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ABSTRACT. For a positive integer k and d-tuple T = (T1, . . . , Td), consider

DT,k :=
k
∑

l=0
(−1)l(k

l) ∑
|p|=l

l!
p! T∗ pTp. A commuting d-tuple T is said to be a row

ν-hypercontraction if DT∗ ,k > 0 for k = 1, . . . , ν. Under some assumption, we
prove that any row ν-hypercontraction d-tuple T, for which DT∗ ,ν is a projec-
tion, decomposes into Sν⊕V∗ for a direct sum Sν of Mz,ν and a spherical isom-
etry V. In addition, if T is a spherical expansion and d > ν, then T = Sν ⊕U
for a spherical unitary U. This generalizes a theorem of Richter–Sundberg.
Further, we identify extremals of joint ν-hypercontractive d-tuples.
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1. ROW ν-HYPERCONTRACTIONS

The present note is largely motivated by the investigations in [8] pertaining
to extension questions in families of commuting operator tuples that are associ-
ated with the unit ball in Cd. One of the main results of [8] identifies the extremals
of the family of spherical contractions. This identification, in particular, yields a
Wold-type decomposition for a class of row contractions ([8], Corollary 1.5). The
main result of this note is a generalization of the Wold-type decomposition the-
orem of Richter–Sundberg to row ν-hypercontractions. We further address the
problem of identification of the extremals of the family of joint ν-hypercontractive
d-tuples. Needless to say, the extension theorem ([7], Theorem 11) of Müller–
Vasilescu suggests that the extremals of the family of joint ν-hypercontractions
must be of the form S∗ν ⊕U for a direct sum Sν of Mz,ν and a spherical unitary U.
The present note confirms this.

Let us recall some standard notations used throughout this note. The sym-
bol N stands for the set of non-negative integers and that N forms a semigroup



196 SAMEER CHAVAN AND RANI KUMARI

under addition. Let Nd denote the cartesian product N× · · · ×N (d times). Then,
for p ≡ (p1, . . . , pd) and n ≡ (n1, . . . , nd) in Nd, we write p 6 n if pi 6 ni for

i = 1, . . . , m and we also use n! :=
d

∏
i=1

ni! and |n| :=
d
∑

i=1
ni. If B(H) denotes the Ba-

nach algebra of bounded linear operators on a complex infinite-dimensional sep-
arable Hilbert space H and T = (T1, . . . , Td) is a d-tuple of commuting bounded
linear operators Tj (1 6 j 6 d) on H, then we set T∗ to denote (T∗1 , . . . , T∗d ) while
Tp for p = (p1, . . . , pd) ∈ Nd represents Tp1

1 · · · T
pd
d .

Given a commuting d-tuple T = (T1, . . . , Td) on a Hilbert spaceH, we set

(1.1) QT(X) :=
d

∑
i=1

T∗i XTi (X ∈ B(H)).

It is easy to see that Qn
T(I) = ∑

|p|=n

n!
p! T∗pTp (n > 1). Consider the defect operator

DT,k of order k > 0 given by

(1.2) DT,k :=
k

∑
l=0

(−1)l
(

k
l

)
Ql

T(I),

where Q0
T(X) = X for any X ∈ B(H). For convenience, we also let Qn(X) = X

for X ∈ B(H) and negative integers n.

DEFINITION 1.1. We say that the operator tuple T = (T1, . . . , Td) is a row ν-
hypercontraction if DT∗ ,k > 0 for k = 1, . . . , ν. The operator tuple T = (T1, . . . , Td)
is a joint ν-hypercontraction if T∗ is a row ν-hypercontraction. We will refer to the
joint 1-hypercontraction simply as joint or spherical contraction.

REMARK 1.2. If the d-tuple T = (T1, . . . , Td) is a joint ν-hypercontraction
then

I > DT,1 > · · · > DT,ν−1 > DT,ν.

Since QT(X) > 0 whenever X > 0, this follows from the identity

(1.3) DT,k − DT,k+1 = QT(DT,k).

The following example of row ν-hypercontraction is certainly known [2], [7].

EXAMPLE 1.3. For any integer ν > 1, consider the U -invariant kernel

κν(z, w) =
1

(1− 〈z, w〉)ν
=

∞

∑
n=0

an,ν〈z, w〉n (z, w ∈ B),

where

an,ν =
(n + 1) · · · (n + ν− 1)

(ν− 1)!
(n ∈ N).(1.4)
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We find it convenient to let an,ν = 0 for integers n < 0. Let Mz,ν be the multipli-
cation d-tuple onH(κν). It is easy to see that for any integer k > 1,

DM∗z,ν ,k =
∞

∑
n=0

( n

∑
i=0

(−1)i
(

k
i

)
an−i,ν

an,ν

)
En,

where (k
i) = 0 if k < i, and En denotes the orthogonal projection of H (κν) onto

the space Hn generated by homogeneous polynomials of degree n. Recall that for
a sequence {bk}k>0 of positive real numbers,

n

∑
k=0

(−1)k
(

n
k

)
bk = 0

if and only if bk is a polynomial in k of degree less than or equal to n − 1. One
may now use this fact to see that

DM∗z,ν ,ν = E0 > 0

(see Example 2.7 of [2] for details). Since Mz,ν is a row contraction, by Lemma 2
of [7], it is a row ν-hypercontraction.

REMARK 1.4. We record the following identity for future reference:

n

∑
i=0

(−1)i
(

ν

i

)
an−i,ν = 0 (n > 1).

In particular, we have

ν

∑
i=0

(−1)i
(

ν

i

)
an−i,ν = 0 (n > 1).

We now recall the notion of joint k-isometry [5].

DEFINITION 1.5. Fix an integer k > 1. We say that T is a joint k-isometry if
DT,k = 0. We refer to the joint 1-isometry as joint or spherical isometry. We say that
T is a spherical unitary if T is a normal, spherical isometry. Further, we say that T
is a spherical expansion if QT(I) > I.

REMARK 1.6. Let T be a spherical contraction. If DT,ν = 0 then DT,k = 0 for
all positive integers k. This may be concluded from Lemma 4.3 of [3].

For future reference, we record the following observation.

LEMMA 1.7. The d-tuple Mz,ν is a spherical expansion if and only if d > ν. In
this case, Mz,ν is a joint (d− ν + 1)-isometry.

Proof. By Proposition 4.3 of [6] and (1.4), we have

d

∑
i=1

M∗zi ,ν Mzi ,ν =
∞

∑
n=0

n + d
n + 1

an,ν

an+1,ν
En =

∞

∑
n=0

n + d
n + ν

En.
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It follows that
d

∑
i=1

M∗zi ,ν Mzi ,ν > I if and only if d > ν.

The remaining part follows from Theorem 4.2 of [5].

The main result of this note is a decomposition theorem for certain row ν-
hypercontractive d-tuples in case ν 6 d. This generalizes a decomposition the-
orem of S. Richter and C. Sundberg (Corollary 1.5 of [8], which corresponds
to the case in which d is arbitrary and ν = 1). Before we state it, recall that
Sν = (S1, . . . , Sd) is a direct sum of Mz,ν if Si = Mzi ,ν ⊗ I in B(H(κν)⊗ C) for some
separable Hilbert space C. In this case, by the multiplicity of Sν, we understand
the dimension of the Hilbert space C.

THEOREM 1.8. Let ν be a positive integer such that ν 6 d. Then the operator
d-tuple T = (T1, . . . , Td) is unitarily equivalent to Sν ⊕U for a direct sum Sν of Mz,ν
and a spherical unitary U if and only if

(i) the operator d-tuple T is a row ν-hypercontraction,
(ii) DT∗ ,ν is an orthogonal projection,

(iii) the operator d-tuple T is a spherical expansion, and

(iv) whenever x1, . . . , xd ∈ H with
d
∑

i=1
Tixi = 0, then there exists an anti-symmetric

d× d matrix {yij} with entries inH such that xi =
d
∑

j=1
Tjyij for i = 1, . . . , d.

In the direct sum Sν ⊕U, one of the summands may be absent. If T admits the above
decomposition then T is necessarily a joint (d− ν + 1)-isometry.

REMARK 1.9. In view of (ii), the condition (i) may be replaced by the weaker
condition that T is a row contraction. The condition (iv) above says that the
Koszul complex for T is exact at the second last stage (see condition (c) of Corol-
lary 1.5 of [8]). The conclusion of Theorem 1.8 is no more true in case ν > d.
Indeed, the Bergman 1-shift Mz,2 (ν = 2 and d = 1) does not satisfy the condition
(iii) above.

Here are some immediate consequences of Theorem 1.8. The first one is the
case in which d = ν.

COROLLARY 1.10. A spherical expansion operator d-tuple T = (T1, . . . , Td) is a
joint isometry provided it satisfies:

(i) the operator d-tuple T is a row d-hypercontraction,
(ii) DT∗ ,d is an orthogonal projection, and

(iii) whenever x1, . . . , xd ∈ H with
d
∑

i=1
Tixi = 0, then there exists an anti-symmetric

d× d matrix {yij} with entries inH such that xi =
d
∑

j=1
Tjyij for i = 1, . . . , d.
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COROLLARY 1.11. If ν 6 d, then a Taylor invertible row contraction d-tuple T
is a spherical unitary if and only if T is a spherical expansion such that DT∗ ,ν is an
orthogonal projection.

REMARK 1.12. Let T be a row contraction d-tuple such that DT∗ ,ν is an or-
thogonal projection. In addition, if T is a Fredholm spherical expansion then T
is essentially normal (that is, T∗i Ti − TiT∗i is compact for every i = 1, . . . , d) with
essential Taylor spectrum contained in the unit sphere (the reader is referred to
[4] for the definition of essential Taylor spectrum). This may be concluded from
Proposition 1.7 of [3].

Theorem 1.8 is a consequence of the following general decomposition theo-
rem for joint ν-hypercontractions, which holds for all positive integral values of
ν and d (cf. Proposition 4.1 of [8])

PROPOSITION 1.13. Let ν be any positive integer and let T = (T1, . . . , Td) be an
operator d-tuple satisfying the following assumptions:

(i) the operator d-tuple T is a joint ν-hypercontraction,
(ii) DT,ν is an orthogonal projection, and

(iii) if x1, . . . , xd inH are such that Tixj = Tjxi for i, j = 1, . . . , d then there exists an
x ∈ H such that xi = Tix for i = 1, . . . , d.

Then T = S∗ν ⊕ V, where Sν is a direct sum of Mz,ν and V is a joint isometry. In
the direct sum S∗ν ⊕V, one of the summands may be absent.

REMARK 1.14. The condition (iii) above says that the Koszul complex for T
is exact at the second stage (see the discussion following Theorem 1.4 of [8]).

As far as we know, the last result is unnoticed even for a single operator (the
case in which d = 1 and ν is arbitrary).

2. PROOF OF THE MAIN THEOREM

In this section, we present a proof of Theorem 1.8. The proof involves sev-
eral lemmas and propositions. It is a synthesis of ideas from Section 4 of [8] and
careful analysis of the defect operator DT,ν. It should be noted that some of the
combinatorial intricacies involved in the proof do not occur in that of Proposi-
tion 4.1 in [8] (see, for instance, Lemma 2.3 below). Throughout this section, let
T = (T1, . . . , Td) denote the operator d-tuple satisfying the following assump-
tions:

(C1) the operator tuple T = (T1, . . . , Td) is joint ν-hypercontraction,
(C2) DT,ν is an orthogonal projection, and
(C3) if x1, . . . , xd inH are such that Tixj = Tjxi for i, j = 1, . . . , d then there exists

an x ∈ H such that xi = Tix for i = 1, . . . , d.
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The proof of Proposition 4.1 in [8] as presented there, involves a construc-
tion of a sequence of projections {Pn}n∈N, where P0 := I, P1 = I − DT,1 and
Pn := QT(Pn−1) for integers n > 2. The sequence {Pn}n∈N converges to a projec-
tion P in the strong operator topology, and the kernel and range of P provide the
required decomposition. Although the choice of first two terms of the sequence
of projections in our context is clear (let P0,ν = I and P1,ν = I − DT,ν), the choice
of Pn,ν for n > 2 is not so obvious. To get some idea of the choice of Pn,ν, let us
examine Example 1.3. Since Proposition 1.13 is applicable to M∗z,ν (with second
summand identically 0), the sot limit of {Pn,ν}n∈N must be 0. It is easy to see that

the choice
∞
∑

k=n
Ek for Pn,ν does the job for M∗z,ν. A little experimentation suggests

the following definition:

Pn,ν := I (n 6 0), Pn,ν :=
ν

∑
i=1

(−1)i−1
(

ν

i

)
Qi

T(Pn−i,ν) (n > 1).(2.1)

For the sake of convenience, we suppress the suffix ν and denote Pn,ν simply
by Pn.

REMARK 2.1. By Remark 1.2, 0 6 I − DT,1 6 I − DT,ν. Hence, we have

ker(P1) = ker(I − DT,ν) ⊆ ker(I − DT,1) =
d⋂

i=1

ker Ti.

We observe below that the sequence {Pn}n∈N of self-adjoint operators is
monotone.

LEMMA 2.2. The sequence {Pn}n∈N satisfies

Pn−1 − Pn = an−1,νQn−1
T (DT,ν) (n > 1).(2.2)

In particular, {Pn}n∈N is a monotonically non-increasing sequence of self-adjoint opera-
tors, which is bounded from above by the identity operator I.

Proof. Note that (2.2) holds trivially for integers n 6 0. We will prove (2.2)
by induction on n > 1. For n = 1, we have P0 − P1 = DT,ν = a0,νQ0

T(DT,ν).
Suppose that for n 6 k, (2.2) holds. By induction hypothesis, we get

Pk − Pk+1 =
ν

∑
i=1

(−1)i−1
(

ν

i

)
Qi

T(Pk−i − Pk−i+1)

=
ν

∑
i=1

(−1)i−1
(

ν

i

)
Qi

T(ak−i,νQk−i
T (DT,ν))

= Qk
T(DT,ν)

ν

∑
i=1

(−1)i−1
(

ν

i

)
ak−i,ν.

By Remark 1.4,
ν

∑
i=1

(−1)i−1(ν
i)ak−i,ν = ak,ν, and hence we get the desired

identity.
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As a crucial step in the proof of Theorem 1.8, we need to solve the equation
Qn

T(·) = Pn.

LEMMA 2.3. For any integer n > 1, there exists a positive operator Rn,ν in the
R-linear span of I, QT(I), . . . , Qν−1

T (I) such that Pn = Qn
T(Rn,ν).

Proof. Define c(j + 1, ν, n) by

c(j + 1, ν, n) :=
n

∑
i=1

(−1)i+j
(

ν

i + j

)
an−i,ν if 0 6 j 6 ν− 1.

By Remark 1.4,

c(0, ν, n) := c(1, ν, n) + an,ν =
n

∑
i=0

(−1)i
(

ν

i

)
an−i,ν = 0

for every integer n > 1. It is also easy to see that

c(j + 1, ν, n) + (−1)j
(

ν

j

)
an,ν = c(j, ν, n + 1) (j = 1, . . . , ν− 1).

One may now use these observations to establish the following identity by a rou-
tine inductive argument on n > 1:

n−1

∑
i=0

ai,νQi
T(DT,ν) = I +

ν−1

∑
j=0

c(j + 1, ν, n)Qn+j
T (I).

By Lemma 2.2, we have

Pn =
n

∑
i=1

(Pi−Pi−1)+ I= I−
n−1

∑
i=0

ai,νQi
T(DT,ν)=Qn

T

( ν−1

∑
j=0
−c(j+1, ν, n)Qj

T(I)
)

.

Thus the equation Pn = Qn
T(·) has the solution Rn,ν :=

ν−1
∑

j=0
−c(j + 1, ν, n)Qj

T(I).

To see that Rn,ν > 0, we rewrite Rn,ν as a linear combination of the positive defect
operators DT,i for i = 0, . . . , ν− 1. We will find α0, . . . , αν−1 ∈ R such that Rn,ν =
ν−1
∑

i=0
αiDT,i, that is,

ν−1

∑
j=0
−c(j + 1, ν, n)Qj

T(I) =
ν−1

∑
j=0

{
(−1)j

ν−1

∑
i=j

(
i
j

)
αi

}
Qj

T(I).

Let

cj :=
n

∑
i=1

(−1)i−1
(

ν

i + j

)
an−i,ν (0 6 j 6 ν− 1),

and consider the system AX = B, where A is the lower triangular ν× ν matrix
((j

i))06i,j6ν−1, and X = [α0, . . . , αν−1]
T, B = [c0, . . . , cν−1]

T are ν× 1 column vec-
tors. Since A is invertible, AX = B admits a unique solution, say, [α0, . . . , αν−1]

T.
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We claim that αi
an−1,ν

is the coefficient of En−1 in the positive operator DM∗z,ν ,ν−i−1,
that is,

αi =
n−1

∑
k=0

(−1)k
(

ν− i− 1
k

)
an−1−k,ν (i = 0, . . . , ν− 1)

(see Example 1.3). The fact that each αi is non-negative will then follow from
DM∗z,ν ,ν−i−1 > 0. In the proof of the claim, we need the following identity:

ν−q

∑
i=j

(
i
j

)(
ν− i− 1

q− 1

)
=

(
ν

q + j

)
(2.3)

for any integer ν > 1, j = 0, . . . , ν− 1, and q = 1, . . . , ν− j. In order not to distract
the reader from the main line of the proof, we have relegated to Remark 2.4 a
quick proof of this identity. We now complete the proof of the claim. Note that

ν−1

∑
i=j

(
i
j

) n−1

∑
k=0

(−1)k
(

ν− i− 1
k

)
an−1−k,ν =

n

∑
q=1

(−1)q−1an−q,ν

ν−q

∑
i=j

(
i
j

)(
ν− i− 1

q− 1

)

=
n

∑
q=1

(−1)q−1an−q,ν

(
ν

q + j

)
,

which is nothing but cj. Hence the claim stands verified and the proof is over.

REMARK 2.4. We present a proof of the identity (2.3). We find the coefficient
of xν−q−j in the expansion of 1

(1−x)q+j+1 in two ways. Note first that the coefficient

xν−q−j in the expansion of 1
(1−x)q+j+1 equals (−(q+j+1)

ν−q−j )= (−1)ν−q−j( ν
q+j). One can

now rewrite 1
(1−x)q+j+1 as 1

(1−x)q · 1
(1−x)j+1 , and then compute the coefficient as

(−1)i(i+j
j ) = coefficient of xi in 1

(1−x)j+1 and (−1)ν−q−j−i(ν−i−j−1
q−1 ) = coefficient

of xν−q−j−i in 1
(1−x)q and sum over i = 0, 1, . . . , ν− q− j. Now, let i + j = t and

change the summation to t = j, j + 1, . . . , ν− q.

The following is a suitable generalization of Lemma 4.2 in [8].

LEMMA 2.5. For i = 1, . . . , d and n > 1, we have

TiPn = Pn−1Ti.(2.4)

Proof. We will prove (2.4) by induction on n > 1. We first check that TiP1 =
Ti for all i = 1, . . . , d. By assumption (C2), P1 is a projection, and hence by Re-
mark 2.1,

ran(I − P1) = ker(P1) = ker(I − DT,ν) ⊆
d⋂

i=1

ker Ti.

So, Ti(I − P1) = 0, that is, TiP1 = Ti for all i = 1, . . . , d. Thus we have the desired
conclusion in case n = 1.
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Suppose that (2.4) holds for n 6 k− 1. Fix x ∈ H and let zi = Pk−1Ti(x) for
i = 1, . . . , d. Then

Tizj = TiPk−1Tj(x) = Pk−2TiTj(x) = Pk−2TjTi(x) = TjPk−1Ti(x) = Tjzi.

By hypothesis (C3), there exists y ∈ H such that zi = Tiy for all i = 1, . . . , d.
Clearly, Pk−1Tαx = Tαy for all α ∈ Nd such that |α| = 1. It is now easy to check
that Pk−iTαx = Tαy for all α ∈ Nd such that |α| = i and 1 6 i 6 k− 1. In particular,
P1Tαx = Tαy for all α ∈ Nd such that |α| = k− 1. Applying powers of T on both
sides, we get Tαx = Tαy for all α ∈ Nd such that |α| = i > k. It follows that

Qi
T(Pk−i)(x) = Qi

T(I)(y) (i > 1).

Hence, for 1 6 i 6 d,

TiPk(x) = Ti

ν

∑
i=1

(−1)i−1
(

ν

i

)
Qi

T(Pk−i)(x)

= Ti

ν

∑
i=1

(−1)i−1
(

ν

i

)
Qi

T(I)(y)

= TiP1(y) = Ti(y) = Pk−1Ti(x).

This completes the proof of the lemma.

We collect below some essential properties of the sequence {Pn}n∈N.

PROPOSITION 2.6. We have the following statements:
(i) Pn is an orthogonal projection.

(ii) The sequence {Pn}n∈N converges in the strong operator topology to an orthogonal
projection P governed by

P =
ν

∑
i=1

(−1)i−1
(

ν

i

)
Qi

T(P).

(iii) TiP = PTi for all i = 1, . . . , d.
(iv) If M is the range of P then M is a reducing subspace for T such that T|M is a joint

isometry. Moreover,

ker P1 ⊆ M⊥ =
∨
{T∗αx : α ∈ Nd, x ∈ ker P1}.

Proof. (i) Since Pn is self-adjoint, it suffices to check that Pn is an idempotent.
We first observe that by an application of Lemma 2.5,

TαPn = Tα (|α| > n).

It follows that Qk
T(I)Pn = Qk

T(I) for k > n.
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By Lemma 2.3, there exist real numbers bn,0, . . . , bn,ν−1 such that Pn =

Qn
T

( ν−1
∑

i=0
bn,iQi

T(I)
)

. It follows that

P2
n = Qn

T

( ν−1

∑
i=0

bn,iQi
T(I)

)
Pn =

ν−1

∑
i=0

bn,iQn+i
T (I)Pn =

ν−1

∑
i=0

bn,iQn+i
T (I) = Pn.

(ii) Recall the fact that a self-adjoint idempotent is positive. It follows that

I > P1 > · · · > Pn > Pn+1 > · · · > 0.

Thus {Pn}n>1 converges in the strong operator topology to a bounded linear op-
erator P. Since each Pn is an orthogonal projection, so is P. The desired expression
for P follows from (2.1) by letting n→ ∞.

(iii) Letting n→ ∞ in (2.4), we get TiP = PTi for all i = 1, . . . , d.
(iv) Let S := T|M. Then, by (iii), Qi

S(I|M) = Qi
T(I)|M = Qi

T(P), and hence
by (ii),

ν

∑
i=0

(−1)i
(

ν

i

)
Qi

S(I|M) =
ν

∑
i=0

(−1)i
(

ν

i

)
Qi

T(P) = 0.

Thus S is a joint ν-isometry. Since T is a spherical contraction (assumption (C1)),
by Remark 1.6, S must be a joint isometry. Let us see the remaining part of (iv).
Note that by Lemma 2.2, 0 6 Pn 6 P1 for every n ∈ N. Letting n → ∞, we get
0 6 P 6 P1. In particular, ker P1 ⊆ ker P = M⊥. Since M is reducing for T,
T∗i (ker P1) ⊆ T∗i (M⊥) ⊆ M⊥. It follows that

L :=
∨
{T∗αx : α ∈ Nd, x ∈ ker P1} ⊆ M⊥.

Note that M⊥ equals the range of I − P. Also, I − P = lim
n→∞

n
∑

k=0
(Pk − Pk+1) in the

strong operator topology. On the other hand, by Lemma 2.2,

Pk − Pk+1 = ak,νQk
T(DT,ν) = ak,ν ∑

|α|=k

k!
α!

T∗α(I − P1)Tα.

Thus the range of Pk − Pk+1, and hence that of I − P is contained in L.

Here is the counter-part of Lemma 4.4 in [8].

LEMMA 2.7. Let c(1, ν, n), . . . , c(ν, ν, n) be the scalars introduced in the proof of

Lemma 2.3, so that Rn,ν :=
ν−1

∑
j=0
−c(j + 1, ν, n)Qj

T(I) > 0, and Pn = Qn
T(Rn,ν). Let

Sn,ν denote the positive square-root of Rn,ν. If Tn : H −→ ⊕
|β|=n

H is defined by

Tn(x) =
{√(n

β

)
Sn,νTβ(x)

}
{|β|=n}

,

then we have the following:
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(i) TnT ∗n is an orthogonal projection onto the range of Tn.
(ii) For x ∈ ker P1 and y ∈ ker P1,

(2.5)
〈

an,ν

√(
n
β

)√(
n
α

)
TβT∗α(x), y

〉
= δβα〈x, y〉

for any α, β ∈ Nd such that |α| = n = |β|, where δβα denotes the Kronecker delta which
is 0 for α 6= β and 1 otherwise.

Proof. Note that

T ∗n Tn = ∑
|β|=n

(
n
β

)
T∗βRn,νTβ = Qn

T(Rn,ν) = Pn.

By Proposition 2.6(i), Pn = T ∗n Tn is an orthogonal projection. Hence TnT ∗n is an
orthogonal projection onto the range of Tn. To see (ii), let x ∈ ker P1. By Re-
mark 2.1, Qk

T(I)(x) = 0 for any k > 1. It follows that Rn,ν reduces ker P1. In fact,
Rn,ν|ker P1 = an,ν I|ker P1 , and hence

Sn,ν|ker P1 =
√

an,ν I|ker P1 .(2.6)

Fix α ∈ Nd such that |α| = n, and consider the vector z = {xβ}|β|=n defined

by xα = 1√
an,ν

x and 0 otherwise. Then, for any γ ∈ Nd such that |γ| = n − 1,
Tixγ+ε j = Tjxγ+εi for all 1 6 i, j 6 d, where εi denotes the d-tuple with 1 at
ith place and 0 elsewhere. By Lemma 4.3 of [8], there exists w ∈ H such that
xβ = Tβw for all β ∈ Nd with |β| = n. Define Y = {yβ}|β|=n by setting yα = x,
and 0 otherwise. It follows from (2.6) that Y belongs to the range of Tn. Indeed,

Tnw =
√
(n

α) Y. Hence, by (i) and (2.6), we have

Y = TnT ∗n (Y) =
{√(n

β

)√(
n
α

)
Sn,νTβT∗αSn,ν(x)

}
|β|=n

=
{√

an,ν

√(
n
β

)√(
n
α

)
Sn,νTβT∗α(x)

}
|β|=n

.

Thus we have
√

an,ν

√(
n
β

)√(
n
α

)
Sn,νTβT∗α(x) = δβαx.

By another application of (2.6), we obtain

δβα〈x, y〉 =
〈√

an,ν

√(
n
β

)√(
n
α

)
Sn,νTβT∗α(x), y

〉
=
〈

an,ν

√(
n
β

)√(
n
α

)
TβT∗α(x), y

〉
for any y ∈ ker P1. This completes the proof of the lemma.
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We are now ready to prove Proposition 1.13.

Proof of Proposition 1.13. Recall that the norm onH(κν) is given by

‖zα‖2
H(κν)

=
α!

ν(ν + 1) · · · (ν + |α| − 1)
=

1
a|α|,ν

α!
|α|! (α ∈ Nd),

see, for instance, Proposition 4.1 of [6]. Let M be the range of P as introduced
in the statement of Proposition 2.6. Define U(p ⊗ x) = p(T∗)(x) for p(z) =

∑
α

p(α)zα ∈ C[z1, . . . , zd] and x ∈ ker P1. If q(z) = ∑
α

q(α)zα in C[z1, . . . , zd] and

x, y ∈ ker P1, then by (2.5),

〈U(p⊗ x), U(q⊗ y)〉 = ∑
α,β

p(β)q(α)〈T∗α(x), T∗β(y)〉

= ∑
β

p(β)q(β)
1

a|β|,ν

1

(|β|β )
〈x, y〉 = 〈p⊗ x, q⊗ y〉H(κν)⊗ker P1

.

Hence by Proposition 2.6(iv), U can be extended to a unitary operator fromHκν ⊗
ker P1 onto M⊥. Finally, we note that for p(z) ∈ C[z1, . . . , zd] and i = 1, . . . , d,

(2.7) U(Mzi ,ν ⊗ I)U∗(p(T∗)(x)) = U(Mzi ,ν ⊗ I)(p⊗ x) = T∗i (p(T∗)(x)).

This completes the proof of the proposition.

It is now easy to complete the proof of Theorem 1.8.

Proof of Theorem 1.8. To see the necessary part, note that by Proposition 1.13,
T = Sν ⊕ V∗, where Sν is a direct sum of Mz,ν and V is a joint isometry. Since T
is a spherical expansion, so is V∗. It follows from the proof of Corollary 6.2 in
[8] that V is a spherical unitary. We now see the remaining part. Since ν 6 d,
by Lemma 1.7, Mz,ν is a spherical expansion. The conditions (i) and (ii) follow
from the discussion of Example 1.3. On the other hand, the fact that Mz,ν satisfies
condition (iv) is well-known (refer to Section 3 of [8]). This completes the proof
of the theorem.

3. EXTREMAL FAMILY OF JOINT ν-HYPERCONTRACTIONS

We conclude the paper with a brief discussion on extremals for the fam-
ily Fν of joint ν-hypercontractions. Let us reproduce necessary definitions from
[1], [8].

DEFINITION 3.1. A family is a uniformly bounded collection F of d-tuples
T=(T1, . . . , Td) of bounded linear operators acting onH such that F is preserved
under restrictions to invariant subspaces, direct sums, and unital ∗-represen-
tations.
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Let T and R denote the d-tuples of bounded linear operators acting on H
and K respectively. We say that R is an extension of T, if H ⊆ K is an invariant
subspace of Ri, and Ti = Ri|H for all i = 1, . . . , d. If R = T ⊕ S, where S is a
d-tuple of operators, then R is called a trivial extension of T.

DEFINITION 3.2. Let F be a family. A commuting d-tuple T ∈ F acting on
H is called an extremal for F if T has only trivial extensions in F .

We combine the main result of this note with the extension theorem of
Müller–Vasilescu to identify the structure of the extremals of Fν. At the same
time, we give an alternative proof of the implication (i) =⇒ (ii) of Theorem 1.4
in [8].

THEOREM 3.3. Let T = (T1, . . . , Td) be a d-tuple of commuting bounded lin-
ear operators T1, . . . , Td in B(H). Then T is an extremal of the family Fν of joint ν-
hypercontraction d-tuples if and only if T = S∗ν ⊕U for a direct sum Sν of multiplication
d-tuples Mz,ν and a spherical unitary U.

Proof. Let T be an extremal of Fν. By Theorem 11 of [7], T admits the ex-
tension S∗ν ⊕U for a spherical unitary U. Since T is extremal, there is a d-tuple V
such that S∗ν ⊕U = T ⊕V. It follows that

DS∗ν ,ν ⊕ 0 = DT,ν ⊕ DV,ν.

In particular, T satisfies conditions (i) and (ii) of Proposition 1.13.
Also, it is easy to see that (iii) of the same proposition is satisfied, and hence

we conclude that T is a direct sum of S∗ν (possibly of different multiplicity) and
a spherical isometry W. If W is not a spherical unitary, then by Section 2 of [8],
it must admit a non-trivial spherical isometry extension. However, this yields a
non-trivial extension of T, which is not possible since T is extremal.

To see the converse, in view of Lemma 2.1 in [8], it suffices to check that
M∗z,ν and spherical unitaries are extremals of Fν. Since any spherical unitary U is
extremal for F1 ([8], Theorem 2.2) and Fν ⊆ F1, U is also extremal for Fν.

For the remaining part, we argue as in the discussion following Theorem 1.4
of [8]. Clearly, the zero d-tuple 0 = (0, . . . , 0) belongs to Fν, and hence by Agler’s
extension theorem ([8], Theorem following Definition 1.2), 0 extends to some ex-
tremal d-tuple in Fν. By the discussion in the preceding paragraph, we must have
(S∗ν ⊕U)|M = 0 for some non-zero subspace M invariant for S∗ν ⊕U. Since U has
trivial joint kernel, the extremal element S∗ν ⊕U contains at least one copy of M∗z,ν.
It follows that M∗z,ν is an extremal of Fν.
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