IDEALS OF THE CORE OF C*-ALGEBRAS ASSOCIATED WITH SELF-SIMILAR MAPS

TSUYOSHI KAJIWARA and YASUO WATATANI

Communicated by Marius Dădârlat

Abstract

We give a complete classification of the ideals of the core of the C^{*}-algebras associated with self-similar maps under a certain condition. Any ideal is completely determined by the intersection with the coefficient algebra $C(K)$ of the self-similar set K. The corresponding closed subset of K is described by the singularity structure of the self-similar map. In particular the core is simple if and only if the self-similar map has no branch point. A matrix representation of the core is essentially used to prove the classification.

Keywords: Ideals, core, self-similar maps, C*-correspondences.
MSC (2010): 46L08, 46L55.

INTRODUCTION

A self-similar map on a compact metric space K is a family of proper contractions $\gamma=\left(\gamma_{1}, \ldots, \gamma_{N}\right)$ on K such that $K=\bigcup_{i=1}^{N} \gamma_{i}(K)$. In our former work Kajiwara-Watatani [11], we introduced C^{*}-algebras associated with self-similar maps on compact metric spaces as Cuntz-Pimsner algebras using certain C^{*} correspondences and showed that the associated C^{*}-algebras are simple and purely infinite. A related study on C^{*}-algebras associated with iterated function systems is done by Castro [2]. A generalization to Mauldin-Williams graphs is given by Ionescu-Watatani [6].

The fixed point subalgebra of the gauge action of the C^{*}-algebras is called the core.

In this paper we give a complete classification of the ideals of the core of the C^{*}-algebras associated with self-similar maps by the singularity structure of the self-similar maps. In particular the core is simple if and only if the self-similar map has no branch point. A matrix representation of the n-th core is essentially used to prove the classification. We represent the n-th core by certain degenerate subalgebras of the matrix valued functions. These subalgebras are described by a
family of equations in terms of branch points, branch values and branch indices. One of the key points is the analysis of the core of the Cuntz-Pimsner algebra by Pimsner [13]. The core is the inductive limit of the subalgebras which are globally represented in the algebra of adjointable operators on the n-times tensor product of the original Hilbert bimodule.

In [9], the authors classified traces on the cores of the C^{*}-algebras associated with self-similar maps. We needed a lemma on the extension of traces on a subalgebra and an ideal to their sum following after Exel and Laca [3]. We could do complete analysis of point measures using the lemma. We also applied the Rieffel correspondence of traces between Morita equivalent C^{*}-algebras.

In this paper, we also need the Rieffel correspondence of ideals between Morita equivalent C^{*}-algebras to examine the ideals of the core. Let B be a C^{*} algebra, A a subalgebra of B, and L an ideal of B.

In general, it is difficult to describe the ideals I of $A+L$ in terms of A and L independently. We construct an isometric $*$-homomorphism from the n-th core $\mathcal{F}^{(n)}$ to a matrix algebra over $C(K)$. We call it the matrix representation of the n-th core. We use a matrix representation over $C(K)$ of the n-th core and its description by the singularity structure of branch points to overcome the difficulty above.

As a consequence, we have an AF-embedding of the core. But this fact is not used in the paper. Here the finiteness of the branch values and continuity of any element of $\mathcal{F}^{(n)} \subset C\left(K, M_{N^{n}}\right)$ are crucially used to analyze the ideal structure. We shall show that any ideal I of the core is completely determined by the closed subset of the self-similar set which corresponds to the ideal $C(K) \cap I$. We list all closed subsets of K which appear in this way explicitly to complete the classification of ideals of the core.

The content of the paper is as follows:
In Section 2, we present some notations for self-similar maps and basic results for C^{*}-correspondences associated with self-similar maps.

In Section 3, we give a matrix representation of the n-th core. Firstly we describe the compact algebras of C^{*}-correspondences associated with self-similar maps by certain subalgebras of the matrix valued functions. These subalgebras are determined by a family of equations in terms of branch points, branch values and branch indices. Secondly we describe their sums also by matrix representations globally.

In Section 4, we give a complete classification of the ideals of the core. We list all primitive ideals. We need to construct the traces on the core to prove the classification. We use a method which is different from the way we did in [11]. We also show that the GNS representations of discrete extreme traces generate type I_{n} factors. In fact we compute the quotient of the core by the primitive ideals which correspond to the extreme discrete traces.

1. SELF-SIMILAR MAPS AND C*-CORRESPONDENCES

Let (Ω, d) be a (separable) complete metric space. A map $f: \Omega \rightarrow \Omega$ is called a proper contraction if there exist constants c and c^{\prime} with $0<c^{\prime} \leqslant c<1$ such that $0<c^{\prime} d(x, y) \leqslant d(f(x), f(y)) \leqslant c d(x, y)$ for any $x, y \in \Omega$.

We consider a family $\gamma=\left(\gamma_{1}, \ldots, \gamma_{N}\right)$ of N proper contractions on Ω. We always assume that $N \geqslant 2$. Then there exists a unique non-empty compact space $K \subset \Omega$ which is self-similar in the sense that $K=\bigcup_{i=1}^{N} \gamma_{i}(K)$. See Falconer [4] and Kigami [12] for more on fractal sets.

In this note we usually forget an ambient space Ω as in [9] and start with the following: Let (K, d) be a compact metric set and $\gamma=\left(\gamma_{1}, \ldots, \gamma_{N}\right)$ be a family of N proper contractions on K. We say that γ is a self-similar map on K if $K=$ N $\bigcup_{i=1} \gamma_{i}(K)$. Throughout the paper we assume that γ is a self-similar map on K.

Definition 1.1. We say that γ satisfies the open set condition if there exists a non-empty open subset V of K such that $\gamma_{j}(V) \cap \gamma_{k}(V)=\phi$ for $j \neq k$ and $\bigcup_{i=1}^{N} \gamma_{i}(V) \subset V$. Then V is an open dense subset of K. See the book [4] by Falconer, for example.

Let $\Sigma=\{1, \ldots, N\}$. For $k \geqslant 1$, we put $\Sigma^{k}=\{1, \ldots, N\}^{k}$.
For a self-similar map γ on a compact metric space K, we introduce the following subsets of K :

$$
\begin{aligned}
B_{\gamma} & =\left\{b \in K: b=\gamma_{i}(a)=\gamma_{j}(a), \text { for some } a \in K \text { and } i \neq j\right\}, \\
C_{\gamma} & =\left\{a \in K: \gamma_{i}(a)=\gamma_{j}(a), \text { for some } a \in K \text { and } i \neq j\right\} \\
& =\left\{a \in K: \gamma_{j}(a) \in B_{\gamma} \text { for some } j\right\} \\
P_{\gamma} & =\left\{a \in K: \exists k \geqslant 1, \exists\left(j_{1}, \ldots, j_{k}\right) \in \Sigma^{k} \text { such that } \gamma_{j_{1}} \circ \cdots \circ \gamma_{j_{k}}(a) \in B_{\gamma}\right\}, \\
O_{b, k} & =\left\{\gamma_{j_{1}} \circ \cdots \circ \gamma_{j_{k}}(b):\left(j_{1}, \ldots, j_{k}\right) \in \Sigma^{k}\right\} \quad(k \geqslant 0), \\
O_{b} & =\bigcup_{k=0}^{\infty} O_{b, k}, \quad \text { where } O_{b, 0}=\{b\}, \\
\text { Orb } & =\bigcup_{b \in B_{\gamma}} O_{b} .
\end{aligned}
$$

We call B_{γ} the branch set of γ, C_{γ} the branch value set of γ and P_{γ} the postcritical set of γ. We call $O_{b, k}$ the set of k-th γ orbits of b, and O_{b} the set of γ orbits of b.

In general we define the branch index at $\left(\gamma_{j}(y), y\right)$ by $e_{\gamma}\left(\gamma_{j}(y), y\right)=\#\{i \in$ $\left.\Sigma \mid \gamma_{j}(y)=\gamma_{i}(y)\right\}$.

Throughout the paper, we assume that a self-similar map γ on K satisfies the following Assumption B.

ASSUMPTION B. (i) There exists a continuous map h from K to K which satisfies $h\left(\gamma_{j}(y)\right)=y(y \in K)$ for each j.
(ii) The set B_{γ} is a finite set.
(iii) $B_{\gamma} \cap P_{\gamma}=\varnothing$.

If (ii) is replaced by the stronger condition
(ii') The set B_{γ} and P_{γ} are finite sets,
then it is exactly Assumption A in [11]. If we assume that the γ satisfies Assumption A, then γ satisfies the open set condition automatically as in [11].

Many important examples satisfy Assumption B above. If we assume that γ satisfies Assumption B, then we see that K does not have any isolated points and K is not countable.

Since B_{γ} is finite, C_{γ} is also finite. We put $B_{\gamma}=\left\{b_{1}, \ldots, b_{r}\right\}, C_{\gamma}=\left\{c_{1}, \ldots, c_{s}\right\}$. We note that $c \in C_{\gamma}$ means that there exist $1 \leqslant j \neq j^{\prime} \leqslant N$ such that $\gamma_{j}(c)=$ $\gamma_{j^{\prime}}(c)$. If we put $b=\gamma_{j}(c)=\gamma_{j^{\prime}}(c)$, then $b \in B_{\gamma}$. Therefore B_{γ} is the set of $b \in K$ such that h is not locally homeomorphism at b, that is, B_{γ} is the set of the branch points of h in the usual sense.

For fixed $b \in B_{\gamma}$, we denote by e_{b} the number of j such that $b=\gamma_{j}(h(b))$. Put $c=h(b)$. Then e_{b} is exactly the branch index at $(b, h(b))=\left(\gamma_{j}(c), c\right)$ and $e_{b}=e_{\gamma}\left(\gamma_{j}(c), c\right)$. Therefore b is a branch point if and only if $e_{b} \geqslant 2$.

We label these indices j so that

$$
\left\{j \in \Sigma: b=\gamma_{j}(h(b))\right\}=\left\{j(b, 1), j(b, 2), \ldots, j\left(b, e_{b}\right)\right\}
$$

satisfying $j(b, 1)<j(b, 2)<\cdots<j\left(b, e_{b}\right)$. We shall use these data as an expression of the singularity of self-similar maps to analyze the core.

EXAMPLE 1.2 (tent map). Let $K=[0,1], \gamma_{1}(y)=(1 / 2) y$ and $\gamma_{2}(y)=1-$ $(1 / 2) y$. Then a family $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ of proper contractions is a self-similar map. We note that $B_{\gamma}=\{1 / 2\}, C_{\gamma}=\{1\}$ and $P_{\gamma}=\{0,1\}$. The continuous map h defined by

$$
h(x)= \begin{cases}2 x & 0 \leqslant x \leqslant \frac{1}{2} \\ -2 x+2 & \frac{1}{2} \leqslant x \leqslant 1\end{cases}
$$

satisfies Assumption $B(i)$. The map h is the ordinary tent map on $[0,1]$, and $\left(\gamma_{1}, \gamma_{2}\right)$ is the pair of inverse branches of the tent map h. We note that $B_{\gamma}=$ $\{1 / 2\}, C_{\gamma}=\{1\}$ and $P_{\gamma}=\{0,1\}$. We see that $h(1 / 2)=1, h(1)=0, h(0)=0$. Hence a self-similar map $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ satisfies Assumption B above.

EXAMPLE 1.3 ([9], (Sierpinski gasket)). Let $P=(1 / 2, \sqrt{3} / 2), Q=(0,0)$, $R=(1,0), S=(1 / 4, \sqrt{3} / 4), T=(1 / 2,0)$ and $U=(3 / 4, \sqrt{3} / 4)$. Let $\widetilde{\gamma}_{1}, \widetilde{\gamma}_{2}$ and $\widetilde{\gamma}_{3}$ be contractions on the regular triangle T on \mathbf{R}^{2} with three vertices P, Q and R such that

$$
\widetilde{\gamma}_{1}(x, y)=\left(\frac{x}{2}+\frac{1}{4}, \frac{1}{2} y\right), \quad \widetilde{\gamma}_{2}(x, y)=\left(\frac{x}{2}, \frac{y}{2}\right), \quad \widetilde{\gamma}_{3}(x, y)=\left(\frac{x}{2}+\frac{1}{2}, \frac{y}{2}\right)
$$

We denote by α_{θ} a rotation by angle θ. We put $\gamma_{1}=\widetilde{\gamma}_{1}, \gamma_{2}=\alpha_{-2 \pi / 3} \circ \widetilde{\gamma}_{2}, \gamma_{3}=$ $\alpha_{2 \pi / 3} \circ \widetilde{\gamma}_{3}$. Then $\gamma_{1}(\Delta P Q R)=\Delta P S U, \gamma_{2}(\Delta P Q R)=\Delta T S Q$ and $\gamma_{3}(\Delta P Q R)=$ $\triangle T R U$, where $\triangle A B C$ denotes the regular triangle whose vertices are A, B and C. Put $K=\bigcap_{n=1}^{\infty} \bigcap_{\left(j_{1}, \ldots, j_{n}\right) \in \Sigma^{n}}\left(\gamma_{j_{1}} \circ \cdots \circ \gamma_{j_{n}}\right)(T)$. Then γ is a self-similar map on K satisfying Assumption B, and K is the Sierpinski gasket. $B_{\gamma}=\{S, T, U\}, C_{\gamma}=$ $P_{\gamma}=\{P, Q, R\}$ and h is given by

$$
h(x, y)= \begin{cases}\gamma_{1}^{-1}(x, y) & (x, y) \in \Delta P S U \cap K \\ \gamma_{2}^{-1}(x, y) & (x, y) \in \Delta T S Q \cap K \\ \gamma_{3}^{-1}(x, y) & (x, y) \in \Delta T R U \cap K\end{cases}
$$

As in [9], we shall construct a C^{*}-correspondence (or Hilbert C^{*}-bimodule) for the self-similar map $\gamma=\left(\gamma_{1}, \ldots, \gamma_{N}\right)$. Let $A=\mathrm{C}(K)$, and $\mathcal{C}_{\gamma}=\left\{\left(\gamma_{j}(y), y\right)\right.$: $j \in \Sigma, y \in K\}$. We put $X_{\gamma}=\mathrm{C}\left(\mathcal{C}_{\gamma}\right)$. We define left and right A-module actions and an A-valued inner product on X_{γ} as follows:

$$
\begin{aligned}
& (a \cdot f \cdot b)\left(\gamma_{j}(y), y\right)=a\left(\gamma_{j}(y)\right) f\left(\gamma_{j}(y), y\right) b(y) \quad y \in K, j=1, \ldots, N \\
& (f \mid g)_{A}(y)=\sum_{j=1}^{N} \overline{f\left(\gamma_{j}(y), y\right)} g\left(\gamma_{j}(y), y\right)
\end{aligned}
$$

where $f, g \in X_{\gamma}$ and $a, b \in A$. We denote by $\mathcal{K}\left(X_{\gamma}\right)$ the set of compact operators on X_{γ}, and by $\mathcal{L}\left(X_{\gamma}\right)$ the set of adjointable operators on X_{γ} and by ϕ the *-homomorphism from A to $\mathcal{L}\left(X_{\gamma}\right)$ given by $\phi(a) f=a \cdot f$. Recall that the algebra of compact operators $\mathcal{K}\left(X_{\gamma}\right)$ is the C^{*}-algebra generated by the rank one operators $\left\{\theta_{x, y}: x, y \in X_{\gamma}\right\}$, where $\theta_{x, y}(z)=x(y \mid z)_{A}$ for $z \in X$. When we do stress the role of X, we write $\theta_{x, y}=\theta_{x, y}^{X}$. We put $J_{X}=\phi^{-1}\left(\mathcal{K}\left(X_{\gamma}\right)\right)$. Then J_{X} is an ideal of A.

Lemma 1.4 (Kajiwara-Watatani [9]). Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{N}\right)$ be a self-similar map on a compact set K. Then X_{γ} is an $A-A$ correspondence and full as a right Hilbert module. Moreover J_{X} remembers the branch set B_{γ} so that $J_{X}=\{f \in A: f(b)=$ 0 for each $\left.b \in B_{\gamma}\right\}$.

We denote by \mathcal{O}_{γ} the Cuntz-Pimsner C^{*}-algebra ([13]) associated with the C^{*}-correspondence X_{γ} and call it the Cuntz-Pimsner algebra \mathcal{O}_{γ} associated with a self-similar map γ. Recall that the Cuntz-Pimsner algebra \mathcal{O}_{γ} is the universal C^{*}-algebra generated by $i(a)$ with $a \in A$ and S_{ξ} with $\xi \in X_{\gamma}$ satisfying that $i(a) S_{\xi}=S_{\phi(a) \xi}, S_{\xi} i(a)=S_{\xi a}, S_{\xi}^{*} S_{\eta}=i\left((\xi \mid \eta)_{A}\right)$ for $a \in A, \xi, \eta \in X_{\gamma}$ and $i(a)=$ $\left(i_{K} \circ \phi\right)(a)$ for $a \in J_{X}$, where $i_{K}: K\left(X_{\gamma}\right) \rightarrow \mathcal{O}_{\gamma}$ is the homomorphism defined by $i_{K}\left(\theta_{\xi, \eta}\right)=S_{\xi} S_{\eta}^{*}$ [7]. We usually identify $i(a)$ with a in A. We also identify S_{ξ} with $\xi \in X$ and simply write ξ instead of S_{ξ}. There exists an action $\beta: \mathbb{R} \rightarrow$ Aut \mathcal{O}_{γ} defined by $\beta_{t}\left(S_{\xi}\right)=\mathrm{e}^{\mathrm{i} t} S_{\xi}$ for $\xi \in X_{\gamma}$ and $\beta_{t}(a)=a$ for $a \in A$, which is called the gauge action.

THEOREM 1.5 ([9]). Let γ be a self-similar map on a compact metric space K. If (K, γ) satisfies the open set condition, then the associated Cuntz-Pimsner algebra \mathcal{O}_{γ} is simple and purely infinite.

Let $X_{\gamma}^{\otimes n}$ be the n-times inner tensor product of X_{γ} and ϕ_{n} denotes the left module action of A on $X_{\gamma}^{\otimes n}$. Put

$$
\mathcal{F}^{(n)}=A \otimes I+\mathcal{K}\left(X_{\gamma}\right) \otimes I+\mathcal{K}\left(X_{\gamma}^{\otimes 2}\right) \otimes I+\cdots+\mathcal{K}\left(X_{\gamma}^{\otimes n}\right) \subset \mathcal{L}\left(X_{\gamma}^{\otimes n}\right)
$$

We embed $\mathcal{F}^{(n)}$ into $\mathcal{F}^{(n+1)}$ by $T \mapsto T \otimes I$ for $T \in \mathcal{F}^{(n)}$. Put $\mathcal{F}^{(\infty)}=\overline{\bigcup_{n=0}^{\infty} \mathcal{F}^{(n)}}$. It is important to recall that Pimsner [13] shows that we can identify $\mathcal{F}^{(n)}$ with the C^{*}-subalgebra of \mathcal{O}_{γ} generated by A and $S_{x} S_{y}^{*}$ for $x, y \in X^{\otimes k}, k=1, \ldots, n$ under identifying $S_{x} S_{y}^{*}$ with $\theta_{x, y}$, and the inductive limit algebra $\mathcal{F}^{(\infty)}$ is isomorphic to the fixed point subalgebra $\mathcal{O}_{\gamma}^{\mathbb{T}}$ of \mathcal{O}_{γ} under the gauge action and is called the core. We shall identify the $\mathcal{O}_{\gamma}^{\mathbb{T}}$ with $\mathcal{F}^{(\infty)}$.

2. MATRIX REPRESENTATION OF THE n-TH CORES

If a self-similar map $\gamma=\left(\gamma_{1}, \ldots, \gamma_{N}\right)$ has a branch point, then the Hilbert module X_{γ} is not a finitely generated projective module and $\mathcal{K}\left(X_{\gamma}\right) \neq \mathcal{L}\left(X_{\gamma}\right)$. But if the self-similar map γ satisfies Assumption B, then X_{γ} is near to a finitely generated projective module in the following sense: The compact algebra $\mathcal{K}\left(X_{\gamma}\right)$ is equal to the set $\mathcal{K}_{0}\left(X_{\gamma}\right)$ of finite sums of rank one operators $\theta_{x, y}$. Moreover $\mathcal{K}\left(X_{\gamma}\right)$ is realized as a subalgebra of the full matrix algebra $M_{N}(A)$ over $A=$ $C(K)$ consisting of matrix valued functions f on K such that their scalar matrices $f(c)$ live in certain restricted subalgebras for each c in the finite set C_{γ} and live in the full matrix algebra $M_{N}(\mathbb{C})$ for other $c \notin C_{\gamma}$. We can describe the restricted subalgebras in terms of the singularity structure of the self-similar map γ, i.e., branch set, branch value set and branch indices. Let $Y_{\gamma}:=A^{N}$ be a free module over $A=C(K)$. Then $\mathcal{L}\left(Y_{\gamma}\right)$ is isomorphic to $M_{N}(A)$. Therefore it is natural to realize the bi-module X_{γ} as a submodule Z_{γ} of $Y_{\gamma}:=A^{N}$ in terms of the singularity structure of the self-similar map γ.

More precisely, we shall start with defining left and right A-module actions and an A-inner product on Y_{γ} as follows:

$$
(a \cdot f \cdot b)_{i}(y)=a\left(\gamma_{i}(y)\right) f_{i}(y) b(y), \quad(f \mid g)_{A}(y)=\sum_{i=1}^{N} \overline{f_{i}(y)} g_{i}(y)
$$

where $f=\left(f_{1}, \ldots, f_{N}\right), g=\left(g_{1}, \ldots, g_{N}\right) \in Y_{\gamma}$ and $a, b \in A$. Then Y_{γ} is clearly an $A-A$ correspondence and Y_{γ} is a finitely generated projective right module over
A. We define

$$
\begin{aligned}
Z_{\gamma}:= & \left\{f=\left(f_{1}, \ldots, f_{N}\right) \in A^{N}:\right. \\
& \text { for any } \left.c \in C_{\gamma}, b \in B_{\gamma} \text { with } h(b)=c, f_{j(b, k)}(c)=f_{j\left(b, k^{\prime}\right)}(c) 1 \leqslant k, k^{\prime} \leqslant e_{b}\right\},
\end{aligned}
$$

that is, the i-th component $f_{i}(c)$ of the vector $\left(f_{1}(c), \ldots, f_{N}(c)\right) \in \mathbb{C}^{N}$ is equal to the i^{\prime}-th component $f_{i^{\prime}}(c)$ of it for any i, i^{\prime} in the same index subset

$$
\left\{j \in \Sigma: b=\gamma_{j}(c)\right\}=\left\{j(b, 1), j(b, 2), \ldots, j\left(b, e_{b}\right)\right\}
$$

for each $b \in B_{\gamma}$.
Thus the bimodule Z_{γ} is described by the singularity structure of the selfsimilar map γ directly.

It is clear that Z_{γ} is a closed subspace of Y_{γ}. Moreover Z_{γ} is invariant under left and right actions of A. In fact for any $f=\left(f_{1}, \ldots, f_{N}\right) \in Z_{\gamma}$ and $a, a^{\prime} \in A$,

$$
\begin{aligned}
\left(a f a^{\prime}\right)_{j(b, k)}(c) & =a\left(\gamma_{j(b, k)}(c)\right) f_{j(b, k)}(c) a^{\prime}(c) \\
& =a\left(\gamma_{j\left(b, k^{\prime}\right)}(c)\right) f_{j\left(b, k^{\prime}\right)}(c) a^{\prime}(c)=\left(a f a^{\prime}\right)_{j\left(b, k^{\prime}\right)}(c)
\end{aligned}
$$

for $1 \leqslant k, k^{\prime} \leqslant e_{b}$, since $\gamma_{j(b, k)}(c)=\gamma_{j\left(b, k^{\prime}\right)}(c)$. Therefore Z_{γ} is also an A - A correspondence with the A-bimodule structure and the A-valued inner product inherited from Y_{γ}.

We shall analyze Z_{γ} by studying its fibers. We can describe the fibers in terms of branch points.

For $c \in K$, we define the fiber $Z_{\gamma}(c)$ of Z_{γ} on c by

$$
Z_{\gamma}(c)=\left\{f(c) \in \mathbb{C}^{N}: f \in Z_{\gamma} \subset C\left(K, \mathbb{C}^{N}\right)\right\}
$$

Let \mathcal{A} be a subalgebra of $\mathcal{L}\left(Y_{\gamma}\right)=M_{N}(A)=C\left(K, M_{n}(\mathbb{C})\right)$. For $c \in K$, we also study the fiber $\mathcal{A}(c)$ of \mathcal{A} on c by

$$
\mathcal{A}(c)=\left\{T(c) \in M_{N}(\mathbb{C}): T \in \mathcal{A} \subset C\left(K, M_{N}(\mathbb{C})\right)\right\}
$$

In order to get the idea and to simplify the notation, just consider the following local situation for example: Assume that $N=5, c \in C_{\gamma}$ and $h^{-1}(c)=$ $\left\{b_{1}, b_{2}\right\} \subset B_{\gamma}$,

$$
b_{1}=\gamma_{1}(c)=\gamma_{2}(c), \quad b_{2}=\gamma_{3}(c)=\gamma_{4}(c)=\gamma_{5}(c)
$$

that is,

$$
b_{1} \stackrel{\gamma_{1}, \gamma_{2}}{\rightleftharpoons} c \stackrel{\gamma_{3}, \gamma_{4} \gamma_{5}}{\Longrightarrow} b_{2} .
$$

Consider the following degenerated subalgebra \mathcal{A} of a full matrix algebra $M_{5}(\mathbb{C})$:

$$
\mathcal{A}=\left\{a=\left(a_{i j}\right) \in M_{5}(\mathbb{C}): a_{1 j}=a_{2 j}, a_{i 1}=a_{i 2}, a_{3 j}=a_{4 j}=a_{5 j}, a_{i 3}=a_{i 4}=a_{i 5}\right\}
$$

Then

$$
\mathcal{A}=\left\{\left(\begin{array}{lllll}
a & a & b & b & b \\
a & a & b & b & b \\
c & c & d & d & d \\
c & c & d & d & d \\
c & c & d & d & d
\end{array}\right): a, b, c, d \in \mathbb{C}\right\}
$$

is isomorphic to $M_{2}(\mathbb{C})$. Consider the subspace

$$
W=\left\{(x, x, y, y, y) \in \mathbb{C}^{5}: x \in \mathbb{C}, y \in \mathbb{C}\right\}
$$

of \mathbb{C}^{5}. Let $u_{1}=(1 / \sqrt{2})(1,1,0,0,0)^{\mathrm{t}} \in W$ and $u_{2}=(1 / \sqrt{3})(0,0,1,1,1)^{\mathrm{t}} \in W$. Then $\left\{u_{1}, u_{2}\right\}$ is a basis of W and $\left\{\theta_{u_{i}, u_{j}}^{W}\right\}_{i, j=1,2}$ is a matrix unit of \mathcal{A} and

$$
\mathcal{A}=\left\{\sum_{i, j=1}^{2} a_{i j} \theta_{u_{i}, u_{j}}^{W}: a_{i j} \in \mathbb{C}\right\}=\mathcal{L}(W)
$$

Then the argument above shows the following:
LEMMA 2.1. Let γ be a self-similar map on a compact metric space K. Then for $c \in K, w_{c}:=\operatorname{dim}\left(Z_{\gamma}(c)\right)$ is equal to the cardinality of $h^{-1}(c)$ without counting multiplicity. We can take the following basis $\left\{u_{i}^{c}\right\}_{i=1, \ldots, w_{c}}$ of $Z_{\gamma}(c) \subset \mathbb{C}^{N}$: Rename $h^{-1}(c)=\left\{b_{1}, \ldots, b_{w_{c}}\right\}$. Then the j-th component of the vector u_{i}^{c} is equal to $1 / \sqrt{e_{b_{i}}}$ if $j \in\left\{j \in \Sigma: b_{i}=\gamma_{j}\left(h\left(b_{i}\right)\right)\right\}=\left\{j\left(b_{i}, 1\right), j\left(b_{i}, 2\right), \ldots, j\left(b_{i}, e_{b_{i}}\right)\right\}$ and is equal to 0 if j is otherwise.

We shall show that X_{γ} and Z_{γ} are isomorphic as correspondences.
LEMMA 2.2. Let γ be a self-similar map on a compact metric space K. Then the C^{*}-correspondences X_{γ} and Z_{γ} are isomorphic.

Proof. Recall that $A=C(K), \mathcal{C}_{\gamma}=\left\{\left(\gamma_{j}(y), y\right): j \in \Sigma, y \in K\right\}$ and $X_{\gamma}=$ $\mathrm{C}\left(\mathcal{C}_{\gamma}\right)$. We define $\varphi: X_{\gamma} \rightarrow Z_{\gamma}$ by

$$
(\varphi(\xi))(y)=\left(\xi\left(\gamma_{1}(y), y\right), \ldots, \xi\left(\gamma_{N}(y), y\right)\right)
$$

for $\xi \in X_{\gamma}=\mathrm{C}\left(\mathcal{C}_{\gamma}\right)$. Since ξ is continuous, $\varphi(\xi)$ is continuous because of the continuity of γ_{i}^{\prime} s. It is easy to check that $\varphi(\xi)$ is contained in Z_{γ}.

Conversely we define $\varphi: Z_{\gamma} \rightarrow X_{\gamma}$ by

$$
(\psi(f))\left(\gamma_{j}(y), y\right)=f_{j}(y) \quad(j=1, \ldots, N, y \in K)
$$

for $f=\left(f_{1}, \ldots, j_{N}\right) \in Z_{\gamma}$. Since $f_{j(b, k)}(h(b))=f_{j\left(b, k^{\prime}\right)}(h(b))$ for $b \in B_{\gamma}$ and $1 \leqslant k, k^{\prime} \leqslant e_{b}, \varphi$ is well-defined. Since

$$
(\psi \circ \varphi)(\xi)=\xi, \quad(\varphi \circ \psi)(f)=f
$$

for $\xi \in X_{\gamma}, f \in Z_{\gamma}$, and

$$
\left(\varphi\left(\xi_{1}\right) \mid \varphi\left(\xi_{2}\right)\right)_{A}=\left(\xi_{1} \mid \xi_{2}\right)_{A}
$$

for $\xi_{i} \in X_{\gamma}$, the C^{*}-correspondences X_{γ} and Z_{γ} are isomorphic.

We shall identify X_{γ} with Z_{γ} and regard it as a closed subset of $Y_{\gamma}=A^{N}=$ $C\left(K, \mathbb{C}^{N}\right)$.

For a Hilbert A-module W, we denote by $\mathcal{K}_{0}(W)$ the set of finite rank operators (i.e. finite sum of rank one operators) on W, that is,

$$
\mathcal{K}_{0}(W)=\left\{\sum_{i=1}^{n} \theta_{x_{i}, y_{i}}^{W}: n \in \mathbb{N}, x_{i}, y_{i} \in W\right\}
$$

We first examine the situation locally and study each fiber $Z_{\gamma}(c)$ to get the idea, although we need to know the global behavior.

We shall show that the algebra $\mathcal{K}\left(Z_{\gamma}\right)$ is described globally by imposing the local identification conditions of the fiber $\mathcal{K}\left(Z_{\gamma}(c)\right)$ on each branched values c and is represented as a subalgebra of $M_{N}(C(K))=C\left(K, M_{N}(\mathbb{C})\right)$. But we need a careful analysis, because $\mathcal{L}\left(Z_{\gamma}\right)$ is not represented as a subalgebra of $M_{N}(C(K))=C\left(K, M_{N}(\mathbb{C})\right)$ globally in general.

We shall show that the algebra $\mathcal{K}\left(Z_{\gamma}\right)$ is isomorphic to the following subalgebra D^{γ} of $M_{N}(C(K))=C\left(K, M_{N}(\mathbb{C})\right)$:

$$
\begin{gathered}
D^{\gamma}=\left\{a=\left[a_{i j}\right]_{i, j} \in M_{N}(A)=C\left(K, M_{N}(\mathbb{C})\right): \text { for } c \in C_{\gamma}, b \in B_{\gamma} \text { with } h(b)=c,\right. \\
a_{j(b, k), i}(c)=a_{j\left(b, k^{\prime}\right), i}(c), 1 \leqslant k, k^{\prime} \leqslant e_{b}, 1 \leqslant i \leqslant N, \\
\left.a_{i, j(b, k)}(c)=a_{i, j\left(b, k^{\prime}\right)}(c), 1 \leqslant k, k^{\prime} \leqslant e_{b}, 1 \leqslant i \leqslant N\right\} .
\end{gathered}
$$

The algebra D^{γ} is a closed $*$-subalgebra of $M_{N}(A)=\mathcal{K}\left(Y_{\gamma}\right)$ and is described by the identification equations on each fibers in terms of the singularity structure of the self-similar map γ. We shall use the fact that each fiber $D^{\gamma}(c)$ on $c \in K$ is isomorphic to the matrix algebra $M_{w_{c}}(\mathbb{C})$ and simple, where $w_{c}=$ $\operatorname{dim}\left(Z_{\gamma}(c)\right)$.

For each $c \in C_{\gamma}$, we take the basis $\left\{u_{i}^{c}\right\}_{i=1, \ldots, w_{c}}$ of $Z_{\gamma}(c)=\{f(c): f \in$ $\left.Z_{\gamma}\right\} \subset \mathbb{C}^{N}$ in Lemma 2.1 .

Then the following lemma is clear as in the example before Lemma 2.1.
LEMMA 2.3. The algebra D^{γ} is expressed as
$D^{\gamma}=\left\{a=\left[a_{i j}\right]_{i j} \in M_{N}(A):\right.$ for any $c \in C_{\gamma} a(c)=\sum_{1 \leqslant i, i^{\prime} \leqslant w_{c}} \lambda_{i, i^{\prime}}^{c} \theta_{u_{i}^{c}}^{\mathbb{C}_{i}^{N}}, u_{i^{\prime}}^{c}$, for some scalars $\left.\lambda_{i, i^{\prime}}^{c}\right\}$.
We need an elementary fact.
Lemma 2.4. Let $f={ }^{\mathrm{t}}\left(f_{1}, \ldots, f_{N}\right) \in Z_{\gamma}, g={ }^{\mathrm{t}}\left(g_{1}, \ldots, g_{N}\right) \in Z_{\gamma}$. Then the rank one operator $\theta_{f, g}^{\gamma_{\gamma}} \in \mathcal{L}\left(Y_{\gamma}\right)$ is in D^{γ} and represented by the operator matrix

$$
\theta_{f, g}^{\gamma_{\gamma}}=\left[f_{i} \bar{g}_{j}\right]_{i j} \in M_{N}(A)
$$

Proof. $\theta_{f, g}^{Y_{\gamma}}$ is expressed as the matrix $\left[f_{i} \bar{g}_{j}\right]_{i j}$ by simple calculation. Since f, $g \in Z_{\gamma}$, the matrix is contained in D^{γ} as in the example before Lemma 2.1 .

We denote by $\mathcal{K}_{0}\left(Z_{\gamma}\right)$ the set of finite rank operators on Z_{γ}, that is, $\mathcal{K}_{0}\left(Z_{\gamma}\right)$ $:=\left\{\sum_{i=1}^{n} \theta_{x_{i}, y_{i}}^{Z_{\gamma}} \in \mathcal{L}\left(Z_{\gamma}\right): n \in \mathbb{N}, x_{i}, y_{i} \in Z_{\gamma}\right\}$. The set of compact operators $\mathcal{K}\left(Z_{\gamma}\right)$ is the norm closure of $\mathcal{K}_{0}\left(Z_{\gamma}\right)$. We also consider the corresponding operators on Y_{γ}.

Lemma 2.5. Let $\mathcal{K}\left(Z_{\gamma} \subset Y_{\gamma}\right) \subset \mathcal{L}\left(Y_{\gamma}\right)$ be the norm closure of

$$
\mathcal{K}_{0}\left(Z_{\gamma} \subset Y_{\gamma}\right):=\left\{\sum_{i=1}^{n} \theta_{x_{i}, y_{i}}^{Y_{\gamma}} \in \mathcal{L}\left(Y_{\gamma}\right): n \in \mathbb{N}, x_{i}, y_{i} \in Z_{\gamma}\right\} .
$$

For any $T \in \mathcal{K}\left(Z_{\gamma} \subset Y_{\gamma}\right)$, we have $T\left(Z_{\gamma}\right) \subset Z_{\gamma}$ and the restriction map

$$
\delta:\left.\mathcal{K}\left(Z_{\gamma} \subset Y_{\gamma}\right) \ni T \rightarrow T\right|_{Z_{\gamma}} \in \mathcal{K}\left(Z_{\gamma}\right)
$$

is an onto $*$-isomorphism such that

$$
\delta\left(\sum_{i=1}^{n} \theta_{x_{i}, y_{i}}^{Y_{\gamma}}\right)=\sum_{i=1}^{n} \theta_{x_{i}, y_{i}}^{Z_{\gamma}}
$$

Proof. For any $T=\sum_{i=1}^{n} \theta_{x_{i}, y_{i}}^{Y_{\gamma}} \in \mathcal{K}_{0}\left(Z_{\gamma} \subset Y_{\gamma}\right)$ and $f \in Z_{\gamma}$, we have

$$
T f=\sum_{i=1}^{n} \theta_{x_{i}, y_{i}}^{\gamma_{\gamma}} f=\sum_{i=1}^{n} x_{i}\left(y_{i} \mid f\right)_{A} \in Z_{\gamma}
$$

Moreover

$$
\|T\|=\left\|\sum_{i=1}^{n} \theta_{x_{i}, y_{i}}^{\gamma_{\gamma}}\right\|=\left\|\left(\left(y_{i} \mid x_{j}\right)_{A}\right)_{i j}\right\|=\left\|\sum_{i=1}^{n} \theta_{x_{i}, y_{i}}^{Z_{\gamma}}\right\|=\|\delta(T)\|,
$$

by Lemma 2.1 in [7]. Hence δ is isometric on $\mathcal{K}_{0}\left(Z_{\gamma} \subset Y_{\gamma}\right)$. Therefore for any $T \in \mathcal{K}\left(Z_{\gamma} \subset Y_{\gamma}\right)$, we have $T\left(Z_{\gamma}\right) \subset Z_{\gamma}$ and δ is isometric on $\mathcal{K}\left(Z_{\gamma} \subset Y_{\gamma}\right)$. Since the calculation rules of the rank one operators are the same, δ is an onto *-isomorphism.

LEMMA 2.6. Let γ be a self-similar map on a compact metric space K that satisfies Assumption B. Then $\mathcal{K}_{0}\left(X_{\gamma}\right)=\mathcal{K}\left(X_{\gamma}\right), \mathcal{K}_{0}\left(Z_{\gamma}\right)=\mathcal{K}\left(Z_{\gamma}\right)$ and $\mathcal{K}_{0}\left(Z_{\gamma} \subset Y_{\gamma}\right)=$ $\mathcal{K}\left(Z_{\gamma} \subset Y_{\gamma}\right)=D^{\gamma} \subset M_{N}(A)$.

Proof. Since $\mathcal{K}\left(X_{\gamma}\right), \mathcal{K}\left(Z_{\gamma}\right)$ and $\mathcal{K}\left(Z_{\gamma} \subset Y_{\gamma}\right)$ are isomorphic and corresponding finite rank operators are preserved, it is enough to show that $D^{\gamma} \subset$ $\mathcal{K}_{0}\left(Z_{\gamma} \subset Y_{\gamma}\right)$. We take $T \in D^{\gamma}$. By Lemma 2.3. for $c \in C_{\gamma}, T(c)$ has the following form:

$$
T(c)=\sum_{0 \leqslant i, i^{\prime} \leqslant w^{c}} \lambda_{i, i^{\prime}}^{c}, u_{u_{i}^{c}, u_{i^{\prime}}^{c}}^{\mathbb{C}^{N}}
$$

For each $c \in C_{\gamma}$, we take $f^{c} \in A=C(K)$ such that $f^{c}(c)=1, f^{c}(x) \geqslant 0$ and the supports of $\left\{f^{c}\right\}_{c \in C_{\gamma}}$ are disjoint each other. Define $f_{i}^{c} \in Z_{\gamma}$ by $f_{i}^{c}(x)=f^{c}(x) e_{i}^{c}$ for $x \in K$. Put

$$
S=T-\sum_{c \in C_{\gamma}} \sum_{0 \leqslant i, i^{\prime} \leqslant w^{c}} \lambda_{i, i^{\prime}}^{c} \theta_{f_{i}^{c}, f_{i^{\prime}}^{c^{c}}}^{\gamma_{\gamma}}
$$

Then $S(c)=0$ for each $c \in C_{\gamma}$. Since S is obtained by subtracting finite rank operators in $\mathcal{K}_{0}\left(Z_{\gamma} \subset Y_{\gamma}\right)$ from T, it is sufficient to show that S is in $\mathcal{K}_{0}\left(Z_{\gamma} \subset Y_{\gamma}\right)$. We represent S as $S=\left[S_{i j}\right]_{i, j} \in M_{N}(A)$. Consider the Jordan decomposition of $S_{i j} \in A=C(K)$ as follows:

$$
S_{i j}=S_{i, j}^{1}-S_{i, j}^{2}+\sqrt{-1}\left(S_{i, j}^{3}-S_{i, j}^{4}\right)
$$

with $S_{i, j}^{1}, S_{i, j^{\prime}}^{2} S_{i, j}^{3}, S_{i, j}^{4} \geqslant 0$ and $S_{i, j}^{1} S_{i, j}^{2}=0, S_{i, j}^{3} S_{i, j}^{4}=0$. Then $S_{i, j}^{p}(c)=0$ for $1 \leqslant p \leqslant 4$ and $c \in C_{\gamma}$. Each element $T \in M_{N^{n}}(A)$ with (i, j) element $S_{i, j}^{p}(\geqslant 0)$ and with other elements 0 is expressed as $\theta_{\left(S_{i, j}^{p}\right)^{1 / 2} \delta_{i},\left(S_{i, j}^{p}\right)^{1 / 2} \delta_{j}}$, where δ_{i} is an element in \mathbb{C}^{N} with $\left(\delta_{i}\right)_{j}=1$ for $j=i$ and $\left(\delta_{i}\right)_{j}=0$ for $j \neq i$. Since $S_{i, j}^{p}(c)=0$ for any $c \in C_{\gamma}$, $\left(S_{i, j}^{p}\right)^{1 / 2} \delta_{i}$ and $\left(S_{i, j}^{p}\right)^{1 / 2} \delta_{j}$ are in Z_{γ}. Because

$$
S=\sum_{p} \sum_{i, j} \theta_{\left(S_{i, j}^{p}\right)^{1 / 2} \delta_{i},\left(S_{i, j}^{p}\right)^{1 / 2} \delta_{j}}^{Y_{\gamma}}
$$

S is in $\mathcal{K}_{0}\left(Z_{\gamma} \subset Y_{\gamma}\right)$.
Next we study the matrix representation of $\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)$. We consider the composition of self-similar maps and use the following notation of multi-index: For $\mathbf{i}=\left(i_{1}, i_{2}, \ldots, i_{n}\right) \in \Sigma^{n}$, we put

$$
\gamma_{\mathbf{i}}=\gamma_{i_{n}} \circ \gamma_{i_{n-1}} \circ \cdots \circ \gamma_{i_{1}}
$$

and $\gamma^{n}=\left\{\gamma_{\mathbf{i}}\right\}_{\mathbf{i} \in \Sigma^{n}}$. Then $\gamma_{\mathbf{i}}$ is a proper contraction, and γ^{n} is a self-similar map on the same compact metric space K.

Lemma 2.7. Let γ be a self-similar map on a compact metric space K that satisfies Assumption B. Then $C_{\gamma^{n}}$ and $B_{\gamma^{n}}$ are finite sets and $C_{\gamma^{n}} \subset C_{\gamma^{n+1}}$ for each $n=$ $1,2,3, \ldots$. The set of branch points $B_{\gamma^{n}}$ is given by

$$
B_{\gamma^{n}}=\left\{\gamma_{\mathbf{j}}(b): b \in B_{\gamma}, \mathbf{j} \in \Sigma^{k}, 0 \leqslant k \leqslant n-1\right\}
$$

Moreover, if $\gamma_{\mathbf{i}}(c)=\gamma_{\mathbf{j}}(c)$ and $\mathbf{i} \neq \mathbf{j}$, then there exists unique $1 \leqslant s \leqslant n$ such that $i_{s} \neq j_{s}$ and $i_{p}=j_{p}$ for $p \neq s$.

Proof. Since γ satisfies Assumption B, $C_{\gamma^{n}}$ and $B_{\gamma^{n}}$ are finite sets. Let $c \in$ $C_{\gamma^{n}}$. Then $b=\gamma_{\mathbf{i}}(c)=\gamma_{\mathbf{j}}(c)$ with $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right), \mathbf{j}=\left(j_{1}, \ldots, j_{n}\right) \in \Sigma^{n}$ and $\mathbf{i} \neq \mathbf{j}$. We put $\widetilde{\mathbf{i}}=\left(i, i_{1}, \ldots, i_{n}\right)$ and $\widetilde{j}=\left(i, j_{1}, \ldots, j_{n}\right)$ for some $1 \leqslant i \leqslant N$. Then $\gamma_{\tilde{\mathbf{i}}}(c)=\gamma_{\tilde{\mathbf{j}}}(c), \widetilde{\mathbf{i}}, \widetilde{\mathbf{j}} \in \Sigma^{n+1}$ and $\widetilde{\mathbf{i}} \neq \widetilde{\mathbf{j}}$. Hence $c \in C_{\gamma^{n+1}}$.

Let $d=\gamma_{\mathbf{j}}(b)$ for some $b \in B_{\gamma}$ and $\mathbf{j} \in \Sigma^{k}, 0 \leqslant k \leqslant n-1$. We rewrite it as $d=\gamma_{j_{n}} \circ \gamma_{j_{n-1}} \circ \cdots \circ \gamma_{j_{n-k+1}}(b)$. Since $b \in B_{\gamma}$, there exist $c \in C_{\gamma}$ and $j \neq j^{\prime}$ with $b=\gamma_{j}(c)=\gamma_{j^{\prime}}(c)$. There exist $j_{n-k-1}, j_{n-k-2}, \ldots, j_{1}$ and $a \in K$ with $c=$ $\gamma_{n-k-1} \circ j_{n-k-2} \circ \cdots \circ \gamma_{j_{1}}(a)$. We put $\mathbf{j}=\left(j_{n}, j_{n-1}, \ldots, j_{n-k+1}, j, j_{n-k-1}, \ldots, j_{1}\right)$ and $\mathbf{j}^{\prime}=\left(j_{n}, j_{n-1}, \ldots, j_{n-k+1}, j^{\prime}, j_{n-k-1}, \ldots, j_{1}\right)$. Thus $d=\gamma_{\mathbf{j}}(a)=\gamma_{\mathbf{j}^{\prime}}(a)$ and $\mathbf{j} \neq \mathbf{j}^{\prime}$. Hence $d \in B_{\gamma^{n}}$.

Conversely, let $d \in B_{\gamma^{n}}$. Then $d=\gamma_{\mathbf{j}}(a)=\gamma_{\mathbf{j}^{\prime}}(a)$ for some $a \in K, \mathbf{j}, \mathbf{j}^{\prime} \in \Sigma^{n}$ with $\mathbf{j} \neq \mathbf{j}^{\prime}$. Here a is uniquely determined by d, because $a=h^{n}(d)$. Similarly we have $\gamma_{j_{r}}(a)=\gamma_{j_{r}^{\prime}}(a)=h^{n-r}(d)$ with $0 \leqslant r \leqslant n-1$. We write $\mathbf{j}=\left(j_{n}, \ldots, j_{1}\right)$, $\mathbf{j}^{\prime}=\left(j_{n}^{\prime}, \ldots, j_{1}^{\prime}\right)$. We may assume that $j_{n-k} \neq j_{n-k}^{\prime}$ for some $k,(0 \leqslant k \leqslant n-1)$. We put

$$
c=\gamma_{j_{n-k-1}} \circ \cdots \circ \gamma_{j_{1}}(a)=\gamma_{j_{n-k-1}^{\prime}} \circ \cdots \circ \gamma_{j_{1}^{\prime}}(a)
$$

Then $c=h^{k+1}(d)=c^{\prime}$. We put $b=\gamma_{j_{n-k}}(c)^{\prime}=\gamma_{j_{n-k}^{\prime}}(c)$. Then $b=h^{k}(d)$. It follows that $b \in B_{\gamma}$ and $d=j_{n} \circ \cdots \circ j_{n-k+1}(b)$ with $b \in B_{\gamma}$.

Suppose that there exist more than one s with $i_{s} \neq j_{s}$. Then there exists $b \in B_{\gamma} \cap P_{\gamma}$. This contradicts condition (iii) of Assumption B. Therefore there exists a unique $1 \leqslant s \leqslant n$ such that $i_{s} \neq j_{s}$ and $i_{p}=j_{p}$ for $p \neq s$.

We denote by $X_{\gamma^{n}}$ the $A-A$ correspondence for γ^{n}. We need to recall the following fact in (9].

Lemma 2.8. As $A-A$ correspondences, $X_{\gamma}^{\otimes n}$ and $X_{\gamma^{n}}$ are isomorphic.
Proof. There exists a Hilbert bimodule isomorphism $\varphi: X_{\gamma}^{\otimes n} \rightarrow X_{\gamma^{n}}$ such that

$$
\begin{aligned}
\left(\varphi \left(f_{1} \otimes \cdots\right.\right. & \left.\left.\otimes f_{n}\right)\right)\left(\gamma_{i_{1}, \ldots, i_{n}}, y\right) \\
& =f_{1}\left(\gamma_{i_{1}, \ldots, i_{n}}(y), \gamma_{i_{2}, \ldots, i_{n}}(y) f_{2}\left(\gamma_{i_{2}, \ldots, i_{n}}(y), \gamma_{i_{3}, \ldots, i_{n}}(y)\right) \cdots f_{n}\left(\gamma_{i_{n}}(y), y\right)\right.
\end{aligned}
$$

for $f_{1}, \ldots, f_{n} \in X, y \in K$ and $\mathbf{i}=\left(i_{1}, \ldots, i_{n}\right) \in \Sigma^{n}$.
For γ^{n}, we define a subset $D^{\gamma^{n}}$ of $M_{N^{n}}(A)$ as in the case of γ. We also consider $C_{\gamma^{n}}$ instead of C_{γ}. We use the same notation e_{b} for $b \in B_{\gamma^{n}}$ with $h^{n}(b)=$ c and $\left\{j(b, k): 1 \leqslant k \leqslant e_{b}\right\}$ for γ^{n} as in γ if there occur no troubles. Let

$$
\begin{aligned}
D^{\gamma^{n}}=\left\{\left[a_{i j}\right]_{i j} \in M_{N^{n}}(A)\right. & : \text { for any } c \in C_{\gamma^{n}}, b \in B_{\gamma^{n}} \text { with } h^{n}(b)=c, \\
& a_{j(b, k), i}(c)=a_{j\left(b, k^{\prime}\right), i}(c), a_{i, j(b, k)}(c)=a_{i, j\left(b, k^{\prime}\right)}(c) \\
& \text { for all } \left.1 \leqslant k, k^{\prime} \leqslant e_{b}, 1 \leqslant i \leqslant N^{n}\right\} .
\end{aligned}
$$

We note that $D^{\gamma^{n}}$ is invariant under the pointwise multiplication of function $f \in A=C(K)$.

LEMMA 2.9. $X_{\gamma}^{\otimes n}$ is isomorphic to a closed submodule $Z_{\gamma^{n}}$ of $A^{N^{n}}$ as follows:

$$
\begin{gathered}
X_{\gamma}^{\otimes n} \simeq Z_{\gamma^{n}}=\left\{\left(f_{1}, \ldots, f_{N}\right) \in A^{N}: \text { for any } c \in C_{\gamma^{n}}, b \in B_{\gamma} \text { with } h^{n}(b)=c,\right. \\
\left.f_{j(b, k)}(c)=f_{j\left(b, k^{\prime}\right)}(c), 1 \leqslant k, k^{\prime} \leqslant e_{b}\right\} .
\end{gathered}
$$

The proof follows from the isomorphism between $X_{\gamma}^{\otimes n}$ and $X_{\gamma^{n}}$ and Lemma 2.2

PROPOSITION 2.10. Let γ be a self-similar map on a compact metric space K that satisfies Assumption B. Then $\mathcal{K}_{0}\left(X_{\gamma}^{\otimes n}\right)$ coincides with $\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)$ and is isomorphic to the closed $*$-subalgebra $D^{\gamma^{n}}$ of $M_{N^{n}}(A)$.

The proposition follows from the isomorphism between $X_{\gamma}^{\otimes n}$ and $X_{\gamma^{n}}$, Lemma 2.2 and Lemma 2.6

We shall give a matrix representation of the finite core $\mathcal{F}^{(n)}$ in $M_{N^{n}}(A)$. Let

$$
\delta^{(r)}: D^{\gamma^{r}} \rightarrow \mathcal{K}\left(Z_{\gamma}^{\otimes r}\right)
$$

be the isometric onto $*$-isomorphism defined by the restriction to $Z_{\gamma}^{\otimes r}$. We put

$$
\Omega^{(r)}=\left(\delta^{(r)}\right)^{-1}: \mathcal{K}\left(Z_{\gamma}^{\otimes r}\right) \rightarrow D^{\gamma^{r}}
$$

We consider a family $\left(\mathcal{F}^{(n)}\right)_{n}$ of subalgebras of the core:

$$
\mathcal{F}^{(n)}=A \otimes I+\mathcal{K}(X) \otimes I+\mathcal{K}\left(X^{\otimes 2}\right) \otimes I+\cdots+\mathcal{K}\left(X^{\otimes n}\right) \subset \mathcal{L}\left(X^{\otimes n}\right)
$$

We embed $\mathcal{F}^{(n)}$ into $\mathcal{F}^{(n+1)}$ by $T \mapsto T \otimes I$ for $T \in \mathcal{F}^{(n)}$. Let $\mathcal{F}^{(\infty)}=\overline{\bigcup_{n=0}^{\infty} \mathcal{F}^{(n)}}$ be the inductive limit algebra.

We note that $\mathcal{F}^{(n+1)}=\mathcal{F}^{(n)} \otimes I+\mathcal{K}\left(X^{\otimes n+1}\right)$. Thus $\mathcal{F}^{(n)}$ is a C^{*}-subalgebra of $\mathcal{F}^{(n+1)}$ containing unit and $\mathcal{K}\left(X^{\otimes n+1}\right)$ is an ideal of $\mathcal{F}^{(n+1)}$. We sometimes write $\mathcal{F}^{(n+1)}=\mathcal{F}^{(n)}+\mathcal{K}\left(X^{\otimes n+1}\right)$ for short. It is difficult to describe the extension of ideals of a subalgebra and an ideal to their sum. But in our case we can use Pimsner's analysis above of the core to get a matrix representation $\Pi^{(n)}: \mathcal{F}^{(n)} \rightarrow$ $M_{N^{n}}(A)$ of the whole $\mathcal{F}^{(n)}$.

We introduce a subalgebra E^{γ} of $\mathcal{K}\left(Y_{\gamma}\right)=\mathcal{L}\left(Y_{\gamma}\right)$ which preserves Z_{γ} :

$$
E^{\gamma}:=\left\{a=\left[a_{i, j}\right]_{i j} \in M_{N}(A)=\mathcal{L}\left(Y_{\gamma}\right): a Z_{\gamma} \subset Z_{\gamma}\right\}
$$

Here we identify $E^{\gamma} \subset \mathcal{L}\left(Y_{\gamma}\right)$ with the corresponding subalgebra of $M_{N}(A)$. The inclusion $\mathcal{K}\left(Z_{\gamma} \subset Y_{\gamma}\right) \subset E^{\gamma}$ is identified with the inclusion $D^{\gamma} \subset E^{\gamma}$. We note that there exist elements of E^{γ} which are not contained in D^{γ}, and there can exist elements of $\mathcal{L}\left(Z_{\gamma}\right)$ which do not extend to Y_{γ}.

PROPOSITION 2.11. The restriction map $\delta: E^{\gamma} \rightarrow \mathcal{L}\left(Z_{\gamma}\right)$ is an isometric algebra homomorphism and is a *-homomorphism on $E^{\gamma} \cap\left(E^{\gamma}\right)^{*}$.

Proof. For $\varepsilon>0$, we put $U^{\varepsilon}\left(C_{\gamma}\right)=\left\{x \in K: d(x, c)<\varepsilon\right.$ for some $\left.c \in C_{\gamma}\right\}$. We take an integer n_{0} such that $2 / n_{0}<\min _{c \neq c^{\prime}\left(c, c^{\prime} \in C_{\gamma}\right)} d\left(c, c^{\prime}\right)$. For each integer $n \geqslant$ n_{0}, we take a function $f_{n} \in A$ such that $0 \leqslant f_{n}(x) \leqslant 1$ and $f_{n}(x)=0$ on $U^{1 / n}\left(C_{\gamma}\right)$ and $f_{n}(x)=1$ outside $U^{2 / n}\left(C_{\gamma}\right)$.

Let $T \in E^{\gamma}$. Then for each $\xi \in Y_{\gamma}$, we have $\xi f_{n} \in Z_{\gamma}$. Moreover since C_{γ} is a finite set and any point in C_{γ} is not an isolated point, we have

$$
\lim _{n \rightarrow \infty}\left\|\xi f_{n}\right\|=\|\xi\|, \quad \text { and } \quad \lim _{n \rightarrow \infty}\left\|T\left(\xi f_{n}\right)\right\|=\lim _{n \rightarrow \infty}\left\|(T \xi) f_{n}\right\|=\|T \xi\|
$$

Therefore $\|\delta(T)\|=\|T\|$.
For $r \in \mathbb{N}$, we also define a closed subalgebra $E^{\gamma^{r}}$

$$
E^{\gamma^{r}}:=\left\{a=\left[a_{i, j}\right]_{i j} \in M_{N^{r}}(A)=\mathcal{K}\left(Y_{\gamma}^{\otimes r}\right): a Z_{\gamma^{\otimes r}} \subset Z_{\gamma^{\otimes r}}\right\}
$$

and identify $E^{\gamma^{r}}$ with the corresponding subalgebra of $M_{N^{r}}(A)$ as the γ case.
We shall extend the restriction map

$$
\delta^{(r)}: D^{\gamma^{r}} \rightarrow K\left(Z_{\gamma}^{\otimes r}\right)
$$

to the restriction map, with the same symbol,

$$
\delta^{(r)}: E^{\gamma^{r}} \rightarrow \mathcal{L}\left(Z_{\gamma}^{\otimes r}\right)
$$

which is an isometric algebra homomorphism.
We define

$$
\varepsilon(r)=\left(\delta^{(r)}\right)^{-1}: \delta^{(r)}\left(E^{\gamma^{r}} \cap\left(E^{\gamma^{r}}\right)^{*}\right) \rightarrow E^{\gamma^{r}} \cap\left(E^{\gamma^{r}}\right)^{*}
$$

For a fixed positive integer $n>0$, we take an integer $0 \leqslant r \leqslant n$. Taking $T \in \mathcal{K}\left(Z_{\gamma}^{\otimes r}\right)$, T is represented in $\mathcal{L}\left(Z_{\gamma}^{\otimes n}\right)$ as $\phi^{(n, r)}(T)=T \otimes I_{n-r}$. The map $\phi^{(n, r)}$ is a representation of $\mathcal{K}\left(Z_{\gamma}^{\otimes r}\right)$ in $\mathcal{L}\left(Z_{\gamma}^{\otimes n}\right)$. On the other hand, $T \in \mathcal{K}\left(Z_{\gamma}^{\otimes r}\right)$ extends to $Y_{\gamma}^{\otimes r}$, and is represented as an element $\Omega^{(r)}(T)$ in $M_{N^{r}}(A)=\mathcal{K}\left(Y_{\gamma}^{\otimes r}\right)$. We put $\Omega^{(n, r)}(T)=\Omega^{(r)}(T) \otimes I_{n-r}$. Thus

$$
\Omega^{(n, r)}: \mathcal{K}\left(Z_{\gamma}^{\otimes r}\right) \rightarrow M_{N^{n}}(A)=\mathcal{L}\left(Y_{\gamma}^{\otimes n}\right)
$$

Since $\Omega^{(n, r)}(T)$ for $T \in \mathcal{K}\left(Z_{\gamma}^{\otimes r}\right)$ leaves $Z_{\gamma}^{\otimes n}$ invariant, it is an element in $E^{\gamma^{n}}$. Moreover it holds that

$$
\phi^{(n, r)}(T)=\delta^{(n)}\left(\Omega^{(n, r)}(T)\right)
$$

We shall explain these facts more precisely and investigate the form of $\Omega^{(n, r)}$.
We note that if we identify Y_{γ} with $C\left(K, \mathbb{C}^{N}\right)$, then we can identify $Y_{\gamma}^{\otimes n}$ with $C\left(K, \mathbb{C}^{N^{n}}\right)$. For example, for $f=\left(f_{i}\right)_{i}, g=\left(g_{i}\right)_{i}, h=\left(h_{i}\right)_{i} \in Y_{\gamma}=C\left(K, \mathbb{C}^{N}\right)$, we can regard $f \otimes g \otimes h \in Y_{\gamma}^{\otimes 3}$ as an element in $C\left(K, \mathbb{C}^{N^{3}}\right)$ by

$$
(f \otimes g \otimes h)(x)=\left(f_{i_{1}}\left(\gamma_{i_{2}} \gamma_{i_{3}}(x)\right) g_{i_{2}}\left(\gamma_{i_{3}}(x)\right) h_{i_{3}}(x)\right)_{\left(i_{1}, i_{2}, i_{3}\right)}
$$

for $x \in K$ and $\mathbf{i}=\left(i_{1}, i_{2}, i_{3}\right) \in \Sigma^{3}$.
We define $\left(\alpha_{j}(a)\right)(x)=a\left(\gamma_{j}(x)\right)$ for $a \in A, j \in \Sigma$ and $\left(\alpha_{\mathbf{j}}(a)\right)(x)=a\left(\gamma_{\mathbf{j}}(x)\right)$ for $\mathbf{j} \in \Sigma^{s}$. For $T \in M_{N^{r}}(A)$, we define $\alpha_{j}(T) \in M_{N^{r}}(A)$ and $\alpha_{\mathbf{j}}(T) \in M_{N^{r}}(A)$ for $\mathbf{j} \in \Sigma^{s}$ by

$$
\left(\alpha_{j}(T)\right)_{i k}=\alpha_{j}\left(T_{i k}\right), \quad\left(\alpha_{\mathbf{j}}(T)\right)_{i k}=\alpha_{\mathbf{j}}\left(T_{i k}\right)
$$

Let $\left\{A_{i_{1}, \ldots, i_{s}}:\left(i_{1}, \ldots, i_{s}\right) \in \Sigma^{s}\right\}$ be a family of square matrices. We denote by

$$
\operatorname{diag}\left(A_{i_{1}, \ldots, i_{s}}\right)_{\left(i_{1}, \ldots, i_{s}\right) \in \Sigma^{s}}
$$

the block diagonal matrix with diagonal elements in $\left\{A_{i_{1}, \ldots, i_{s}}:\left(i_{1}, \ldots, i_{s}\right) \in \Sigma^{s}\right\}$.
We use lexicographical order for elements in Σ^{s}. We write $\left(i_{1}, \ldots, i_{s}\right)<$ $\left(j_{1}, \ldots, j_{s}\right)$ if $i_{1}=j_{1}, \ldots, i_{t}=j_{t}$ and $i_{t+1}<j_{t+1}$ for some $1 \leqslant t \leqslant s-1$.

LEMMA 2.12. The natural embedding

$$
\mathcal{L}\left(Y_{\gamma}^{\otimes r}\right) \ni T \mapsto T \otimes I_{n-r} \in \mathcal{L}\left(Y_{\gamma}^{\otimes n}\right)
$$

is identified with the matrix algebra embedding

$$
M_{N^{r}}(A) \ni T \mapsto \operatorname{diag}\left(\alpha_{\left(i_{n}, i_{n-1}, \ldots, i_{r+1}\right)}(T)\right)_{\left(i_{n}, i_{n-1}, \ldots, i_{r+1}\right) \in \Sigma^{n-r}}
$$

Proof. We note that $\left\{\delta_{i_{1}} \otimes \cdots \otimes \delta_{i_{r}}\right\}_{\left(i_{1}, \ldots, i_{r}\right) \in \Sigma^{r}}$ constitutes a base of A^{r} and $\left\{\delta_{i_{1}} \otimes \cdots \otimes \delta_{i_{n}}\right\}_{\left(i_{1}, \ldots, i_{n}\right) \in \Sigma^{n}}$ constitutes a base of A^{n}. We write

$$
T=\left[T_{\left(i_{1}, \ldots, i_{r}\right),\left(j_{1}, \ldots, j_{r}\right)}\right]_{\left(\left(i_{1}, \ldots, i_{r}\right),\left(j_{1}, \ldots, j_{r}\right)\right]} \in M_{N^{r}}(A)
$$

Then

$$
T\left(\delta_{i_{1}} \otimes \cdots \otimes \delta_{i_{r}}\right)=\sum_{\left(j_{1}, \ldots, j_{r}\right) \in \Sigma^{r}} \delta_{j_{1}} \otimes \cdots \otimes \delta_{j_{r}} T_{\left(j_{1}, \ldots, j_{r}\right),\left(i_{1}, \ldots, i_{r}\right)}
$$

Then it follows that

$$
\begin{aligned}
(T & \left.\otimes I_{n-r}\right)\left(\delta_{i_{1}} \otimes \cdots \otimes \delta_{i_{r}} \otimes \delta_{i_{r+1}} \otimes \cdots \otimes \delta_{i_{n}}\right) \\
& =T\left(\delta_{i_{1}} \otimes \cdots \otimes \delta_{i_{r}}\right) \otimes \delta_{i_{r+1}} \otimes \cdots \otimes \delta_{i_{n}} \\
& =\sum_{\left(j_{1}, \ldots, j_{r}\right) \in \Sigma^{r}}\left(\delta_{j_{1}} \otimes \cdots \otimes \delta_{j_{r}}\right) T_{\left(j_{1}, \ldots, j_{r}\right),\left(i_{1}, \ldots, i_{r}\right)} \otimes \delta_{i_{r+1}} \otimes \cdots \otimes \delta_{i_{n}} \\
& =\sum_{\left(j_{1}, \ldots, j_{r}\right) \in \Sigma^{r}}\left(\delta_{j_{1}} \otimes \cdots \otimes \delta_{j_{r}}\right) \otimes\left(\delta_{i_{r+1}} \otimes \cdots \otimes \delta_{i_{n}}\right) \alpha_{i_{n}} \circ \cdots \alpha_{i_{r+1}}\left(T_{\left(j_{1}, \ldots, j_{r}\right),\left(i_{1}, \ldots, i_{r}\right)}\right) \\
& =\operatorname{diag}\left(\alpha_{\left(i_{i_{n}}, \ldots, i_{r+1}\right)}(T)\right)_{\left(i_{i_{n}}, \ldots, i_{r+1}\right) \in \Sigma^{n-r}}
\end{aligned}
$$

where we have used that $\left(f \cdot \delta_{i}\right)(x)=\alpha_{i}(f)(x) \delta_{i}(x)=\left(\delta_{i} \cdot \alpha_{i}(f)\right)(x)$ for $f \in A$.
We describe the form of

$$
\Omega^{(n, r)}: \mathcal{K}\left(Z_{\gamma}^{\otimes r}\right) \rightarrow \mathcal{L}\left(Y_{\gamma}^{\otimes n}\right)=M_{N^{n}}(A)
$$

For $T \in \mathcal{K}\left(Z_{\gamma}^{\otimes n-1}\right)$, we have

$$
\begin{aligned}
\Omega^{(n, n-1)}(T) & =\left(\begin{array}{ccc}
\alpha_{1}\left(\left[\Omega^{(n-1)}(T)_{i j}\right]_{i j}\right) & 0 & \cdots \\
\vdots & \ddots & 0 \\
0 & 0 & \alpha_{N}\left(\left[\Omega^{(n-1)} T_{i j}\right]_{i j}\right)
\end{array}\right) \\
& =\operatorname{diag}\left(\alpha_{i}\left(\Omega^{(n-1)}(T)\right)\right)_{i \in \Sigma},
\end{aligned}
$$

which is written by the ordinary matrix notation. Similarly for $T \in \mathcal{K}\left(Z_{\gamma}^{\otimes r}\right)(0 \leqslant$ $r \leqslant n-1), \Omega^{(n, r)}(T)$ is expressed as:

$$
\Omega^{(n, r)}(T)=\operatorname{diag}\left(\alpha_{\left(i_{n}, i_{n-1}, \ldots, i_{r+1}\right)}\left(\Omega^{(r)}(T)\right)\right)_{\left(i_{n}, i_{n-1}, \ldots, i_{r+1}\right) \in \Sigma^{n-r}}
$$

where we use lexicographic order for Σ^{n-r}.
Then we can check that for any $T \in \mathcal{L}\left(Y_{\gamma^{r}}\right), 1 \leqslant r \leqslant n$, if $T\left(Z_{\gamma^{r}}\right) \subset Z_{\gamma^{r}}$, then

$$
\left(T \otimes I_{n-r}\right)\left(Z_{\gamma^{n}}\right) \subset Z_{\gamma^{n}}
$$

that is, $E^{\gamma^{r}} \otimes I_{n-r} \subset E^{\gamma^{n}}$.

THEOREM 2.13 (matrix representation of the n-th core). Let γ be a self-similar map on a compact metric space K that satisfies Assumption B. Then there exists an isometric $*$-homomorphism $\Pi^{(n)}: \mathcal{F}^{(n)} \rightarrow M_{N^{n}}(A)$ such that, for $T=\sum_{r=0}^{n} T_{r} \otimes I_{n-r} \in \mathcal{F}^{(n)}$ with $T_{r} \in \mathcal{K}\left(X_{\gamma}^{\otimes r}\right)$,

$$
\Pi^{(n)}(T)=\sum_{r=0}^{n} \Omega^{(n, r)}\left(T_{r}\right)
$$

and if we identify $X_{\gamma}^{\otimes r}$ with $\mathrm{Z}_{\gamma}^{\otimes r}$, then

$$
\Omega^{(n, r)}\left(\theta_{x, y}^{Z_{\chi^{r}}}\right)=\theta_{x, y}^{\gamma_{\gamma^{r}}} \otimes I_{n-r} .
$$

The image $\Pi^{(n)}(T)$ is independent of the expression of $T=\sum_{r=0}^{n} T_{r} \otimes I_{n-r} \in \mathcal{F}^{(n)}$.
Moreover the following diagram commutes:

In particular the core $\mathcal{F}^{(\infty)}$ is represented in $M_{N^{\infty}}(A)$ as a C^{*}-subalgebra.
Proof. Consider the following commutative diagram:

$$
\begin{aligned}
&\left(M_{N^{r}}(A) \supset\right) D^{\gamma^{r}} \xrightarrow{T \mapsto T \otimes I_{n-r}} E^{\gamma^{r}} \cap\left(E^{\gamma^{r}}\right)^{*}\left(\subset M_{N^{n}}(A)\right) \\
& \\
& \Omega^{(r)} \uparrow \downarrow \delta^{(n)} \\
& \mathcal{K}\left(X_{\gamma}^{\otimes r}\right) \quad \xrightarrow[\phi^{(n, r)}]{ } \mathcal{L}\left(X_{\gamma}^{\otimes n}\right)
\end{aligned}
$$

It means that $\phi^{(n, r)}(S)$ extends to $M_{N^{n}}(A) \simeq \mathcal{L}\left(Y_{\gamma}^{\otimes n}\right)$ and $\phi^{(n, r)}(S)$ is identified with $\delta^{(n)}\left(\Omega^{(n, r)}(S)\right)$ for $S \in \mathcal{K}\left(X_{\gamma}^{\otimes r}\right)$.

Now we recall that Pimsner [13] constructed the isometric $*$-homomorphism $\varphi: \mathcal{F}^{(n)} \rightarrow \mathcal{L}\left(X_{\gamma}^{\otimes n}\right)$ such that for $T=\sum_{r=0}^{n} T_{r} \otimes I_{n-r}, T_{r} \in \mathcal{K}\left(X_{\gamma}^{\otimes r}\right) r=0, \ldots, n$,

$$
\varphi(T)=\sum_{r=0}^{n} \phi^{(n, r)}\left(T_{r}\right)
$$

Since the restriction map

$$
\delta^{(n)}: E^{\gamma^{r}} \cap\left(E^{\gamma^{r}}\right)^{*} \rightarrow \mathcal{L}\left(Z_{\gamma}^{\otimes n}\right) \simeq \mathcal{L}\left(X_{\gamma}^{\otimes n}\right)
$$

is also an isometric $*$-homomorphism, the composition of φ with the inverse $\varepsilon^{(n)}:=\left(\delta^{(n)}\right)^{-1}$ on the image of $\delta^{(n)}$ gives the desired isometric $*$-homomorphism
$\Pi^{(n)}: \mathcal{F}^{(n)} \rightarrow M_{N^{n}}(A)$. Hence we have

$$
\Pi^{(n)}\left(\sum_{r=0}^{n} T_{r} \otimes I\right)=\varepsilon^{(n)}\left(\sum_{r=0}^{n} \phi^{(n, r)}\left(T_{r}\right)\right)=\sum_{r=0}^{n} \varepsilon^{(n)}\left(\phi^{(n, r)}\left(T_{r}\right)\right)=\sum_{r=0}^{n} \Omega^{(n, r)}\left(T_{r}\right) .
$$

Therefore the rest is clear.

3. CLASSIFICATION OF IDEALS

We recall the Rieffel correspondence on ideals of Morita equivalent C^{*} algebras in Rieffel [16], Zettl [17] and Raeburn and Williams [15], which plays an important role in our analysis of the ideal structure of the core. Let A and B be C^{*}-algebras. Suppose that B and A are Morita equivalent by an equivalence bimodule $X={ }_{B} X_{A}$. Then B and A have the same ideal structure. Let \mathcal{I} deal (A) (respectively \mathcal{I} deal (B)) be the set of ideals of A (respectively B). Then there exists a lattice isomorphism between \mathcal{I} deal (A) and \mathcal{I} deal (B). The correspondence is given by $\varphi: \mathcal{I}$ deal $(A) \rightarrow \mathcal{I}$ deal (B) and $\psi: \mathcal{I}$ deal $(B) \rightarrow \mathcal{I}$ deal (A) as follows: Let $J \in \mathcal{I}$ deal (A) be an ideal of A. Then the corresponding ideal $I=\varphi(J)$ of B is given by

$$
\begin{aligned}
I=\varphi(J) & =\overline{\operatorname{span}}\left\{{ }_{B}\left(x_{1} a_{1} \mid x_{2} a_{2}\right): x_{1}, x_{2} \in X, a_{1}, a_{2} \in J\right\} \\
& =\overline{\operatorname{span}}\left\{_{B}\left(x_{1} a \mid x_{2}\right): x_{1}, x_{2} \in X, a \in J\right\} .
\end{aligned}
$$

Let $I \in \mathcal{I}$ deal (B) be an ideal of B. Then the corresponding ideal $J=\psi(I)$ of A is given by

$$
\begin{aligned}
J=\psi(I) & =\overline{\operatorname{span}}\left\{\left(b_{1} x_{1} \mid b_{2} x_{2}\right)_{A}: x_{1}, x_{2} \in X, b_{1}, b_{2} \in I\right\} \\
& =\overline{\operatorname{span}}\left\{\left(x_{1} \mid b x_{2}\right)_{A}: x_{1}, x_{2} \in X, b \in I\right\} .
\end{aligned}
$$

Here, we have

$$
\begin{aligned}
X_{J} & :=\overline{\operatorname{span}}\{x a: x \in X, a \in J\}=\left\{y \in X:(x \mid y)_{A} \in J \text { for any } x \in X\right\} \\
& =\left\{y \in X:(y \mid y)_{A} \in J\right\} .
\end{aligned}
$$

Moreover we have

$$
\begin{aligned}
& \varphi(J)=\left\{b \in B:(x \mid b y)_{A} \in J \text { for any } x, y \in X\right\}, \quad \text { and } \\
& \psi(I)=\left\{a \in A:_{B}(x a \mid y) \in J \text { for any } x, y \in X\right\} .
\end{aligned}
$$

In fact, it is trivial that $\varphi(J) \subset\left\{b \in B:(x \mid b y)_{A} \in J\right.$ for any $\left.x, y \in X\right\}$. Conversely assume that $b \in B$ satisfies that $(x \mid b y)_{A} \in J$ for any $x, y \in X$. Therefore $b y \in X_{J}$ for any $y \in X$. Since ${ }_{B}(X \mid X)$ spans a dense $*$-ideal L of B, the set of positive elements of L of norm strictly less than 1 is an approximate unit of B. Therefore b is uniformly approximated by an element of the form

$$
b \sum_{i}{ }_{B}\left(x_{i} \mid y_{i}\right)=\sum_{i}{ }_{B}\left(b x_{i} \mid y_{i}\right) \in \varphi(J)
$$

and $b x_{i} \in X_{J}$. Therefore b is also in $\varphi(J)$. The rest is similarly proved.
For any ideal I of the core $\mathcal{F}^{(\infty)}$, we shall associate a family $\left(F_{n}^{I}\right)_{n}$ of closed subsets of K using the above Rieffel correspondence.

Recall that the bimodule $X_{\gamma}^{\otimes n}$ gives a Morita equivalence between $\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)$ and $A=C(K)$. Let I be an ideal of $\mathcal{F}^{(\infty)}$. Then $I_{n}:=I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)$ is an ideal of $\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)$. Let $J_{n}=\psi\left(I_{n}\right)$ be the corresponding ideal of $A=C(K)$ by the Rieffel correspondence. Let F_{n}^{I} be the corresponding closed subset of K, that is,

$$
\begin{aligned}
& F_{n}^{I}=\left\{x \in K: a(x)=0 \text { for any } a \in J_{n}\right\} \\
& J_{n}=\left\{a \in A=C(K): a(x)=0 \text { for any } x \in F_{n}^{I}\right\}
\end{aligned}
$$

By the discussion above, we have the following:
Lemma 3.1. Let γ be a self-similar map satisfying Assumption B. Let I be an ideal of the core $\mathcal{F}^{(\infty)}$. Then
(i) $F_{n}^{I}=\left\{x \in K:\left(\eta_{1} \mid T \eta_{2}\right)_{A}(x)=0\right.$ for each $\left.\eta_{1}, \eta_{2} \in X_{\gamma}^{\otimes n}, T \in I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right\}$.
(ii) $I_{n}=I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)=\left\{T \in \mathcal{K}\left(X_{\gamma}^{\otimes n}\right):\left(\eta_{1} \mid T \eta_{2}\right)_{A}(y)=0\right.$ for each $y \in$ $\left.F_{I}^{n}, \eta_{1}, \eta_{2} \in X_{\gamma}^{\otimes n}\right\}$.
In particular, consider the case that $n=1$ so that $I_{1}=I \cap \mathcal{K}\left(X_{\gamma}\right)$. Then
(i') $F_{1}^{I}=\left\{x \in K:\left(\eta_{1} \mid T \eta_{2}\right)_{A}(x)=0\right.$ for each $\left.\eta_{1}, \eta_{2} \in X_{\gamma}, T \in I_{1}=I \cap \mathcal{K}\left(X_{\gamma}\right)\right\}$.
(ii') $I_{1}=\left\{T \in \mathcal{K}\left(X_{\gamma}\right):\left(\eta_{1} \mid T \eta_{2}\right)_{A}(y)=0\right.$ for each $\left.y \in F_{1}^{I}, \eta_{1}, \eta_{2} \in X_{\gamma}\right\}$.
We investigate fibers $\left(\Pi^{(n)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right)\right)(y)$ on $y \in K$.
Corollary 3.2. Let $y \in K$. If $y \notin F_{I}^{n}$, then the fiber $\left(\Pi^{(n)}\left(I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right)\right)(y)$ on y coincides with the full algebra $\left(\Pi^{(n)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right)\right)(y)$.

Proof. It is clear from the facts that $\left(\Pi^{(n)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right)\right)(y)$ is isomorphic to $M_{w_{y}}(\mathbb{C})$ and simple, and $\left(\Pi^{(n)}\left(I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right)\right)(y)$ is non-zero since $y \notin F_{I}^{n}$.

Lemma 3.3. Let $a \in K$. If $h(a)$ is in F_{n+1}^{I}, then a is in F_{n}^{I}.
Proof. Assume that $h(a)$ is in F_{n+1}^{I}. Take an arbitrary $T \in \mathcal{K}\left(X_{\gamma}^{\otimes n}\right) \cap I$. For any $\xi, \xi^{\prime} \in X_{\gamma}^{\otimes n}, \eta, \eta^{\prime} \in X_{\gamma}$, we have $(T \otimes I) \theta_{\tilde{\xi} \otimes \eta, \xi^{\prime} \otimes \eta^{\prime}} \in \mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right) \cap I=I_{n+1}$. Therefore for arbitrary $\omega, \omega^{\prime} \in X_{\gamma}^{\otimes n}, \zeta, \zeta^{\prime} \in X_{\gamma}$, it holds that

$$
\left(\omega \otimes \zeta \mid\left((T \otimes I) \theta_{\tilde{\zeta} \otimes \eta, \xi^{\prime} \otimes \eta^{\prime}}\right) \omega^{\prime} \otimes \zeta^{\prime}\right)_{A}(h(a))=0
$$

Calculating the left hand, we have

$$
\begin{aligned}
(\omega \otimes \zeta \mid(T \xi) & \left.\otimes \eta\left(\xi^{\prime} \otimes \eta^{\prime} \mid \omega^{\prime} \otimes \zeta^{\prime}\right)_{A}\right)_{A}(h(a)) \\
& =(\omega \otimes \zeta \mid(T \xi) \otimes \eta)_{A}(h(a))\left(\xi^{\prime} \otimes \eta^{\prime} \mid \omega^{\prime} \otimes \zeta^{\prime}\right)_{A}(h(a))
\end{aligned}
$$

Since we can choose $\xi^{\prime}, \omega^{\prime} \in X_{\gamma}^{\otimes n}, \eta^{\prime}, \xi^{\prime} \in X_{\gamma}$ with $\left(\xi^{\prime} \otimes \eta^{\prime} \mid \omega^{\prime} \otimes \zeta^{\prime}\right)_{A}(h(a)) \neq 0$, it holds that

$$
(\omega \otimes \zeta \mid(T \xi) \otimes \eta)_{A}(h(a))=0
$$

Thus it holds that

$$
\left(\zeta \mid(\omega \mid T \xi)_{A} \eta\right)_{A}(h(a))=0
$$

for each $\zeta, \eta \in X_{\gamma}$. Hence we have that

$$
(\omega \mid T \xi)_{A}(a)=0
$$

for each $\omega, \xi \in X_{\gamma}^{\otimes n}$. This implies that a is in F_{n}^{I}.
We note that the converse of Lemma 3.3 does not hold in general.
Lemma 3.4 ([11]). Let $f \in A=C(K)$. If $\left.f\right|_{B_{\gamma}}=0$, then for any $T \in \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)$, we have that $T \phi_{n}\left(\alpha_{n}(f)\right) \otimes I$ is contained in $\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)$.

Proof. Since $\left.f\right|_{B_{\gamma}}=0$, we have that $f \in J_{X_{\gamma}}$. For $\xi, \eta \in X_{\gamma}^{\otimes n}$, we have

$$
\theta_{\tilde{\xi}, \eta}^{X_{\gamma}^{\otimes n}} \phi_{n}\left(\alpha_{n}(f)\right)=\theta_{\tilde{\xi}, \phi_{n}\left(\alpha_{n}(f)^{*}\right) \eta}^{X_{\gamma}^{\otimes n}}=\theta_{\tilde{\xi}, \eta \cdot f^{*}}^{X_{\gamma}^{\otimes n}}
$$

Since $\left(K\left(X_{\gamma}^{\otimes n}\right) \otimes I\right) \cap \mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)=\mathcal{K}\left(X_{\gamma}^{\otimes n} J_{X_{\gamma}}\right) \otimes I([5])$, the lemma is proved.
Even if a is not in $B_{\gamma}, h(a)$ may be in C_{γ}. Therefore we need the following careful analysis.

Lemma 3.5. Let a be in K. We assume that $a \notin B_{\gamma}$. If a is in F_{n}^{I}, then $h(a)$ is in F_{n+1}^{I}.

Proof. Let $a \notin B_{\gamma}$ and $a \in F_{n}^{I}$. Put $b=h(a)$. Suppose that $b \notin F_{n+1}^{I}$. By changing the number of γ_{j}, we may assume $a=\gamma_{1}(b)$. Because $a \notin B_{\gamma}, a=\gamma_{j}(b)$ if and only if $j=1$. Since $b \notin F_{n+1}^{I}$ and F_{n+1}^{I} is closed, there exists an open neighborhood $U(b)$ of b such that $\overline{U(b)} \cap F_{n+1}^{I}=\varnothing$ and any $x \in U(b)$ with $x \neq b$ is not in C_{γ}. (But b may be in C_{γ}.) Therefore for any $x \in U(b), \Pi^{(n+1)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right) \cap\right.$ $I)(x) \neq 0$ and it coincides with the total algebra $\Pi^{(n+1)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)\right)(x)$, because it is simple. By the form of the representation $\Pi^{(n+1)}$ of $\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)$, for any $T \in M_{N^{n}}(\mathbb{C})$, the element

$$
\left[\begin{array}{ll}
T & O \\
O & O
\end{array}\right]
$$

is contained in

$$
\Pi^{(n+1)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)\right)(b)=\Pi^{(n+1)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right) \cap I\right)(b)
$$

Moreover, if $T^{\prime} \in \mathrm{C}\left(K, M_{N^{n+1}}(\mathbb{C})\right) \simeq M_{N^{n+1}}(A)$ satisfies that

$$
T^{\prime}(b)=\left[\begin{array}{ll}
T & O \\
O & O
\end{array}\right]
$$

and $T^{\prime}(x)$ is 0 for $x \notin \overline{U(b)}$, then T^{\prime} is contained in $\Pi^{(n+1)}\left(\mathcal{K}\left(X_{\gamma}^{n+1}\right) \cap I\right)$.
We choose and fix $T \neq O$ with $T \in \Pi^{(n)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right)(a)$. Since γ_{1} is continuous and $a \notin B_{\gamma}$, there exists an open neighborhood $V(a)$ of a such that $V(a) \subset \gamma_{1}(U(b)), V(a) \cap B_{\gamma}=\varnothing$, and $V(a) \cap C_{\gamma}$ does not contain any element
except for a. We take $f \in \mathrm{C}(K)$ such that $f(a)=1$ and $f(x)=0$ outside $\overline{V(a)}$. We put $S(x)_{i j}=T_{i j} f(x)$. Then it holds that $S \in \Pi^{(n)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right)$. We express it as $S=\Pi^{(n)}\left(S^{\prime}\right), S^{\prime} \in \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)$. By the choice of f, it holds that $S^{\prime} \in \mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)$. Since $\gamma_{1}(b)=a$ and $\gamma_{j}(b) \neq a$ for $j \neq 1$, we have

$$
\Pi^{(n+1)}\left(S^{\prime}\right)(b)=\left[\begin{array}{cc}
S(a) & O \\
O & O
\end{array}\right]=\left[\begin{array}{ll}
T & O \\
O & O
\end{array}\right]
$$

Moreover, since $\Pi^{(n+1)}\left(S^{\prime}\right)(x)$ is 0 outside $\overline{U(b)}$, it holds that $\Pi^{(n+1)}\left(S^{\prime}\right)$ $\in \Pi^{(n+1)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right) \cap I\right)$. Thus we find $S^{\prime} \in \mathcal{K}\left(X_{\gamma}^{\otimes n}\right) \cap I$ such that $\Pi^{(n)}\left(S^{\prime}\right)(a)=$ $T \neq O$. It implies that $a \notin F_{n}^{I}$. But this is a contradiction.

Lemma 3.6. Let a and b be in K. Assume that a is in F_{0}^{I} and $a \notin$ Orb. If there exists a positive integer n with $h^{n}(a)=h^{n}(b)$, then b is also contained in F_{0}^{I}.

Proof. Since $a \notin \operatorname{Orb}, h^{n}(a)$ is not contained in B_{γ} for every positive integer n. Therefore $h^{n}(a) \in F_{n}^{I}$ for every positive integer n by Lemma 3.5. Since $h^{n}(b)=$ $h^{n}(a)$, it holds that $b \in F_{0}^{I}$ by Lemma 3.3.

Lemma 3.7. Let γ be a self-similar map on K and $a \in K$. Then the set

$$
C(a):=\left\{b \in K: h^{n}(b)=h^{n}(a) \text { for some } n=0,1,2,3, \ldots\right\}=\bigcup_{n} \bigcup_{\mathbf{j} \in \Sigma^{n}} \gamma_{\mathbf{j}}\left(h^{n}(a)\right)
$$

is dense in K.
Proof. Since γ is a self-similar map on K, there exists a positive constant $0<c<1$ such that for any $j \in \Sigma, d\left(\gamma_{j}(x), \gamma_{j}(y)\right) \leqslant c d(x, y)$ for any $x, y \in K$. Let $M>0$ be the diameter of K. Take $a \in K$. For any $\varepsilon>0$, choose n such that $M c^{n}<\varepsilon$. We put $h^{n}(a)=d$. Since γ is a self-similar map, $K=\bigcup_{i=1}^{N} \gamma_{i}(K)$. Iterating the operations n-times, we have that

$$
K=\bigcup_{\mathbf{j} \in \Sigma^{n}} \gamma_{\mathbf{j}}(K)
$$

Then the diameter of $\gamma_{\mathbf{j}}(K)$ is less than ε. Each subset $\gamma_{\mathbf{j}}(K)$ contains $b=\gamma_{\mathbf{j}}(d)$ and b is in $C(a)$, because $h^{n}(b)=d$. Hence for any $z \in K$ and for any $\varepsilon>0$, there exists an element $b \in C(a)$ such that $d(b, z)<\varepsilon$. Therefore $C(a)$ is dense in K.

The above lemma also implies the following: Let γ be a self-similar map on K. Then K does not have any isolated points. In fact, for $a, b \in K$, let $b=h(a)$ and $a=\gamma_{i}(b)$. We shall show that b is an isolated point if and only if a is also an isolated point. Let b be an isolated point and U_{b} an open neighbourhood of b such that $U_{b}=\{b\}$. Then $h^{-1}\left(U_{b}\right)=h^{-1}(b)$ is an open finite set containing a. Hence there exists an open neighbourhood V_{a} of a such that $V_{a}=\{a\}$. Hence a is an isolated point. The converse also holds. Indeed, assume that K has an isolated
point z. Then any point in the dense set $C(z)$ is an isolated point of K. This causes a contradiction.

If γ has no branch points, the study on the structure of the C^{*}-algebra \mathcal{O}_{γ} and the core $\mathcal{F}^{(\infty)}$ is reduced to the Section 4.2 in [14]. In fact we have the following:

PROPOSITION 3.8. Let γ be a self-similar map on K. Assume that γ has no branch points. Let $\mathcal{F}^{(\infty)}$ be the core of the C^{*}-algebra \mathcal{O}_{γ} associated with the self-similar map γ. Then the core $\mathcal{F}^{(\infty)}$ is simple and, in fact, isomorphic to the UHF-algebra $M_{N^{\infty}}$.

Proof. Since γ has no branch point, the C^{*}-correspondence $Z_{\gamma}=Y_{\gamma}=A^{N}$ by the construction of Z_{γ}. As in Lemma 2.2, X_{γ} and Z_{γ} are isomorphic. We can reduce to the argument in Section 4.2 in [14] to get that the core $\mathcal{F}^{(\infty)}$ is isomorphic to the UHF-algebra $M_{N^{\infty}}$ and simple.

EXAMPLE 3.9 (Cantor set). Let $\Omega=[0,1], \gamma_{1}(y)=(1 / 3) y$ and $\gamma_{2}(y)=$ $(1 / 3) y+(2 / 3)$. Then $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ is a family of proper contractions. Then the Cantor set K is the unique compact subset of Ω such that $K=\bigcup_{i=1}^{N} \gamma_{i}(K)$. Thus $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ is a self-similar map on K. Since γ has no branch point, the core $\mathcal{F}^{(\infty)}$ is simple.

We shall show that if γ has a branch point, then the core $\mathcal{F}^{(\infty)}$ is not simple any more. Moreover we can describe the ideal structure of the core $\mathcal{F}^{(\infty)}$ explicitly in terms of the singularity structure of branch points. In fact the ideal structure is completely determined by the intersection with the $C(K)$.

In general, let B be a C^{*}-algebra and A be a subalgebra and L be an ideal of B. It is difficult to describe the ideals I of $A+L$ in terms of A and L independently. The most simple example is the following: $B=\mathbb{C}^{2}, L=\mathbb{C} \oplus 0$ and $A=\{(a, a) \in$ $B: a \in \mathbb{C}\}$. Let $I=0 \oplus \mathbb{C}$. Then $I \neq I \cap A+I \cap L=0+0=0$. We use a matrix representation over $C(K)$ of the core and its description by the singularity structure of branch points to overcome this difficulty. Here the finiteness of the branch values and continuity of any element of $\mathcal{F}^{(n)} \subset C\left(K, M_{N^{n}}\right)$ are crucially used to analyze the ideal structure.

We shall show that any ideal I of the core is determined by the closed subset of the self-similar set which corresponds to the ideal $C(K) \cap I$ of $C(K)$. We describe all closed subsets of K which arise in this way explicitly to complete the classification of ideals of the core.

Recall that the n-th γ-orbit of b is the following subset of K :

$$
O_{b, n}=\left\{\gamma_{j_{1}} \circ \cdots \circ \gamma_{j_{n}}(b):\left(j_{1}, \ldots, j_{n}\right) \in \Sigma^{n}\right\}=h^{-n}(b)
$$

And Orb $=\bigcup_{b \in B_{\gamma}} \bigcup_{k=0}^{\infty} O_{b, k}$, where $O_{b, 0}=\{b\}$.

LEMMA 3.10. If the closed set F_{0}^{I} has an element $a \notin \operatorname{Orb}$, then $F_{m}^{I}=K$ for any $m=0,1,2,3, \ldots$ In particular, if $F_{0}^{I}=K$, then $F_{m}^{I}=K$ for any $m=0,1,2,3, \ldots$

Proof. Suppose that F_{0}^{I} has an element $a \notin$ Orb. By Lemma 3.7. $C(a):=$ $\left\{b \in K: h^{n}(b)=h^{n}(a)\right.$ for some $\left.n=0,1,2,3, \ldots\right\}$ is dense in K. By Lemma 3.6. we have $C(a) \subset F_{0}^{I}$. Since F_{0}^{I} is closed, we have $F_{0}^{I}=K$.

If $F_{0}^{I}=K$, then F_{I}^{0} has an element $a \notin$ Orb, because we always have that $K \neq$ Orb. In fact Orb is a countable set. The self-similar set K is a Baire space and any point of K is not an isolated point, hence K is an uncountable set. Hence the proof is completed.

Proposition 3.11. If $F_{0}^{I} \neq K$, then there exists $b_{1}, b_{2}, \ldots, b_{k} \in B_{\gamma}$ and integers $m_{1}, m_{2}, \ldots m_{k} \geqslant 0$ such that

$$
F_{0}^{I}=\bigcup_{i=1}^{k} O_{b_{i}, m_{i}}
$$

that is, F_{0}^{I} is a finite union of finite γ-orbits of branch points.
Proof. Assume that $F_{0}^{I} \neq K$. Then F_{0}^{I} does not contain any point outside Orb by Lemma 3.10. Indeed, suppose that F_{0}^{I} contains infinite many finite γ-orbits of branch points. Since B_{γ} is finite, there exists $b \in B_{\gamma}$ such that for each $n \in \mathbf{N}$ there exists $m \geqslant n$ with $O_{b, m} \subset F_{0}^{I}$. We list such integers as $\left(m_{1}, m_{2}, m_{3}, \ldots\right)$ with $m_{1}<m_{2}<m_{3}<\cdots$. By the same proof as Lemma 3.7. $\bigcup_{j=1}^{\infty} \operatorname{Orb}\left(b, m_{j}\right)$ is dense in K. Hence F_{0}^{I} is equal to K. But this is a contradiction.

For an ideal I of $\mathcal{F}^{(\infty)}$, we denote by I_{r} the intersection $I \cap \mathcal{F}^{(r)}$.
Lemma 3.12. Let I be an ideal of $\mathcal{F}^{(\infty)}$. If $F_{0}^{I}=K$, then we have that $I=\{0\}$.
Proof. Suppose that $F_{0}^{I}=K$. This means that $I \cap C(K)=0$. By Lemma 3.10 we have that $F_{m}^{I}=K$ for any $m=0,1,2,3, \ldots$. This implies that $I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)=0$. We need to show that $I \cap \mathcal{F}^{(n)}=0$. We shall prove it by induction.

$$
I \cap \mathcal{F}^{(0)}=I \cap A=I \cap C(K)=0
$$

Assume that $I \cap \mathcal{F}^{(n-1)}=0$. But we should be careful, because we have the form $\mathcal{F}^{(n)}=\mathcal{F}^{(n-1)}+\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)$. We know only that $I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)=0$. It is trivial that

$$
I \cap \mathcal{F}^{(n)} \supset I \cap \mathcal{F}^{(n-1)}+I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)
$$

But the converse inclusion is not trivial in general. Our singularity situation helps us to prove it. In fact any element in $\mathcal{F}^{(n)}$ is represented by a continuous map from K to $M_{N^{n}}(\mathbb{C})$ through $\Pi^{(n)}$. Let T be an element of $I_{n}=I \cap \mathcal{F}^{(n)}$. We identify T with $\Pi^{(n)}(T)$. It is enough to show that $\Pi^{(n)}(T)=0$. For small $\varepsilon>0$, we put

$$
U_{\varepsilon}=\left\{x \in K: d(x, y)<\varepsilon \text { for some } y \in C_{\gamma^{n}}\right\}
$$

Let us take $f_{\varepsilon} \in C(K)$ such that f_{ε} is 0 on U_{ε} and 1 outside of $U_{2 \varepsilon}$. Define $g_{\varepsilon} \in$ $C\left(K, M_{N^{n}}(\mathbb{C})\right)$ by $g_{\varepsilon}(x)=f_{\varepsilon}(x) I$ for $x \in K$. Then there exists $S_{\varepsilon} \in \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)$ such that $\Pi^{(n)}\left(S_{\varepsilon}\right)=g_{\varepsilon}$. Since $S_{\varepsilon} T$ is in $I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)=0, S_{\varepsilon} T=0$ for every $\varepsilon>0$. Then it holds that $\Pi^{(n)}(T)(x)=0$ for $x \notin U_{2 \varepsilon}$ with each $\varepsilon>0$. By the continuity of $\Pi^{(n)}(T) \in C\left(K, M_{N^{n}}(\mathbb{C})\right), \Pi^{(n)}(T)(x)=0$ holds for each $x \in K$. This means that $T=0$. This completes the induction. Therefore $I=\overline{\bigcup_{n} I \cap \mathcal{F}^{(n)}}=0$.

We shall construct a family

$$
\left\{\bar{J}^{(b, n)}: b \in B_{\gamma}, n=0,1,2,3, \ldots\right\}
$$

of the model primitive ideals of the core $\mathcal{F}^{(\infty)}$ such that $\left\{\bar{J}^{(b, n)}\right\} \cap C(K)$ corresponds to the closed subset $O_{b, n}$ of K.

Let b be an element in B_{γ}. Put $J^{(b, n, n)}=\left\{T \in \mathcal{F}^{(n)}: \Pi^{(n)}(T)(b)=0\right\}$. Then $\Pi^{(n)}\left(J^{(b, n, n)}\right)$ is an ideal of $\Pi^{(n)}\left(\mathcal{F}^{(n)}\right)$ and the quotient $\Pi^{(n)}\left(\mathcal{F}^{(n)}\right) / \Pi^{(n)}\left(J^{(b, n, n)}\right)$ is isomorphic to $M_{N^{n}}(\mathbb{C})$. Put $J^{(b, n, m)}=J^{(b, n, n)}+\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)+\cdots+\mathcal{K}\left(X_{\gamma}^{\otimes m}\right)$ for $n<m$. Then $J^{(b, n, m)}$ is an ideal of $\mathcal{F}^{(m)}$, and $\left\{J^{(b, n, m)}\right\}_{m=n+1, \ldots .}$ is an increasing filter. We denote by $\bar{J}^{(b, n)}$ the norm closure of $\bigcup_{m=n+1}^{\infty} J^{(b, n, m)}$. Then $\bar{J}^{(b, n)}$ is a closed ideal of $\mathcal{F}^{(\infty)}$.

We will show that $\bar{J}^{(b, n)} \cap \mathcal{F}^{(n)}=J^{(b, n, n)}$ and $\bar{J}^{(b, n)}$ is primitive. It is trivial that $\bar{J}^{(b, n)} \cap \mathcal{F}^{(n)} \supset J^{(b, n, n)}$. It is unclear whether $\bar{J}^{(b, n)} \cap \mathcal{F}^{(n)} \subset J^{(b, n, n)}$. We shall show it by finding that $\bar{J}^{(b, n)}$ is the kernel of a finite trace on $\mathcal{F}^{(\infty)}$. We constructed a family of such traces on $\mathcal{F}^{(\infty)}$ in [11]. Recall that the kernel $\operatorname{ker}(\tau)$ of a trace τ on a C^{*}-algebra B is defined by

$$
\operatorname{ker}(\tau)=\left\{b \in B: \tau\left(b^{*} b\right)=0\right\}
$$

and $\operatorname{ker}(\tau)$ is an ideal of B. Moreover, let π_{τ} be the GNS-representation of τ. Then $\operatorname{ker}(\tau)=\operatorname{ker} \pi_{\tau}$.

For the convenience of the readers, we include a simple construction of these traces using matrix representation of the n-th core.

As in [11], we need the following lemma for extension of traces. Let B be a C^{*}-algebra and I be an ideal of B. For a linear functional φ on I, we denote by $\bar{\varphi}$ the canonical extension of φ. We refer [1] the property of the canonical extension of states. The following key lemma is proved in Proposition 12.5 of Exel and Laca [3] for state case, and is modified in Kajiwara and Watatani [11] for trace case.

Lemma 3.13 ([11]). Let A be a unital C*-algebra. Let B be a C ${ }^{*}$-subalgebra containing the unit and I an ideal of A such that $A=B+I$. Let τ be a bounded trace on B, and φ a bounded trace on I, and we assume the following conditions are satisfied:
(i) $\varphi=\tau$ holds on $B \cap I$.
(ii) $\bar{\varphi} \leqslant \tau$ holds on B.

Then there exists a bounded trace on A which extends τ and φ. Conversely, if there exists a bounded trace on A, its restrictions on B and I must satisfy the above (i) and (ii).

We note that $\Pi^{(n)}\left(\mathcal{F}^{(n)}\right) \subset M_{N^{n}}(\mathrm{C}(K)) \simeq \mathrm{C}\left(K, M_{N^{n}}(\mathbb{C})\right)$, and $\Pi^{(n)}\left(\mathcal{F}^{(n)}\right)(x)$ $\simeq M_{N^{n}}(\mathbb{C})$ for $x \notin C_{\gamma}$. For $b \in B_{\gamma}$, we define a tracial state $\tau^{(b, n, n)}$ on $\mathcal{F}^{(n)}$ by

$$
\tau^{(b, n, n)}(T)=\frac{1}{N^{n}} \operatorname{Tr}\left(\Pi^{(n)}(T)(b)\right)
$$

where Tr is the ordinary trace on the matrix algebra $M_{N^{n}}(\mathbb{C})$. For $m \geqslant n+1$, we define a trace $\omega^{(m)}$ on $\mathcal{K}\left(X_{\gamma}^{\otimes m}\right)$ by $\omega^{(m)}(T)=0$ for each $T \in \mathcal{K}\left(X_{\gamma}^{\otimes m}\right)$.

Lemma 3.14. Let $b \in B_{\gamma}$. For $T \in \mathcal{F}^{(n)} \cap \mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)$, we have $\Pi^{(n)}(T)(b)=0$.
Proof. From [5], $\mathcal{F}^{(n)} \cap \mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)=\mathcal{K}\left(X_{\gamma}^{\otimes n}\right) \cap \mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)$. We can show the lemma using the matrix representation of the finite core. Let $b=\gamma_{i}(c)=\gamma_{j}(c)$ with $i \neq j$. Then $\left(i, i_{2}, \ldots, i_{n+1}\right)$-row, and $\left(j, i_{2}, \ldots, i_{n+1}\right)$-row of elements of $\Pi^{(n+1)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)\right)$ are equal, and $\left(i, i_{2}, \ldots, i_{n+1}\right)$-column and $\left(j, i_{2}, \ldots, i_{n+1}\right)$-column of elements of $\Pi^{(n+1)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)\right)$ are equal for each $\left(i_{2}, \ldots, i_{n+1}\right) \in \Sigma^{n}$. This shows that $\Pi^{(n+1)}(T)(b)=0$ for $T \in \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)$ because elements in $\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)$ are represented as a block diagonal matrix by $\Pi^{(n+1)}$ and any element in a diagonal block must be equal to an element in an off-diagonal block which is zero.

Lemma 3.15. A tracial state $\tau^{(b, n, n)}$ on $\mathcal{F}^{(n)}$ and a family of zero traces $\left\{\omega^{(m)}\right\}_{m=n+1, \ldots}$ on $\mathcal{K}\left(X_{\gamma}^{\otimes m}\right), m=n+1, \ldots$ give a unique tracial state $\tau^{(b, n)}$ on $\mathcal{F}^{(\infty)}$ such that $\left.\tau^{(b, n)}\right|_{\mathcal{F}^{(n)}}=\tau^{(b, n, n)}$ and $\left.\tau^{(b, n)}\right|_{\mathcal{K}\left(X_{\gamma}^{\otimes m}\right)}=\omega^{(m)}$ for $m \geqslant n+1$.

Proof. First we consider a tracial state $\tau^{(b, n, n)}$ on $\mathcal{F}^{(n)}$ and a zero trace $\omega^{(n+1)}$ on $\mathcal{K}\left(X_{\gamma}^{\otimes(n+1)}\right)$. Since the canonical extension $\overline{\omega^{(n+1)}}$ is the zero trace on $\mathcal{F}^{(n)}$, we have $\overline{\omega^{(n+1)}}(T) \leqslant \tau^{(b, n, n)}(T)$ for $T \in \mathcal{F}^{(b, n)^{+}}$. By Lemma 3.14, we have $\Pi^{(n)}(T)(b)=0$ for $T \in \mathcal{F}^{(n)} \cap \mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)$. Thus we have $\tau^{(b, n, n)}=\omega^{(n+1)}$ on $\mathcal{F}^{(n)} \cap \mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)$. By Lemma 3.13. there exists a tracial state extension $\tau^{(b, n, n+1)}$ on $\mathcal{F}^{(n+1)}$ such that $\left.\left(\tau^{(b, n, n+1)}\right)\right|_{\mathcal{F}^{(n)}}=\tau^{(b, n, n)}$ and $\left.\left(\tau^{(b, n, n+1)}\right)\right|_{\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)}=\omega^{(n+1)}$. In a similar way, we can construct a tracial state extension $\tau^{(b, n, m)}$ on $\mathcal{F}^{(m)}$ which satisfies that $\left.\tau^{(b, n, m)}\right|_{\mathcal{K}\left(X_{\gamma}^{\otimes m}\right)}=\omega^{(m)}=0$ for $m \geqslant n+2$ using $\mathcal{F}^{(m-1)} \cap \mathcal{K}\left(X_{\gamma}^{\otimes m}\right)=$ $\mathcal{K}\left(X_{\gamma}^{\otimes m-1}\right) \cap \mathcal{K}\left(X_{\gamma}^{\otimes m}\right)([5])$. Finally we define $\tau^{(b, n)}$ on $\bigcup_{i=n}^{\infty} \mathcal{F}^{(m)}$ by $\left\{\tau^{(b, n, m)}\right\}_{m=n}^{\infty}$ and extend it to the whole $\mathcal{F}^{(\infty)}=\overline{\bigcup_{m=n}^{\infty} \mathcal{F}^{(m)}}$ to get the desired property.

LEMMA 3.16. For $i \geqslant n$, we have $J^{(b, n, i)}=\operatorname{ker}\left(\tau^{(b, n, i)}\right)$ and $\bar{J}^{(b, n)}=\operatorname{ker}\left(\tau^{(b, n)}\right)$. Moreover we have that

$$
\bar{J}^{(b, n)} \cap \mathcal{F}^{(n)}=J^{(b, n, n)} .
$$

Proof. By the definition of $J^{(b, n, i)}$, it is clear that $J^{(b, n, i)} \subset \operatorname{ker}\left(\tau^{(b, n, i)}\right)$. Let $T=T_{n}+T_{n+1}+\cdots+T_{i}$, where $T_{n} \in \mathcal{F}^{(n)}, T_{m} \in \mathcal{K}\left(X_{\gamma}^{\otimes m}\right)$ with $n+1 \leqslant m \leqslant i$. Assume that $\tau^{(b, n, i)}\left(T^{*} T\right)=0$. Since $\tau^{(b, n, i)}\left(T_{k}^{*} T_{m}\right)=0$ for $n+1 \leqslant m \leqslant i$ or $n+1 \leqslant k \leqslant i$, it holds that $\tau^{(b, n, n)}\left(T_{n}^{*} T_{n}\right)=0$. Hence $T_{n} \in J^{(b, n)}$. It follows that $T \in J^{(b, n, i)}:=J^{(b, n, n)}+\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)+\cdots+\mathcal{K}\left(X_{\gamma}^{\otimes i}\right)$.

Since $\operatorname{ker}\left(\tau^{(b, n)}\right)$ is an ideal of the inductive limit algebra $\mathcal{F}^{(\infty)}=\lim _{n} \mathcal{F}^{(n)}$, we have

$$
\operatorname{ker}\left(\tau^{(b, n)}\right)=\overline{\bigcup_{i=n}^{\infty} \operatorname{ker}\left(\tau^{(b, n)}\right) \cap \mathcal{F}^{(i)}}=\overline{\bigcup_{i=n+1}^{\infty} \operatorname{ker}\left(\tau^{(b, n, i)}\right)}=\overline{\bigcup_{i=n+1}^{\infty} J^{(b, n, i)}}=\bar{J}^{(b, n)}
$$

Moreover

$$
\bar{J}^{(b, n)} \cap \mathcal{F}^{(n)}=\operatorname{ker}\left(\tau^{(b, n)}\right) \cap \mathcal{F}^{(n)}=\operatorname{ker}\left(\tau^{(b, n, n)}\right)=J^{(b, n, n)}
$$

LEMMA 3.17. For any $b \in B_{\gamma}$ and $n=0,1,2,3, \ldots, \bar{J}^{(b, n)}$ is a primitive ideal of $\mathcal{F}^{(\infty)}$ and $\mathcal{F}^{(\infty)} / \bar{J}^{(b, n)} \simeq M_{N^{n}}(\mathbb{C})$.

Proof. The quotient $\mathcal{F}^{(n)} / J^{(b, n, n)}$ is isomorphic to $\Pi^{(n)}\left(\mathcal{F}^{(n)}\right) / \Pi^{(n)}\left(J^{(b, n, n)}\right)$ $\simeq M_{N^{n}}(\mathbb{C})$. Since $\bar{J}^{(b, n)} \cap \mathcal{F}^{(n)}=J^{(b, n, n)}$,

$$
\mathcal{F}^{(n)} / \bar{J}^{(b, n)}=\left(\mathcal{F}^{(n)}+\bar{J}^{(b, n)}\right) / \bar{J}^{(b, n)}=\left(\mathcal{F}^{(n)} /\left(\mathcal{F}^{(n)} \cap \bar{J}^{(b, n)}\right)=\mathcal{F}^{(n)} / J^{(b, n, n)} \simeq M_{\mathrm{N}^{n}}(\mathbb{C})\right.
$$

Then for m with $n+1 \leqslant m$, we have

$$
\mathcal{F}^{(m)} / \bar{J}^{(b, n)}=\left(\mathcal{F}^{(n)}+\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)+\cdots+\mathcal{K}\left(X_{\gamma}^{\otimes m}\right)\right) / \bar{J}^{(b, n)}=\mathcal{F}^{(n)} / \bar{J}^{(b, n)} \simeq M_{N^{n}}(\mathbb{C})
$$

It follows that $\mathcal{F}^{(\infty)} / \bar{J}^{(b, n)} \simeq M_{N^{n}}(\mathbb{C})$. Therefore $\bar{J}^{(b, n)}$ is a maximal ideal and also a primitive ideal.

Lemma 3.18. Let I be an ideal of $\mathcal{F}^{(\infty)}$. Assume that F_{0}^{I} coincides with $O_{b, n}$ for some $b \in B_{\gamma}$ and some $n=0,1,2, \ldots$ Then $F_{1}^{I}=O_{b, n-1}, F_{2}^{I}=O_{b, n-2}, \ldots, F_{n}^{I}=$ $O_{b, 0}=\{b\}$ and $F_{m}^{I}=\varnothing$ for $m>n$. Moreover, I is equal to $\bar{J}^{(b, n)}$.

Proof. We may assume that $F_{0}^{I}=O_{b, n}$ for some $n \geqslant 0$. Since any point in $O_{b, n}=h^{-n}(b)$ is not a branch point by Assumption B(iii), $O_{b, n-1} \subset F_{1}^{I}$ by Lemma 3.5. Suppose that $O_{b, n-1} \neq F_{1}^{I}$. Then F_{0}^{I} contains an element which is not in $O_{b, n}$ by Lemma 3.3. This is a contradiction. Therefore $O_{b, n-1}=F_{1}^{I}$. In a similar way, we have that $F_{2}^{I}=O_{b, n-2}, \ldots, F_{n}^{I}=O_{b, 0}=\{b\}$. Therefore, by the form of matrix representation, we have that

$$
\begin{align*}
\Pi^{(n)}(I \cap A) & =\Omega^{(n, 0)}(I \cap A)=\left\{T \in \Pi^{(n)}(A): T(b)=0\right\} \\
\Pi^{(n)}\left(I \cap \mathcal{K}\left(X_{\gamma}^{\otimes i}\right)\right) & =\Omega^{(n, i)}\left(I \cap \mathcal{K}\left(X_{\gamma}^{\otimes i}\right)\right) \tag{3.1}\\
& =\left\{T \in \Pi^{(n)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes i}\right)\right): T(b)=0\right\}, \quad i=1, \ldots, n
\end{align*}
$$

For $m>n$, we shall show that $F_{m}^{I}=\varnothing$. On the contrary assume that $F_{m}^{I} \neq \varnothing$. Take z in F_{m}^{I}. Then $h^{-(m-n)}(z)$ contains more than one element by Assumption B(iii). Then $h^{-(m-n)}(z) \subset F_{n}^{I}=\{b\}$ by Lemma 3.3. But this is a contradiction. Therefore $F_{m}^{I}=\varnothing$. By the Rieffel correspondence of ideals, this means that $I \cap \mathcal{K}\left(X_{\gamma}^{\otimes m}\right)=\mathcal{K}\left(X_{\gamma}^{\otimes m}\right)$, that is, $I \supset \mathcal{K}\left(X_{\gamma}^{\otimes m}\right)$ for $m>n$.

We shall show that $J^{(b, n, n)}=(I \cap A)+\left(I \cap \mathcal{K}\left(X_{\gamma}\right)\right)+\cdots+\left(I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right)$. From (3.1), we have that $I \cap A \subset J^{(b, n, n)}, I \cap \mathcal{K}\left(X_{\gamma}^{\otimes i}\right) \subset J^{(b, n, n)}, i=1, \ldots, n$. Therefore $(I \cap A)+\left(I \cap \mathcal{K}\left(X_{\gamma}\right)\right)+\cdots+\left(I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right) \subset J^{(b, n, n)}$. Conversely, take $T \in J^{(b, n, n)}$. Then we can write $T=T_{0}+T_{1}+\cdots+T_{n}$ for some $T_{0} \in A$ and $T_{i} \in \mathcal{K}\left(X_{\gamma}^{\otimes i}\right), i=1, \ldots, n$. Since $b \notin C_{\gamma}$ by Assumption B, there exists an open neighborhood $U(b)$ of b such that $\overline{U(b)} \cap C_{\gamma}=\varnothing$. Hence $\Pi^{(n)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right)(x)$ is the total matrix algebra $M_{N^{n}}(\mathbb{C})$ for $x \in U(b)$. We take $f \in A=C(K)$ such that $f(b)=1$ and $\operatorname{supp}(f)$ is contained in $U(b)$. For $S \in M_{N^{n}}(A)$ and $f \in A$, we write $\left[(S \cdot f)_{p, q}\right]_{p, q}(x)=\left[S_{p, q}(x) f(x)\right]_{p, q}$. Define $\beta \in$ End A by $(\beta(f))(x)=f(h(x))$ for $x \in K$. Then

$$
\left(\alpha_{i} \circ \beta(f)\right)(x)=f\left(h\left(\gamma_{i}(x)\right)\right)=f(x)
$$

We note that it holds that $\Pi^{(n)}(T) \cdot f=\Pi^{(n)}\left(T \phi_{n}\left(\beta^{n}(f)\right)\right)$, and that $T_{i} \phi_{i}\left(\beta^{i}(f)\right) \in$ $\mathcal{K}\left(X_{\gamma}^{\otimes i}\right)$ for $1 \leqslant i \leqslant n$. Then we have

$$
\begin{aligned}
\Pi^{(n)}(T) & =\Pi^{(n)}\left(T_{0}\right)+\Pi^{(n)}\left(T_{1}\right)+\cdots+\Pi^{(n)}\left(T_{n}\right) \\
& =\sum_{i=0}^{n} \Pi^{(n)}\left(T_{i}\right) \cdot(1-f)+\sum_{i=0}^{n} \Pi^{(n)}\left(T_{i}\right) \cdot f
\end{aligned}
$$

Since $\left(\Pi^{(n)}\left(T_{i}\right) \cdot(1-f)\right)(b)=0$, we have that $T_{i} \phi_{i}\left(\beta^{i}(1-f)\right) \in I \cap \mathcal{K}\left(X_{\gamma}^{\otimes i}\right)$. On the other hand, because T is in $J^{(b, n, n)}, \sum_{i=0}^{n}\left(\Pi^{(n)}\left(T_{i}\right) \cdot f\right)(b)=\sum_{i=0}^{n} \Pi^{(n)}\left(T_{i}\right)(b)=0$. Since $\Pi^{(n)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right)(x)$ is the total of matrix algebra $M_{N^{n}}(\mathbb{C})$ for $x \in U(b)$ and supp f is contained in $U(b), \sum_{i=0}^{n} \Pi^{(n)}\left(T_{i}\right) \cdot f$ is contained in $\Pi^{(n)}\left(\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right)$. Thus $\sum_{i=0}^{n} T_{i} \phi_{i}\left(\beta^{i}(f)\right) \in I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)$. It follow that $J^{(b, n, n)} \subset(I \cap A)+\left(I \cap \mathcal{K}\left(X_{\gamma}\right)\right)+$ $\cdots+\left(I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right)$.

In general we have that

$$
\begin{aligned}
I \cap \mathcal{F}^{(n)} & =I \cap\left(A+\mathcal{K}\left(X_{\gamma}\right)+\cdots+\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right) \\
& \supset(I \cap A)+\left(I \cap \mathcal{K}\left(X_{\gamma}\right)\right)+\cdots+\left(I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right) .
\end{aligned}
$$

Hence it holds $I \cap \mathcal{F}^{(n)} \supset J^{(b, n, n)}$. Since $J^{(b, n, n)}$ is a maximal ideal of $\mathcal{F}^{(n)}, I \cap \mathcal{F}^{(n)}$ is equal to $\mathcal{F}^{(n)}$ or $J^{(b, n, n)}$. Since $F_{n}^{I}=O_{b, 0}=\{b\}, I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right) \neq \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)$. Hence there exists an element in $\mathcal{F}^{(n)}$ which does not contained in I and $I \cap \mathcal{F}^{(n)}$ is not equal to $\mathcal{F}^{(n)}$. Hence $I \cap \mathcal{F}^{(n)}=J^{(b, n, n)}$.

We assume $m \geqslant n+1$. Since $F_{m}^{I}=\varnothing$ for $m \geqslant n+1, \mathcal{K}\left(X_{\gamma}^{\otimes m}\right) \subset I$. It holds that

$$
\begin{aligned}
I \cap \mathcal{F}^{(m)} & =I \cap\left(\mathcal{F}^{(n)}+\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)+\cdots+\mathcal{K}\left(X_{\gamma}^{\otimes m}\right)\right) \\
& \supset I \cap \mathcal{F}^{(n)}+\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)+\cdots+\mathcal{K}\left(X_{\gamma}^{\otimes m}\right) .
\end{aligned}
$$

On the other hand, $T \in I \cap \mathcal{F}^{(m)}$ is expressed as

$$
T=T_{1}+T_{2}
$$

where $T_{1} \in \mathcal{F}^{(n)}, T_{2} \in \mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)+\cdots+\mathcal{K}\left(X_{\gamma}^{\otimes m}\right) \subset I$. Since $T_{1}=T-T_{2} \in I$, it holds $T_{1} \in I \cap \mathcal{F}^{(n)}$. Therefore we have

$$
\begin{aligned}
I \cap \mathcal{F}^{(m)} & =I \cap \mathcal{F}^{(n)}+\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)+\cdots+\mathcal{K}\left(X_{\gamma}^{\otimes m}\right) \\
& =J^{(b, n, n)}+\mathcal{K}\left(X_{\gamma}^{\otimes n+1}\right)+\cdots+\mathcal{K}\left(X_{\gamma}^{\otimes m}\right)
\end{aligned}
$$

Hence we have $I \cap \mathcal{F}^{(m)}=\bar{J}^{(b, n)} \cap \mathcal{F}^{(m)}$ for $m \geqslant n+1$, then

$$
\begin{aligned}
I & =\lim _{m \rightarrow \infty} I \cap \mathcal{F}^{(m)}=\overline{\bigcup_{m=n+1}^{\infty}\left(I \cap \mathcal{F}^{(m)}\right)}=\overline{\bigcup_{m=n+1}^{\infty}\left(\bar{J}^{(b, n)} \cap \mathcal{F}^{(m)}\right)} \\
& =\overline{\bigcup_{m=n+1}^{\infty} J^{(b, n, m)}}=\bar{J}^{(b, n)} .
\end{aligned}
$$

Lemma 3.19. Let I be an ideal of $\mathcal{F}^{(\infty)}$. Assume that F_{0}^{I} is a finite union of finite γ-orbits of branch points, that is,

$$
F_{0}^{I}=\bigcup_{b \in B^{\prime}} \bigcup_{j=1}^{p_{b}} O_{b, r(b, j)}
$$

where B^{\prime} is a subset of $B_{\gamma}, p_{b} \in \mathbb{N}$ and $r(b, j) \in \mathbb{N}$ with $r(b, 1)<\cdots<r\left(b, p_{b}\right)$. Then $\mathcal{F}^{(\infty)} / I$ is a finite dimensional C^{*}-algebra.

Proof. Put $r=\max _{b \in B^{\prime}}\left(r\left(b, p_{b}\right)\right)$, and $I_{r}=I \cap \mathcal{F}^{(r)}$. Let $B^{\prime \prime}=\left\{b \in B_{\gamma}: O_{b, r} \subset\right.$ $\left.F_{0}^{I}\right\}$. Then it holds that

$$
\begin{aligned}
\Pi^{(r)}\left(I_{r}\right) & =\Pi^{(r)}\left(I \cap \mathcal{F}^{(r)}\right) \supset \Pi^{(r)}\left(I \cap \mathcal{K}\left(X_{\gamma}^{\otimes r}\right)\right) \\
& =\left\{T \in \Pi^{(r)}\left(\mathcal{K}\left(X^{\otimes r}\right)\right): T(b)=0 \text { for } b \in B^{\prime \prime}\right\}
\end{aligned}
$$

We put $J_{r}^{B^{\prime \prime}}=\left\{T \in \mathcal{F}^{(r)} \mid \Pi^{(r)}(T)(x)=0\right.$ for each $x \in C_{\gamma^{r}}, \Pi^{(r)}(T)(y)=0$ for each $\left.y \in B^{\prime \prime}\right\}$. Then it holds that $J_{r}^{B^{\prime \prime}} \subset \Pi^{(r)}\left(I_{r}\right)$. Since $\Pi^{(r)}\left(\mathcal{F}^{(r)}\right) / J_{r}^{B^{\prime \prime}}$ is the quotient by an ideal whose elements vanish at finite points, $\Pi^{(r)}\left(\mathcal{F}^{(r)}\right) / J_{r}^{B^{\prime \prime}}$ is finite dimensional. Therefore $\mathcal{F}^{(r)} / I_{r}$ is also finite dimensional.

Since the closed subsets F_{n}^{I} corresponding to $I \cap \mathcal{K}\left(X_{\gamma}^{\otimes n}\right)(n \geqslant r+1)$ are empty set, we have $I \cap \mathcal{F}^{(n)}=I_{r}+\mathcal{K}\left(X_{\gamma}^{\otimes r+1}\right)+\cdots+\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)$, and we have $I=\overline{\left(I_{r}+\mathcal{K}\left(X_{\gamma}^{\otimes r+1}\right)+\cdots\right)} . \mathcal{F}^{(r)} / I=\mathcal{F}^{(r)} /\left(\mathcal{F}^{(r)} \cap I\right)$ is equal to $\mathcal{F}^{(r)} / I_{r}$. Since
$\mathcal{K}\left(X_{\gamma}^{\otimes n)}\right)(n \geqslant r+1)$ are contained in I, it holds that $\mathcal{F}^{(n)} / I=\left(\mathcal{F}^{(r)}+\mathcal{K}\left(X_{\gamma}^{\otimes r+1}\right)\right.$ $\left.+\cdots+\mathcal{K}\left(X_{\gamma}^{\otimes n}\right)\right) / I=\mathcal{F}^{(r)} / I_{r}$, and $\mathcal{F}^{(n)} / I$ is isomorphic to $\mathcal{F}^{(r)} / I_{r}$ for each $n \geqslant$ r. From these, $\mathcal{F}^{(\infty)} / I \simeq \mathcal{F}^{(r)} / I_{r}$ is a finite dimensional C^{*}-algebra.

LEMMA 3.20. Let I be an ideal of $\mathcal{F}^{(\infty)}$. If F_{0}^{I} contains more than one finite union of finite γ-orbits of branch points, then I is not a primitive ideal.

Proof. As in Lemma 3.19, we define an integer r and a subset $B^{\prime \prime}$ of B_{γ}. Then $\mathcal{F}^{(\infty)} / I \simeq \mathcal{F}^{(r)} / I_{r}$. If F_{0}^{I} contains more than one finite γ-orbits of branch points, I_{r} is not of the form $\left\{T \in \Pi^{(r)}(T)(b)=0\right.$: for $\left.b \in B_{\gamma}\right\}$. It is shown that I is not a primitive ideal because $\mathcal{F}^{(\infty)} / I$ is finite dimensional and contains more than one simple component.

PROPOSITION 3.21. Let I be an ideal of $\mathcal{F}^{(\infty)}$. If $F_{0}=\bigcup_{b \in B^{\prime}} \bigcup_{j=1}^{p_{b}} O_{b, r(b, j)}$ where B^{\prime} is a subset of $B_{\gamma}, p_{b} \in \mathbb{N}$ and $r(b, j) \in \mathbb{N}$ with $r(b, 1)<\cdots<r\left(b, p_{b}\right)$, then $I=\bigcap_{b \in B^{\prime}} \bigcap_{j=1}^{p_{b}} \bar{J}^{(b, r(b, j))}$.

Proof. Let I be an ideal of $\mathcal{F}^{(\infty)}$ with $I \neq \mathcal{F}^{(\infty)}$ and $I \neq\{0\}$. By Proposition 3.11. the closed subset F_{0}^{I} corresponding to I consists of finite union of finite γ-orbits of branch points. We note that each ideal of a C^{*}-algebra is expressed by the intersection of primitive ideals which contain the original ideal. Let J be a primitive ideal of $\mathcal{F}^{(\infty)}$ which contains I. Since $\left.\left.I\right|_{A} \subset J\right|_{A}, F_{0}^{J}$ is a finite union of n-th γ-orbits of branch points which appear in F_{0}^{I}. But if F_{0}^{J} contains more than one finite union of finite γ-orbits of branch points, J is not primitive by Lemma 3.20 . Therefore J must be of the form $\bar{J}^{b, n}$. If $I \subset \bar{J}^{b, n}$, then $(b, n) \in \bigcup_{b \in B^{\prime}} \bigcup_{j=1}^{p_{b}} O_{b, r(b, j)}$. It holds that

$$
I=\bigcap_{b \in B^{\prime}} \bigcap_{j=1}^{p_{b}} \bar{J}^{(b, r(b, j))}
$$

By our previous paper [11], there exists a trace τ^{∞} on the core $\mathcal{F}^{(\infty)}$ corresponding to the Hutchinson measure on K .

Proposition 3.22. The von Neumann algebra generated by the image of the GNS representation of the trace τ^{∞} corresponding to the Hutchinson measure is the injective type II_{1}-factor.

Proof. We denote by τ the unique trace on the fixed point algebra $\mathcal{O}_{Y_{\gamma}}^{\mathbb{T}}=$ $M_{N^{\infty}}$ by the gauge action. By the argument in Section 4.2 in [14] and Section 6 in [11], τ^{∞} is the restriction of τ to $\mathcal{O}_{Z_{\gamma}}^{\mathbb{T}}=\mathcal{F}^{(\infty)}$. Since the Hutchinson measure has no point masses, their GNS-representation spaces are the same: $L^{2}\left(\mathcal{O}_{Y_{\gamma}}^{\mathbb{T}}, \tau\right)=$
$L^{2}\left(\mathcal{O}_{Z_{\gamma}}^{\mathbb{T}}, \tau^{\infty}\right)$. We can see that the von Neumann algebras generated by the GNSrepresentations $\pi_{\tau^{\infty}}$ and π_{τ} coincide:

$$
\pi_{\tau^{\infty}}\left(O_{Z_{\gamma}}^{\mathbb{T}}\right)^{\prime \prime}=\pi_{\tau}\left(O_{Z_{\gamma}}^{\mathbb{T}}\right)^{\prime \prime}=\pi_{\tau}\left(O_{Y_{\gamma}}^{\mathbb{T}}\right)^{\prime \prime}
$$

Since $\pi_{\tau}\left(O_{Y_{\gamma}}^{\mathbb{T}}\right)^{\prime \prime}=\pi_{\tau}\left(M_{N^{\infty}}\right)^{\prime \prime}$ is an injective type II_{1}-factor, we have the conclusion.

The following is the main theorem of the paper, which gives a complete classification of the ideals of the core of the C^{*}-algebras associated with self-similar maps.

THEOREM 3.23. Let $\gamma=\left(\gamma_{1}, \ldots, \gamma_{N}\right)$ be a self-similar map on a compact set K with $N \geqslant 2$. Assume that γ satisfies Assumption B. Let $\mathcal{F}^{(\infty)}$ be the core of the C^{*} algebras \mathcal{O}_{γ} associated with a self-similar map γ. Then any ideal I of the core $\mathcal{F}^{(\infty)}$ is completely determined by the intersection $I \cap C(K)$ with the coefficient algebra $C(K)$ of the self-similar set K. The set \mathcal{S} of all corresponding closed subsets F_{0}^{I} of K, which arise in this way, is described by the singularity structure of the self-similar map as follows:

$$
\mathcal{S}=\left\{\varnothing, K, \bigcup_{b \in B^{\prime}} \bigcup_{j=1}^{p_{b}} O_{b, r(b, j)}: B^{\prime} \subset B_{\gamma}, p_{b} \in \mathbb{N}, r(b, j)=0,1,2, \ldots\right\}
$$

The corresponding ideals for the closed subsets \varnothing, K and $\bigcup_{b \in B^{\prime}} \bigcup_{j=1}^{p_{b}} O_{b, r(b, j)}$ are $\mathcal{F}^{(\infty)}, 0$, and $\bigcap_{b \in B^{\prime}} \bigcap_{j=1}^{p_{b}} \bar{J}^{b, r(b, j)}$ respectively.

Corollary 3.24. Let $\operatorname{Prim}\left(\mathcal{F}^{(\infty)}\right)$ be the primitive ideal space, i.e. the set of primitive ideals of the core $\mathcal{F}^{(\infty)}$. Then

$$
\operatorname{Prim}\left(\mathcal{F}^{(\infty)}\right)=\left\{0, \bar{J}^{(b, n)}: b \in B_{\gamma}, n=0,1,2, \ldots\right\}
$$

The Jacobson topology on $\operatorname{Prim}\left(\mathcal{F}^{(\infty)}\right)$ is given by the co-finite sets containing 0 and empty set, i.e.,

$$
\left\{U \subset \operatorname{Prim}\left(\mathcal{F}^{(\infty)}\right): U^{c} \text { is a finite subset and does not contain } 0\right\} \cup\{\varnothing\} .
$$

Moreover,
(i) The zero ideal 0 is the kernel of continuous trace τ^{∞} and the GNS representation of the trace generates the injective II_{1}-factor representation.
(ii) The ideal $\bar{J}^{(b, n)}$ is the kernel of the discrete trace $\tau^{(b, n)}$ and the GNS representation of the trace generates the finite factor $M_{N^{n}}(\mathbb{C})$ which is isomorphic to $\mathcal{F}^{(\infty)} / \bar{J}^{(b, n)}$.

Proof. The only remaining thing to show is the description of the Jacobson topology on $\operatorname{Prim}\left(\mathcal{F}^{(\infty)}\right)$. The closure of one point set $\left\{\bar{J}^{(b, n)}\right\}$ is equal to $\left\{\bar{J}^{(b, n)}\right\}$ itself, because $\bar{J}^{(b, n)}$ is a maximal ideal. The closure of a subset S containing the zero ideal 0 is the whole space $\operatorname{Prim}\left(\mathcal{F}^{(\infty)}\right)$. Let S be a subset of $\operatorname{Prim}\left(\mathcal{F}^{(\infty)}\right)$
which does not contain the zero ideal 0 . If S is a finite set, then the closure $\bar{S}=S$. If S is an infinite set, then there exists $b \in B_{\gamma}$ such that S includes $\bar{J}^{\left(b, m_{j}\right)}$ for some $m_{1}<m_{2}<m_{3}<\cdots$. As in Lemma 3.11, $\bigcap_{j} \bar{J}^{\left(b, m_{j}\right)}=0$. Hence the closure $\bar{S}=\operatorname{Prim}\left(\mathcal{F}^{(\infty)}\right)$. The rest is clear. \quad ।

EXAMPLE 3.25 (Tent map). Let $\gamma=\left(\gamma_{1}, \gamma_{2}\right)$ be a self-similar map of the tent map on $[0,1]$ in Example 2.1. Then the closed subset of $[0,1]$ corresponding to primitive ideals of $\mathcal{F}^{(\infty)}$ are as follows:
(i) $[0,1]$.
(ii) $\left\{(2 k-1) / 2^{n}: k=1, \ldots, 2^{n-1}\right\},(n=1,2, \ldots)$.

EXAMPLE 3.26 (Sierpinski gasket). Let $\gamma=\left(\gamma_{1}, \gamma_{2}, \gamma_{3}\right)$ be a self-similar map on the Sierpinski gasket K. Then the closed subsets of K corresponding to primitive ideals of $\mathcal{F}^{(\infty)}$ are as follows:
(i) K.
(ii) $\left\{\left(\gamma_{j_{1}} \circ \cdots \circ \gamma_{j_{n}}\right)(P):\left(j_{1}, \ldots, j_{n}\right) \in \Sigma^{n}\right\},(P=S, T, U$, and $n=0,1, \ldots)$.

Acknowledgements. This work was supported by JSPS KAKENHI Grant Number 23540242, 19340040 and 25287019.

REFERENCES

[1] B. Blackadar, Operator Algebras. Theory of C*-Algebras and von Neumann Algebras, Encyclopedia Math. Sci., vol. 122, Springer-Verlag, Berlin 2006.
[2] G. Castro, C^{*}-algebras associated with iterated function systems, in Operator Structures and Dynamical Systems, Contemp. Math., vol. 503, Amer. Math. Soc., Providence, RI 2010, pp. 27-38.
[3] R. Exel, M. Laca, Partial dynamical systems and the KMS condition, Commun. Math. Phys. 232(2003), 223-277.
[4] K.J. Falconer, Fractal Geometry. Mathematical Foundations and Applications, John Wiley, Chichester 1990.
[5] N.J. Fowler, P. Muhly, I. Raeburn, Representations of Cuntz-Pimsner algebras, Indiana Univ. Math. J. 52(2003), 569-605.
[6] M. Ionescu, Y. Watatani, C^{*}-algebras associated with Mauldin-Williams graphs, Canad. Math. Bull. 51(2008), 545-560.
[7] T. Kajiwara, C. Pinzari, Y. Watatani, Ideal structure and simplicity of the C^{*} algebras generated by Hilbert bimodules, J. Funct. Anal. 159(1998), 295-322.
[8] T. KAjiwara, Y. Watatani, C*-algebra of complex dynamical systems, Indiana Univ. Math. J 54(2005), 755-778.
[9] T. Kajiwara, Y. Watatani, C*-algebras associated with self-similar maps, J. Operator Theory 56(2006), 225-247.
[10] T. Kajiwara, Y. Watatani, C^{*}-algebras associated with complex dynamical systems and backward orbit structure, Complex Anal. Oper. Theory 8(2014), 243-254.
[11] T. Kajiwara, Y. Watatani, Traces on core of the C^{*}-algebras constructed from selfsimilar maps, Ergodic Theory Dynam. Systems 34(2014), 1964-1989.
[12] J. Kigami, Analysis on Fractals, Cambridge Univ. Press, Cambridge 2001.
[13] M. Pimsner, A class of C^{*}-algebras generating both Cuntz-Krieger algebras and crossed product by \mathbb{Z}, in Free Probability Theory, Amer. Math. Soc., Providence, RI, 1997, pp. 189-212.
[14] C. PinZari, Y. Watatani, K. Yonetani, KMS states, entropy and the variational principle in full C^{*}-dynamical systems, Comm. Math. Phys. 213(2000), 331-379.
[15] I. Raeburn, D. Williams, Morita Equivalence and Continuous Trace C*-Algebras, Amer. Math. Soc., Providence, RI 1998.
[16] M.A. Rieffel, Unitary representations of group extensions; an algebraic approach to the theory of Mackey and Blattner, in Studies in Analysis, Adv. Math. Suppl. Stud., vol. 4, Academic Press, New York-London 1979, pp. 43-82.
[17] H.H. Zettl, Ideals in Hilbert modules and invariants under strong Morita equivalence of C^{*}-algebras, Arch. Math. 39(1982), 69-77.

TSUYOSHI KAJIWARA, Department of Environmental and Mathematical Sciences, Okayama University, Tsushima, Okayama, 700-8530, Japan

E-mail address: kajiwara@ems.okayama-u.ac.jp
Yasuo watatani, Department of Mathematical Sciences, Kyushu UniVERSITY, МОTOOKA, FUKUOKA, 819-0395, JAPAN

E-mail address: watatani@math.kyushu-u.ac.jp

Received February 23, 2015; revised September 14, 2015.

