding generalised fixed-point algebras C(T2, End(Vn))
are pairwise non-isomorphic. This yields infinitely many relatively L1-subspaces
Rm ⊆ `2(Z2)2 for the Z2-algebra (K(`2(Z2)2), Adρ2) such that the corresponding
fixed-point algebras are pairwise non-isomorphic.
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