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ABSTRACT. We study tensor products and nuclearity-related properties of the
operator system Sn generated by the Cuntz isometries. By using the nuclear-
ity of the Cuntz algebra, we can show that Sn is C∗-nuclear, and this implies
a dual row contraction version of Ando’s theorem characterizing operators of
numerical radius 1. On the other hand, without using the nuclearity of the
Cuntz algebra, we are still able to show directly this Ando type property of
dual row contractions and conclude that Sn is C∗-nuclear, which yields a new
proof of the nuclearity of the Cuntz algebras. We prove that the dual opera-
tor system of Sn is completely order isomorphic to an operator subsystem of
Mn+1. Finally, a lifting result concerning Popescu’s joint numerical radius is
proved via operator system techniques.
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1. INTRODUCTION

The operator system generated by Cuntz isometries is studied in [14], where
we let S1, . . . , Sn be n (2 6 n < +∞) generators of the Cuntz algebra On and
I be the identity operator, and let Sn denote the operator system generated by
S1, . . . , Sn, that is, Sn = span{I, Si, S∗i : 1 6 i 6 n}. Similarly, we let S1, . . . , Sn, . . .
be the generators of O∞ and set S∞ = span{I, Si, S∗i : i = 1, . . . , n, . . . }.

In this paper, we turn our attention to tensor products and nuclearity-related
properties of Sn, which is motivated by the well-known fact that On (2 6 n 6 ∞)
is nuclear in the sense that for every unital C∗-algebra A,

On ⊗min A = On ⊗max A.

Since Sn contains all the generators ofOn and its C∗-envelope coincides withOn,
it is natural to study tensor properties of Sn (2 6 n 6 ∞) in the operator system
category.
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Of course, we hope that Sn is nuclear in the operator system category. Un-
fortunately, according to Definition 1.3, we can show that Sn is not (min, max)-
nuclear by constructing a counter-example. However, (min, max)-nuclearity is
quite a strong condition for an operator system, as it has been shown that a finite
dimensional operator system is (min, max)-nuclear if and only if it is completely
order isomorphic to a C∗-algebra if and only if it is injective ([12], Theorem 6.11).
So we make a concession and ask whether Sn is C∗-nuclear (see Definition 1.4).
Fortunately, the answer is affirmative for this case. This fact follows from a re-
fined version of Bunce’s dilation theorem for row-contractions ([3], Proposition 1)
and the fact that On is nuclear. Thus, the operator system Sn enjoys many nice
properties such as WEP, OSLLP, DCEP, exactness, etc. (see [12]).

On the other hand, it is tempting to show directly that Sn is C∗-nuclear, that
is, without using the nuclearity of On. This is motivated by our result that On is
nuclear if and only if Sn is C∗-nuclear. We are able to show the latter directly by
using operator system techniques together with the theory of shorted operators.
This provides us with a new proof of the nuclearity of the Cuntz algebras. More-
over, it motivates us to approach some important properties of the Cuntz algebra
via operator system techniques. This direct proof of the C∗-nuclearity of Sn also
yields a dual row contraction version of Ando’s theorem characterizing operators
of numerical radius 1.

Kavruk recently showed that for a finite dimensional operator system, C∗-
nuclearity passes to its dual operator system, and vice versa ([10], Theorem 4.1).
This motivates us to study the dual operator system of Sn, which we denote by
Sd

n . We show that Sd
n is completely order isomorphic to an operator subsystem of

Mn+1. By Kavruk’s result, we know that this operator system is also C∗-nuclear.
However, we were unable to give a direct proof that this operator subsystem
is C∗-nuclear, although an operator system in the matrix algebras seems easier
to deal with. From the general theory of operator system tensor products, we
know that C∗-nuclearity is stronger than a lifting property, the OSLLP. Since Sd

n
is C∗-nuclear, it has the OSLLP and we use this fact to prove a lifting property for
Popescu’s joint numerical radius for n-tuples of operators.

In Section 2, we will first show that Sn is not (min, max)-nuclear by giving
a counter-example. Next, we prove that On ⊗min A = On ⊗max A for a unital
C∗-algebra A if and only if Sn ⊗min A = Sn ⊗max A. Because On is nuclear, it
follows that Sn is C∗-nuclear.

In Section 3, we will show that the operator system En defined in [14] is
C∗-nuclear. We then use this fact together with some operator system methods
to prove that for a unital C∗-algebra A, the equality On ⊗min A = On ⊗max A is
equivalent to a lifting property that must be met by A. Thus, using the fact that
On is nuclear, we have that every C∗-algebra enjoys this lifting property. A direct
corollary of this result shows a contraction version of Ando’s theorem.

In Section 4, we will give a direct proof of Sn ⊗min A = Sn ⊗max A for a
unital C∗-algebra A, without using the nuclearity of On, by showing that every
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unital C∗-algebra does enjoy the lifting property mentioned in Section 3. So we
obtain a new proof of the nuclearity of the Cuntz algebra.

In Section 5, we will study the dual operator system of Sn, say Sd
n . We will

give characterizations for positive elements in Mp(Sd
n ) and a necessary and suf-

ficient condition for unital completely positive maps from Sd
n into a C∗-algebras.

We will also show that Sd
n is not (min, max)-nuclear. By a result of Kavruk (The-

orem 5.8), , Sd
n is C∗-nuclear. Moreover, it is interesting to know that Sd

n is com-
pletely order isomorphic to an operator subsystem in Mn+1, in contrast to the fact
that Sn is completely order isomorphic to the quotient of an operator subsystem
in Mn+1 ([14], Theorem 5.1).

In Section 6, we observe that unital completely positive maps from Sd
n to

C∗-algebras are closely related to the joint numerical radius of n-tuples. Then, a
lifting property of the joint numerical radius is proved by using the fact that Sd

n
has the lifting property.

We shall assume that the reader is familiar with the basics of operator sys-
tem tensor products (see [11] or [9], e.g.). Also, we refer the reader to [12] for the
basics of operator system quotients.

We shall use the following universal property of Sn constantly in this paper:

THEOREM 1.1 ([14]). The operator system Sn has the following universal prop-
erty:

Let (A1, . . . , An) be a row contraction on some Hilbert spaceH and denote

Tn = span{IH, Ai, A∗i : 1 6 i 6 n}

so that Tn is an operator system, then there exists a unital completely positive map φ :
Sn → Tn such that φ(Si) = Ai for 1 6 i 6 n.

For the rest of this introductory section, we briefly introduce some termi-
nologies and results from the theory of operator system tensor products which
will be used throughout this paper.

DEFINITION 1.2. Let S and T be operators systems. A map φ : S → T is
called a complete order isomorphism if φ is a unital linear isomorphism and both
φ and φ−1 are completely positive, and we say that S is completely order iso-
morphic to T if such φ exists. A map φ is called a complete order injection or em-
bedding if it is a complete order isomorphism onto its range with φ(1S ) being an
Archimedean order unit. We shall denote this by S ⊆c.o.i T .

Given operator systems S and T and two possibly different operator system
structures S ⊗α T and S ⊗β T on their tensor product, we shall write S ⊗α T =
S ⊗β T to mean that the identity map is a complete order isomorphism.

The tensor products of operator systems we will use in this paper are: min,
max, c (see [11] for their definitions). The relationship between these tensor prod-
ucts is min 6 c 6 max, that is, the identity maps id : S ⊗max T → S ⊗c T ,
id : S ⊗c T → S ⊗min T are completely positive.
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DEFINITION 1.3 ([11]). An operator system S is called (min, max)-nuclear if
S ⊗min T = S ⊗max T , for every operator system T .

DEFINITION 1.4 ([11]). An operator system S is called C∗-nuclear if S ⊗min
A = S ⊗max A for every unital C∗-algebra A.

PROPOSITION 1.5 ([9]). An operator system S is C∗-nuclear if and only if S ⊗min
T = S ⊗c T for every operator system T .

PROPOSITION 1.6 ([11]). LetA andB be unital C∗-algebras, thenA⊗minB⊆c.o.i
A⊗C∗- min B and A⊗max B ⊆c.o.i A⊗C∗- max B, where ⊗C∗- min, ⊗C∗- max denote the
tensor products in the C∗-algebra category.

PROPOSITION 1.7 ([11]). Let A be a unital C∗-algebra and S be an operator sys-
tem, then S ⊗c A = S ⊗max A.

PROPOSITION 1.8 (Injectivity of the min tensor product [11]). The min tensor
product is injective in the sense that for every choices of four operator systems S and T ,
S1, T1 with inclusions S ⊆c.o.i S1 and T ⊆c.o.i T1, we have that

S ⊗min T ⊆c.o.i S1 ⊗min T1.

PROPOSITION 1.9 (Projectivity of the max tensor product [8]). The max ten-
sor product is projective in the following sense: Let S , T , R be operator systems and
suppose ψ : S → R is a complete quotient map, then the map ψ⊗ idT : S ⊗max T →
R⊗max T is also a complete quotient map.

Henceforth, unless specified, we always assume 2 6 n < ∞.

2. TENSOR PRODUCTS AND THE C∗-NUCLEARITY OF Sn

We begin this section with the following proposition which shows that Sn
(2 6 n 6 ∞) is not (min, max)-nuclear.

PROPOSITION 2.1. The operator system Sn is not (min, max)-nuclear, for 2 6
n 6 ∞.

Proof. It is known that the operator system S1 generated by a universal
unitary is not (min, max)-nuclear because of the following ([7], Theorem 3.7):

S1 ⊗min S1 6= S1 ⊗max S1.

On the other hand, we have that S1 = S1 ([14], Corollary 3.3), so we know that

S1 ⊗min S1 6= S1 ⊗max S1.

Now, for n > 2, if Sn ⊗min Sn = Sn ⊗max Sn, then ([14], Corollaries 3.4, 3.5)
together imply that

S1 ⊗min S1 = S1 ⊗max S1,
which is a contradiction. Thus, Sn is not (min, max)-nuclear.
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LEMMA 2.2. Fix n, 2 6 n 6 ∞, let A be a unital C∗-algebra and let Ŝ be an
operator system such that Sn ⊆ Ŝ ⊆ On. If we have that

Ŝ ⊗min A = Ŝ ⊗max A,

then
On ⊗min A = On ⊗max A.

Proof. We first represent On ⊗max A on some Hilbert space H. By the def-
inition of the max tensor product of operator systems, the canonical embedding
map from Ŝ ⊗maxA intoOn ⊗maxA is completely positive. Thus we have a com-
pletely positive map ρ : Ŝ ⊗min A → B(H), such that ρ(a⊗ b) = a⊗ b for each
a ∈ Ŝ and b ∈ A.

The injectivity of the min tensor product of operator systems implies that
Ŝ ⊗min A ⊆c.o.i On ⊗min A, and we can extend ρ to a completely positive map
ρ̃ : On ⊗min A → B(H) by the Arveson’s extension theorem.

Next, we use the Stinespring’s dilation theorem and obtain a unital ∗-homo-
morphism γ : On⊗minA → B(K) and V : H → K for some Hilbert spaceK such
that

ρ̃(a) = V∗γ(a)V, for each a ∈ On ⊗min A.
The map ρ being unital implies that ρ̃ is unital and hence V∗V = IH, i.e. V is an
isometry. By identifyingH with VH, we can assume thatH ⊆ K.

Now, if we decompose K = H+H⊥, then ρ̃ is the 1, 1 corner of γ. Further,
we have that

γ(Si ⊗ 1A) =
(

ρ̃(Si ⊗ 1A) Ci
Bi Di

)
, for every i ∈ {1, . . . , n}.

Here, Bi ∈ B(H,H⊥), Ci ∈ B(H⊥,H), Di ∈ B(H⊥,H⊥). Since Si⊗ 1A is an isom-
etry, it follows that γ(Si⊗ 1A) and ρ̃(Si⊗ 1A) are isometries, and we immediately
have that Bi = 0.

Moreover, the condition that
n
∑

i=1
SiS∗i = IH (n finite) or

k
∑

i=1
SiS∗i 6 IH for

every 1 6 k < ∞ (n infinite) implies that
n

∑
i=1

γ(Si ⊗ 1A)γ(Si ⊗ 1A)∗ = γ
( n

∑
i=1

SiS∗i ⊗ 1A
)
= 1K, or

k

∑
i=1

γ(Si ⊗ 1A)γ(Si ⊗ 1A)∗ = γ
( k

∑
i=1

SiS∗i ⊗ 1A
)
6 1K, for every 1 6 k < ∞,

which means that(
∑n

i=1 ρ̃(Si ⊗ 1A)ρ̃(Si ⊗ 1A)∗ + CiC∗i ∑n
i=1 CiD∗i

∑n
i=1 CiC∗i ∑n

i=1 DiD∗i

)
= 1K, or(

∑k
i=1 ρ̃(Si ⊗ 1A)ρ̃(Si ⊗ 1A)∗+CiC∗i ∑k

i=1 CiD∗i
∑k

i=1 CiC∗i ∑k
i=1 DiD∗i

)
61K, for every 16 k< ∞.
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Thus, we have that Ci = 0 for every i ∈ {1, . . . , n} and hence,

γ(Si ⊗ 1A) =
(

ρ̃(Si ⊗ 1A) 0
0 Di

)
.

On the other hand, for each unitary u ∈ A, similarly, we have that

γ(IH ⊗ u) =
(

ρ̃(IH ⊗ u) 0
0 v

)
,

where v is a unitary in B(H⊥).
Because A is spanned by its unitaries, and every X⊗ z ∈ On ⊗min A can be

written as X⊗ z = (X⊗ 1A)(1H ⊗ z), we see that γ is diagonal on all elementary
tensors. Then by continuity of γ, we know it is diagonal on On ⊗min A.

We now have that the compression of γ onto the 1, 1 corner is a ∗-homo-
morphism from On ⊗min A to B(H), and this compression is exactly ρ̃. More-
over, ρ̃(Ŝ ⊗min A) ⊆ On ⊗max A. Then, ρ̃ being a ∗-homomorphism implies that
ρ̃(On �min A) ⊆ On ⊗max A, where �min denotes the algebraic tensor product
of On with A endowed with the minimal tensor norm. The continuity of ρ̃ im-
plies further that ρ̃(On ⊗min A) ⊆ On ⊗max A. Form this, we can conclude that
ρ̃(On ⊗min A) = On ⊗max A, because by the way ρ̃ is defined, Ran ρ̃ is dense in
On ⊗max A.

Finally, ρ̃(X ⊗ z) = X ⊗ z for every X ⊗ z ∈ On ⊗min A forces that the
identity map from On �min A to On ⊗max A extends to a ∗-homomorphism from
On ⊗min A onto On ⊗max A. Thus, On ⊗min A = On ⊗max A.

Let T1, . . . , Tn be the generators of the Toeplitz–Cuntz algebra T On and Tn
be the operator system generated by Ti’s. By Corollary 3.3 in [14], we know that
Tn = Sn via the natural isomorphism.

THEOREM 2.3. Let A be a unital C∗-algebra and let T On be the Toeplitz–Cuntz
algebra, then we have that Sn ⊗max A ⊆c.o.i T On ⊗max A.

Before proving this theorem, we need the following refined version of
Bunce’s result ([3], Proposition 1).

LEMMA 2.4. Let (A1, . . . , An) ∈ B(H) be a row contraction, then there exist
isometric dilations W1, . . . , Wn ∈ B(K) of A1, . . . , An such that W∗i Wj = 0 for i 6= j,
where K = H⊕ (

⊕∞
k=1H(n)). Moreover, Wi can be chosen of the following form,

Wi =

(
Ai 0
Xi YZi

)
,

where the entries of Xi, Y and Zi are all from C∗(I, A1, . . . , An).

Proof. The fact that the entries of Xi and Y are from C∗(I, A1, . . . , An) is di-
rectly from Bunce’s construction. On the other hand, by his construction, Zi’s can
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be any set of Cuntz isometries on
∞⊕

k=1
H(n) so we can choose a particular one as:

Zk = (Zij) =

{
I(n) if i = (j− 1)n + k,
0 otherwise,

where I(n) denotes the identity operator on
∞⊕

k=1
H(n).

Proof of Theorem 2.3. By Proposition 1.7, we can show instead that Tn satis-
fies that

Tn ⊗c A ⊆c.o.i T On ⊗c A.

To this end, it is enough to show that for any pair of unital completely positive
maps ϕ : Tn → B(H) and ψ : A → B(H) with commuting ranges, there always
exists an extension ϕ̃ : T On of ϕ such that the range of ϕ̃ and ψ commute.

Since ϕ is unitally completely positive, (ϕ(T1), . . . , ϕ(Tn)) is a row contrac-
tion and hence can be dilated to isometries W1, . . . , Wn with orthogonal ranges,
by Lemma 2.4. Then, there is a ∗-homomorphism π : T On → B(K) such that
π(Ti) = Wi. Meanwhile, we set ψ̃ : R → B(K) as ψ̃ = ψ⊕ (

⊕∞
k=1 ψ(n)), where

ψ(n) denotes the direct sum of n copies of ψ.
It is easy to see that ψ̃ and π have commuting ranges. Clearly, ψ = PHψ̃|H.

Now, let ϕ̃ = PHπ|H, then it follows that ϕ̃ is a unital completely positive ex-
tension of ϕ and ψ and ϕ̃ has commuting ranges. Thus, we have shown that
Tn ⊗c A ⊆c.o.i T On ⊗c A.

COROLLARY 2.5. Let A be a unital C∗-algebra. If T On ⊗min A = T On ⊗max
A, then Sn ⊗min A = Sn ⊗max A.

Proof. By our assumption and the injectivity of the min-tensor product, we
have the following relations:

Tn ⊗min A ⊆c.o.i T On ⊗min A = Tn ⊗c=max A ⊆c.o.i T On ⊗c=max A.

This implies that Tn⊗minA = Tn⊗maxA, so, equivalently, we know that Sn⊗min
A = Sn ⊗max A

COROLLARY 2.6. Let A be a unital C∗-algebra. If On ⊗min A = On ⊗max A,
then Sn ⊗min A = Sn ⊗max A.

Proof. Since On = T On/K ([5], Proposition 3.1) (K denotes the algebra of
compact operators), we have the following commuting diagram:

K⊗max A

��

// T On ⊗max A

��

// On ⊗max A

��
K⊗min A // T On ⊗min A // On ⊗min A.
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By assumption, we have that On ⊗min A = On ⊗max A. Also, we know that K is
nuclear, so K⊗min A = K⊗max A. This implies that the first and third vertical
map in the above diagram are indeed isomorphisms. Hence, the second vertical
map is also an isomorphism, that is, T On ⊗min A = T On ⊗max A. Now the
conclusion follows from the above corollary.

Combining Corollary 2.6 with Lemma 2.2, we have

THEOREM 2.7. Let A be a unital C∗-algebra, then we have that On ⊗min A =
On ⊗max A if and only if Sn ⊗min A = Sn ⊗max A.

Since On is nuclear, we immediately have the following corollary.

COROLLARY 2.8. The operator system Sn is C∗-nuclear.

3. C∗-NUCLEARITY OF Sn AND A DUAL ROW CONTRACTION VERSION
OF ANDO’S THEOREM

In this section, we prove some necessary and sufficient conditions that en-
sure that On ⊗min A = On ⊗max A. These conditions will then be used to give
a new proof that On is nuclear. Recall that in [14], we denote En = span{E00,
∑n

i=1 Eii, Ei0, E0i : 1 6 i 6 n}, where Eij’s are the matrix units in Mn+1, and we
proved that

THEOREM 3.1 ([14]). The map φ : En → Sn defined by the following:

φ(Ei0) =
1
2

Si, φ(E0i) =
1
2

S∗i , φ(E00) =
1
2

I, φ
( n

∑
i=1

Eii

)
=

1
2

I, 1 6 i 6 n,

is a complete quotient map, that is, En/J ∼= Sn completely order isomorphically, where
J := Ker φ = span{E00 −∑n

i=1 Eii}.
The next proposition shows that the operators system En is C∗-nuclear. Be-

fore proving it, let us recall a useful result ([7], Lemma 1.7).

LEMMA 3.2. Let S and T be operator systems, then u ∈ (S ⊗max T )+ if and
only if for each ε > 0, there exist (Pε

ij) ∈ Mkε
(S)+, (Qε

ij) ∈ Mkε
(T )+, such that

ε1S ⊗ 1T + u =
k

∑
i,j=1

Pε
ij ⊗Qε

ij.

PROPOSITION 3.3. We have that En ⊗min A = En ⊗max A for every unital C∗-
algebra A.

Proof. What we need to show is that Mp(En ⊗min A)+ ⊆ Mp(En ⊗max A)+,
for each p ∈ N. By the symmetry and associativity of the min and max tensor
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products of operator systems, and the nuclearity of Mp, we have that

Mp(En ⊗min A) = En ⊗min Mp(A),
Mp(En ⊗max A) = En ⊗max Mp(A).

Notice that Mp(A) is also a C∗-algebra, so it suffices to show that for each A ∈
(En ⊗min A)+, we have that A ∈ (En ⊗max A)+.

We have that En ⊗min A ⊆ Mn+1 ⊗min A = Mn+1(A) by the injectivity of
the min tensor product, so for A ∈ (E ⊗min A)+, we know that it has the form

A =


a0 a1 · · · an
a∗1 b
...

. . .
a∗n b

 .

Without loss of generality, by considering εIn+1 ⊗ 1A + A, we can assume that a0
and b are invertible. According to Cholesky’s lemma, that

a0 a1 · · · an
a∗1 b
...

. . .
a∗n b

=


a0−∑n
i=1 aib−1a∗i 0 · · · 0

0 0
...

. . .
0 0

+


∑n
i=1 aib−1a∗i a1 · · · an

a∗1 b
...

. . .
a∗n b

 .

The first matrix on the right side is positive in Mn+1(A) and is easily seen to be
in (En ⊗max A)+. What we need is to show that the second matrix also lies in
(En ⊗max A)+.

To this end, we use Proposition 3.2 and construct the following two matri-
ces,

P = (Pij) =




0 0 · · · 0
0 1
...

. . .
0 1




0 0 · · · 0
1 0
...

. . .
0 0

 · · ·


0 0 · · · 0
0 0
...

. . .
1 0




0 1 · · · 0
0 0
...

. . .
0 0




1 0 · · · 0
0 0
...

. . .
0 0


...

. . .
0 0 · · · 1
0 0
...

. . .
0 0




1 0 · · · 0
0 0
...

. . .
0 0





,
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Q = (Qij) =


b a∗1 · · · a∗n
a1
... B

an

 ,

where B = (Bij) = (aib−1a∗j ).
Then it is not hard to check that P ∈ Mn+1(En)+ and Q ∈ Mn+1(A)+. Also,

we have that 
∑n

i=1 aib−1a∗i a1 · · · an
a∗1 b
...

. . .
a∗n b

 =
n+1

∑
i,j=1

Pij ⊗Qij.

This shows that the matrix on the left side is in (En ⊗max A)+, and the lemma is
proved.

LEMMA 3.4. Let A be a unital C∗-algebra, then we have that id : Sn ⊗min A →
Sn ⊗max A is completely positive if and only if φ⊗ idA : En ⊗min A → Sn ⊗min A is
a complete quotient map,

Proof. We have the following diagram:

En ⊗min A

φ⊗idA
��

∼= // En ⊗max A

φ⊗idA
��

Sn ⊗min A
id // Sn ⊗max A.

By Proposition 1.9, we have that φ⊗ idA : En ⊗maxA → Sn ⊗maxA is a complete
quotient map, and hence if φ ⊗ idA : En ⊗min A → Sn ⊗min A is a complete
quotient map, then every positive element A in Mp(Sn⊗minA) has a positive pre-
image in Mp(En ⊗min A), and therefore A is in Mp(Sn ⊗max A). So id : Sn ⊗min
A → Sn ⊗max A is completely positive. Conversely, if id : Sn ⊗min A → Sn ⊗max
A is completely positive, then Sn ⊗min A = Sn ⊗max A. Also, we have En ⊗min
A = En ⊗max A. Thus, φ ⊗ idA : En ⊗max A → Sn ⊗max A being a complete
quotient map means that φ⊗ idA : En⊗minA → Sn⊗minA is a complete quotient
map.

The next theorem is now immediate:

THEOREM 3.5. Let A be a unital C∗-algebra. Then On ⊗min A = On ⊗max A if
and only if φ⊗ id : En ⊗min A → Sn ⊗min A is a complete quotient map.

We now prove a concrete condition on a unital C∗-algebra that is equivalent
to the above condition. Given an operator system S we will write p� 0 provided
that there exists ε > 0 such that p− ε1 ∈ S+, and we set S+−1 = {p ∈ S : p� 0}.
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The reason for this notation is that ifA is a unital C∗-algebra and ψ : S → A
is a unital completely positive map, then p ∈ S+−1 implies ψ(p) is positive and
invertible in A. Moreover, S+−1 is exactly the set of elements of S+ for which this
is true for every unital completely positive map into a C∗-algebra. Moreover, if
ψ : T → S is a quotient map, then p ∈ S+−1 if and only if it has a pre-image, i.e.,
ψ(r) = p with r ∈ T +

−1 (see Proposition 3.2 of [6]).

THEOREM 3.6. Let A be a unital C∗-algebra, then On ⊗min A = On ⊗max A if

and only if for all p ∈ N, whenever I ⊗ 1 +
n
∑

j=1
Sj ⊗ aj +

n
∑

j=1
S∗j ⊗ a∗j � 0 in On ⊗min

Mp(A), there exists a, b ∈ Mp(A)+−1 with a + b = 1, such that


a a∗1 · · · a∗n
a1 b
...

. . .
an b


is in Mn+1(Mp(A))+−1.

Proof. If On ⊗min A = On ⊗max A then q⊗ id : En ⊗min Mp(A) → Sn ⊗min

Mp(A) is a quotient map. Hence, I ⊗ 1+
n
∑

j=1
Sj ⊗ aj+

n
∑

j=1
S∗j ⊗ a∗j ∈q⊗ id((En ⊗min

Mp(A))+). Choosing any strictly positive element in the pre-image yields the
conclusion.

Conversely, the lifting formula shows that every element of the form I ⊗
1 +

n
∑

j=1
Sj ⊗ aj +

n
∑

j=1
S∗j ⊗ a∗j � 0 has a positive pre-image in En ⊗min Mp(A). Let

R = I ⊗ r +
n
∑

j=1
Sj ⊗ aj +

n
∑

j=1
S∗j ⊗ a∗j be an arbitrary element in Sn ⊗min Mp(A)

and let ε > 0, then

T= I⊗1+
n

∑
j=1

Sj⊗(r+ε1)−1/2aj(r+ε)−1/2+
n

∑
j=1

S∗j ⊗(r+ε1)−1/2a∗j (r+ε1)−1/2�0,

and so by the hypothesis it has a lifting. Pre- and post-multiplying the entries
of that lifting by (r + ε)1/2 gives a lifting of R + ε(I ⊗ 1). This proves that the
mapping q⊗ id : En ⊗min Mp(A)→ Sn ⊗min Mp(A) is a quotient map, and since
p was arbitrary, this map is a complete quotient map.

COROLLARY 3.7. The C∗-algebra On is nuclear if and only if whenever A is a

unital C∗-algebra and I ⊗ 1 +
n
∑

j=1
Sj ⊗ aj +

n
∑

j=1
S∗j ⊗ a∗j � 0 in On ⊗minA there exists
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a, b ∈ A+
−1 with a + b = 1 such that

(3.1)


a a∗1 · · · a∗n
a1 b
...

. . .
an b


is in Mn+1(A)+−1.

DEFINITION 3.8. Let A be a unital C∗-algebra, then an n-tuple (a1, . . . , an)
in A is called a dual row contraction if

I ⊗ 1 +
n

∑
j=1

Sj ⊗ a∗j +
n

∑
j=1

S∗j ⊗ aj > 0,

where the Si’s are Cuntz isometries. Moreover, it is called a strict dual row contrac-
tion if

I ⊗ 1 +
n

∑
j=1

Sj ⊗ a∗j +
n

∑
j=1

S∗j ⊗ aj � 0.

REMARK 3.9. Note that a dual row contraction is a row contraction, since

I ⊗ 1 +
n

∑
j=1

Sj ⊗ a∗j +
n

∑
j=1

S∗j ⊗ aj > 0

implies that

I ⊗ 1 + z
n

∑
j=1

Sj ⊗ a∗j + z
n

∑
j=1

S∗j ⊗ aj > 0, for all z ∈ T,

which is equivalent to

w
( n

∑
j=1

Sj ⊗ a∗j
)
6

1
2

,

where w means the numerical radius. So, we have that∥∥∥ n

∑
i=1

aia∗i
∥∥∥ =

∥∥∥( n

∑
i=1

Si ⊗min a∗i
)∗( n

∑
i=1

Si ⊗min a∗i
)∥∥∥ 6 (2w

( n

∑
j=1

Sj ⊗ a∗j
))2

6 1.

But not every row contraction is a dual row contraction. A counter-example can
be easily constructed. In particular, n (2 6 n < ∞) Cuntz isometries form a

row contraction but not dual row contraction, since
n
∑

i=1
Si ⊗ S∗i is a unitary whose

spectrum is the whole unit circle.

Again, since On is nuclear, Corollary 3.7 is indeed a (strict) dual row con-
traction version of Ando’s theorem (see [2] for the original version). Moreover,
when M is a von Neumann algebra, we can replace “strict dual row contrac-
tion” by “dual row contraction” and “strictly positive” by “positive” by taking
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weak*-limits. We summarize these statements below. This result is a dual row
contraction version of Ando’s theorem on numerical radius.

THEOREM 3.10. Let A be a unital C∗-algebra and (a1, . . . , an) ∈ A be a strict
dual row contraction, then there exist a, b ∈ A+

−1 with a + b = 1 such that
a a1 · · · an
a∗1 b
...

. . .
a∗n b


is in Mn+1(A)+−1. Moreover, ifM is a von Neumann algebra and (a1, . . . , an) ∈ M is
a dual row contraction, then there exist a, b ∈ M+ with a + b = 1 such that

a a1 · · · an
a∗1 b
...

. . .
a∗n b


is in Mn+1(M)+.

4. AN ALTERNATIVE PROOF OF THE NUCLEARITY OF On

We now give a new proof of the nuclearity of On, by showing directly the
existence of operators a, b mentioned in Corollary 3.7, which will prove that On
is nuclear.

To this end, we shall need the notion of “shorted operators”, which was
introduced in [1]. Here, we briefly quote some results we will need in our proof.

DEFINITION 4.1 ([1]). LetH be a Hilbert space and A ∈ B(H). Assume S ⊆
H is a closed subspace, then the shorted operator of A with respect to S, denoted
as S(A) is defined as the maximum of the following set:

{T ∈ B(H) : 0 6 T 6 A, Ran T ⊆ S}.

Also, we denote S0(A) = S(A)|S.

The shorted operator always exists ([1], Theorem 1). Moreover, we have
that

PROPOSITION 4.2 ([1]). For each x ∈ S,

〈S0(A)x, x〉 = inf
{〈

A
(

x
y

)
,
(

x
y

)〉
: y ∈ S⊥

}
.

We now prove that the condition of Corollary 3.7 is met for n = 2 without
using the nuclearity of O2.
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A proof of the nuclearity of O2. Let A ⊆ B(H) be a unital C∗-algebra and let
(a1, . . . , an) ∈ A be a strict dual row contraction, that is,

A = I ⊗ 1 +
2

∑
j=1

Sj ⊗ a∗j +
2

∑
j=1

S∗j ⊗ aj � 0, in O2 ⊗min A.

By Corollary 3.3 in [14] the operator system spanned by the Toeplitz–Cuntz isome-
tries is completely order isomorphic to the operator system spanned by the Cuntz
isometries. Thus, we can take the Si’s to be Toeplitz–Cuntz isometries. Moreover,
it suffices to consider the following specific choice of Toeplitz–Cuntz isometries:

Si ∈ B(l2), Si(ek) = ekn+i, k = 0, 1, 2, . . . , i = 1, 2,

where {ei : i = 0, 1, 2, . . . } is the orthonormal basis of l2.

We write l2 ⊗H =
+∞⊕
i=0
Hi, where Hi = H for all i. Thus, A corresponds to

the following operator in B(l2 ⊗H),

A =



1 a1 a2 0 0 0 0 0 0 · · ·
a∗1 1 0 a1 a2 0 0 0 0 · · ·
a∗2 0 1 0 0 a1 a2 0 0 · · ·
0 a∗1 0 1 0 0 0 a1 a2 · · ·
0 a∗2 0 0 1 0 0 0 0 · · ·
0 0 a∗1 0 0 1 0 0 0 · · ·
0 0 a∗2 0 0 0 1 0 0 · · ·
0 0 0 a∗1 0 0 0 1 0 · · ·
0 0 0 a∗2 0 0 0 0 1 · · ·
...

...
...

...
...

...
...

...
...


.

SetRk =
+∞⊕
i=k
Hi. We then write A as the following block form:

A =

(
A11 A12
A21 A22

)
,

where A11 ∈ B(H0), A12 ∈ B(R1,H0), A21 ∈ B(H0,R1), A22 ∈ B(R1).
Now, let B = H0(A), then by Proposition 4.2, we have that

〈Bh0, h0〉 = inf
g∈R1

{〈
A
(

h0
g

)
,
(

h0
g

)〉}

= inf
h1∈H

inf
h2∈H

inf
z∈R3


〈

A


h0
h1
h2
z

,


h0
h1
h2
z


〉



TENSOR PRODUCTS OF THE OPERATOR SYSTEM GENERATED BY THE CUNTZ ISOMETRIES 81

= inf
h1∈H

inf
h2∈H

inf
z∈R3

{〈h0 + a1h1 + a2h2, h0〉+ 〈a∗1h0, h1〉+ 〈a∗2h0, h2〉

+

〈
A22

h1
h2
z

,

h1
h2
z

〉.

We claim that

inf
z∈R3


〈

A22

h1
h2
z

,

h1
h2
z

〉 = 〈Bh1, h1〉+ 〈Bh2, h2〉.

Assuming this claim for the moment, we have

〈Bh0, h0〉 = inf
h1∈H

inf
h2∈H
{〈h0, h0〉+ 〈a1 f , h0〉+ 〈a2h2, h0〉+ 〈a∗1h0, h1〉+ 〈a∗2h0, h2〉

+ 〈Bh1, h1〉+ 〈Bh2, h2〉}

= inf
h1∈H

inf
h2∈H


〈 1 a1 a2

a∗1 B 0
a∗2 0 B

h0
h1
h2

,

h0
h1
h2

〉 .

So we have that 1− B a1 a2
a∗1 B 0
a∗2 0 B

 > 0.

To justify the claim, we write N as the disjoint union of N1 = {1 + 2(2k −
1), 1+ 3(2k− 1) : k > 0} and N2 = {2+ 3(2k− 1), 2+ 4(2k− 1) : k > 0}. SetNk =⊕
i∈Nk

Hi so thatR1 = N1 ⊕N2. Observe that both of these subspaces are reducing

for A22 and that with respect to the obvious identification ofNk ∼
+∞⊕
i=0
Hi we have

that A22 ∼ A⊕ A.
Hence,

inf
z∈R3

〈
A22

h1
h2
z

,

h1
h2
z

〉

= inf
z1∈N1	H1

〈
A22

h1
0
z1

,

h1
0
z1

〉+ inf
z2∈N2	H2

〈
A22

 0
h2
z2

,

 0
h2
z2

〉

= inf
z∈R1

〈
A
(

h1
z

)
,
(

h1
z

)〉
+ inf

z∈R1

〈
A
(

h2
z

)
,
(

h2
z

)〉
= 〈Bh1, h1〉+ 〈Bh2, h2〉.

It remains to show that B ∈ A. Since −Si’s are also Cuntz isometries, we
have that

I ⊗ 1−
2

∑
j=1

Sj ⊗ a∗j −
2

∑
j=1

S∗j ⊗ aj � 0.
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It follows that
∥∥∥ 2

∑
j=1

Sj ⊗ a∗j −
2
∑

j=1
S∗j ⊗ aj

∥∥∥ < 1, and therefore ‖1 − A22‖ < 1.

According to the proof of Theorem 1 in [1], the shorted operator B has an explicit
formula: B = A11 − A12 A−1

22 A21. So what is left for us to show is that all the
entries of A−1

22 are in A. To see this, we first use the Neumann series to write

A−1
22 =

∞
∑

n=0
(1− A22)

n. Since each row and column of 1− A22 only has finitely

many nonzero entries, we must have that the entries of (1− A22)
n are in A for

each n ∈ N. Since the Neumann series is norm convergent, we have that each
entry of A−1

22 is in A and since A12 and A21 are only non-zero in finitely many
entries, B ∈ A.

Finally, we can repeat the above process for A− ε1⊗ 1� 0 and see that we
can make both B and 1− B strictly positive with1− B a1 a2

a∗1 B 0
a∗2 0 B

� 0.

The proof that On for n > 3 is nuclear can be done similarly and we only
sketch the key points. Let A ⊆ B(H) be a unital C∗-algebra and (a1, . . . , an) ∈ A
be a strict dual row contraction, that is,

A = I ⊗ 1 +
n

∑
j=1

Sj ⊗ a∗j +
n

∑
j=1

S∗j ⊗ aj � 0, in On ⊗min A.

Then, by Corollary 3.3 in [14], we can take Si’s as Toeplitz–Cuntz isometries.
Moreover, it suffices to consider the following specific choice of Toeplitz–Cuntz
isometries:

Si ∈ B(l2), Si(ek) = ekn+i, k = 0, 1, 2, . . . , i = 1, 2, . . . , n,

where {ei : i = 0, 1, 2, . . . } is an orthonormal basis of l2. Thus, A corresponds to
the following operator on B(H(∞)),

A =



1 a1 · · · an
a∗1 1 a1 · · · an
...

. . .
a∗n 1

a∗1 1
...

. . .
a∗n 1

. . .


.

Again we write A as the block form:

A =

(
A11 A12
A21 A22

)
,
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where A11 = 1 ∈ B(H), A12 ∈ B(H(∞) 	H,H), A21 ∈ B(H,H(∞) 	H), A22 ∈
B(H(∞)).

Again we take B = H0(A), the short of the operator A to the 0-th subspace.
The calculation of B proceeds as before, and in this case one shows that N decom-
poses into a disjoint union of n subsets, N = N1 ∪ · · · ∪ Nn such thatNj =

⊕
i∈Nj

Hj

is a reducing subspace for A22 with the restriction to Nj of A22 unitarily equiva-
lent to A.

We leave the remaining details to the interested reader.
Having an alternative proof of the nuclearity of On (2 6 n < ∞), we can

give an alternative proof of the nuclearity of O∞ with just a little effort. Here is
the proof.

THEOREM 4.3. The operator system O∞ is nuclear.

Proof. Using Lemma 2.2, we just need to show that S∞ is C∗-nuclear.
It suffices to show that (S∞ ⊗min A)+ = (S∞ ⊗max A)+ for every unital

C∗-algebra A.
To see this, we choose A ∈ (S∞ ⊗min A)+, then A has the form,

A = I ⊗ X + ∑
i∈F

Si ⊗ Xi + ∑
i∈F

S∗i ⊗ X∗i , Xi ∈ A,

where F is a finite subset of N. So there exists N∈N, such that F⊆{1, . . . , N}. This
means, by the injectivity the min tensor product, we have that A∈ (SN ⊗minA)+.

But we have just shown that Sn is C∗-nuclear for n finite, so we have that

A ∈ (SN ⊗min A)+ = (SN ⊗max A)+ ⊆ (S∞ ⊗max A)+.

Thus, we know that S∞ ⊗min A = S∞ ⊗max A.

5. THE DUAL OPERATOR SYSTEM OF Sn

In this section, we prove some properties of the dual operator system of Sn,
denoted by Sd

n , which is the operator system consisting of all (bounded) linear
functionals on Sn. First, we choose a basis for Sd

n as

{δ0, δi, δ∗i : 1 6 i 6 n},

where

δ0(I) := 1, δ0(Si) := δ0(S∗i ) = 0, for all i;

δi(I) = 0, δi(Sj) = δij, δi(S∗k ) = 0, for all k;

δ∗i (I) = 0, δ∗i (S
∗
j ) = δij, δi(Sk) = 0, for all k,

where δij is the Kronecker delta notation. So we have Sd
n = span{δ0, δi, δ∗i : 1 6

i 6 n}.



84 VERN I. PAULSEN AND DA ZHENG

Then, we define an order structure on Sd
n by

( fij) ∈ Mp(Sd
n )

+ ⇔ ( fij) : Sn → Mp is completely positive .

It is a well-known result by Choi and Effros ([4], Theorem 4.4) that with the order
structure defined above, the dual space of a finite dimensional operator system
is again an operator system with an Archimedean order unit, and indeed, any
strictly positive linear functional is an Archimedean order unit.

We claim that δ0 is strictly positive. To see this suppose that p ∈ S+n with

δ0(p) = 0. Then p =
n
∑

i=1
aiSi +

n
∑

i=1
aiS∗i , Using the fact that, if Si are Cuntz isome-

tries, then −Si are also Cuntz isometries, we see that −p ∈ S+n . Thus, p = 0.
Hence, Sd

n is an operator system with Archimedean order unit δ0.
The following characterizes positive elements in Mp(Sd

n ) of the form Ip ⊗

δ0 +
n
∑

i=1
Ai ⊗ δi +

n
∑

i=1
A∗i .

PROPOSITION 5.1. An element Ip ⊗ δ0 +
n
∑

i=1
Ai ⊗ δi +

n
∑

i=1
A∗i ⊗ δ∗i ∈ Mp(Sd

n )

is positive if and only if (A1, . . . , An) is a row contraction.

Proof. Let M = Ip ⊗ δ0 +
n
∑

i=1
Ai ⊗ δi +

n
∑

i=1
A∗i ⊗ δ∗i , and view M as a com-

pletely positive map from Sn to Mp, it satisfies M(I) = Ip, M(Si) = Ai. Thus,
since M is unitally completely positive, we have that (A1, . . . , An) is a row con-
traction. Conversely, if (A1, . . . , An) is a row contraction, then there exists a unital
completely positive map which sends Si to Ai, S∗i to A∗i , by Theorem 1.1. But this
map is necessarily M : Sn → Mp, and this means M ∈ Mp(Sd

n )
+.

PROPOSITION 5.2. Let A be a unital C∗-algebra and φ : Sd
n → A be a unital

linear map, then we have that φ is completely positive if and only if φ is self-adjoint and

w(A1 ⊗ φ(δ1) + · · ·+ An ⊗ φ(δn)) 6
1
2

,

for each row contraction (A1, . . . , An) ∈ Mp, each p ∈ N, where w denotes the numeri-
cal radius.

Proof. Suppose φ is unitally completely positive, then for

M = Ip ⊗ δ0 +
n

∑
i=1

Ai ⊗ δi +
n

∑
i=1

A∗i ⊗ δ∗i ∈ Mp(Sd
n )

+,

we must have

Ip ⊗ φ(M) = Ip ⊗ I +
n

∑
i=1

Ai ⊗ φ(δi) +
n

∑
i=1

A∗i ⊗ φ(δ∗i )
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= Ip ⊗ I +
n

∑
i=1

Ai ⊗ φ(δi) +
n

∑
i=1

A∗i ⊗ φ(δi)
∗ > 0.

By Proposition 5.1, M is positive if and only if (A1, . . . , An) is a row contraction.
Noting that (zA1, . . . , zAn) is also a row contraction, we then have that

Ip ⊗ I + z
n

∑
i=1

Ai ⊗ φ(δi) + z
n

∑
i=1

A∗i ⊗ φ(δi)
∗ > 0,

which means that w
( n

∑
i=1

Ai ⊗ φ(δi)
)
6 1

2 , for each row contraction (A1, . . . , An)

∈ Mp and each p ∈ N.

Conversely, we suppose w
( n

∑
i=1

Ai ⊗ φ(δi)
)
6 1

2 , for each row contraction

(A1, . . . , An) ∈ Mp and each p ∈ N, and this implies that

Ip ⊗ I +
n

∑
i=1

Ai ⊗ φ(δi) +
n

∑
i=1

A∗i ⊗ φ(δi)
∗ > 0,

for each row contraction (A1, . . . , An) ∈ Mp and each p ∈ N.

Choose an arbitrary N = B0 ⊗ δ0 +
n
∑

i=1
Bi ⊗ δi +

n
∑

i=1
B∗i ⊗ δ∗i ∈ Mp(Sd

n )
+,

then for each ε > 0,

εIp ⊗ δ0 + N = (εIp + B0)⊗ δ0 +
n

∑
i=1

Bi ⊗ δi +
n

∑
i=1

B∗i ⊗ δ∗i > 0,

which implies

Ip ⊗ δ0 +
n

∑
i=1

(εIp + B0)
−1/2Bi(εIp + B0)

−1/2 ⊗ δi

+
n

∑
i=1

(εIp + B0)
−1/2B∗i (εIp + B0)

−1/2 ⊗ δ∗i > 0.

By Proposition 5.1, we have that ((εIp+B0)
−1/2B1(εIp+B0)

−1/2, . . . , (εIp+B0)
−1/2

Bn(εIp + B0)
−1/2) is a row contraction, and therefore

Ip ⊗ I +
n

∑
i=1

(εIp + B0)
−1/2Bi(εIp + B0)

−1/2 ⊗ φ(δi)

+
n

∑
i=1

(εIp + B0)
−1/2B∗i (εIp + B0)

−1/2 ⊗ φ(δi)
∗ > 0.

Thus,
φ(εIp ⊗ δ0 + N) > 0, for each ε > 0.

So we have that φ(N) > 0, and this completes the proof.
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REMARK 5.3. Since compressions of row contractions are still row contrac-
tions, it follows that if

w(A1 ⊗ φ(δ1) + · · ·+ An ⊗ φ(δn)) 6
1
2

,

for each row contraction (A1, . . . , An) ∈ Mp, each p ∈ N, then for Cuntz isome-
tries S1, . . . , Sn,

w(S1 ⊗ φ(δ1) + · · ·+ Sn ⊗ φ(δn)) 6
1
2

,

where Si’s are Cuntz isometries and the tensor product is the minimal one so that
S1 ⊗ a∗1 + · · ·+ Sn ⊗ a∗n ∈ On ⊗min A. Conversely, using the universal property
of Sn (1.1), we have that for each row contraction (A1, . . . , An) ∈ Mp, the map
sending Si to Ai, S∗i to A∗i , I to Ip is completely positive and hence

w(S1 ⊗ φ(δ1) + · · ·+ Sn ⊗ φ(δn)) 6
1
2

implies that

w(A1 ⊗ φ(δ1) + · · ·+ An ⊗ φ(δn)) 6
1
2

.

On the other hand, we have that

w(S1 ⊗ φ(δ1) + · · ·+ Sn ⊗ φ(δn)) 6
1
2

if and only if

I ⊗ 1 +
n

∑
j=1

Sj ⊗ a∗j +
n

∑
j=1

S∗j ⊗ aj > 0.

So we have proved the following corollary.

COROLLARY 5.4. Let φ : Sd
n → A be a self-adjoint, unital linear map. Then the

following are equivalent:
(i) φ is completely positive;

(ii) w(S1 ⊗ φ(δ1)+· · ·+Sn ⊗ φ(δn))6 1
2 , where S1, . . . , Sn are Cuntz isometries;

(iii) (φ(δ1)
∗, . . . , φ(δn)∗) is a dual row contraction.

In [13], the joint numerical radius for n-tuple of operators (T1, . . . , Tn) ∈
B(H) is defined as:

w(T1, . . . , Tn) := sup
∣∣∣ ∑

α∈F+
n

n

∑
j=1
〈hα, Tjhgjα〉

∣∣∣,
where Fn is the free group on n generators g1, . . . , gn, and the supremum is taken
over all families of vectors {hα}α∈F+

n
⊆ H with ∑

α∈F+
n

‖hα‖2 = 1.

It is shown in the same paper that w(T1, . . . , Tn) = w(S1 ⊗ T∗1 + · · ·+ Sn ⊗
T∗n ) ([13], Corollary 1.2), where w on the right hand side is the numerical radius
of an operator on H defined in the usual way. Thus, it is natural to extend the
notion of joint numerical radii of n-tuples to the category of C∗-algebras.
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DEFINITION 5.5. Let A be a C∗-algebra. The joint numerical radius of the
n-tuple (a1, . . . , an) ∈ A is:

w(a1, . . . , an) := w(S1 ⊗ a∗1 + · · ·+ Sn ⊗ a∗n),

where Si’s are Cuntz isometries.

REMARK 5.6. Let A be a C∗-algebra. Then the n-tuple (a1, . . . , an) ∈ A is a
dual row contraction if and only if

w(a1, . . . , an) 6
1
2

.

THEOREM 5.7. Let E′n = span{In+1, Ei0, E0i : 1 6 i 6 n} ⊆ Mn+1, then
Sd

n = E′n via the map θ : Sd
n → E′n, with θ(δ0) = In+1, θ(δi) = E0i, θ(δ∗i ) = Ei0, for

1 6 i 6 n.

Proof. We first show that θ is completely positive. By Corollary 5.4 and Re-
mark 5.6, we just need to show that for n Cuntz isometries S1, . . . , Sn,

w




0 S1 · · · Sn
0 0
...

. . .
0 0


 6

1
2

,

which is equivalent to
I zS1 · · · zSn

zS∗1 I
...

. . .
zS∗n I

 > 0 for all z ∈ T

which clearly holds since (zS1, . . . , zSn) is row contraction.
Next, we show that θ−1 is also completely positive. Let p ∈ N and note that

Mp(E′n) = E′n(Mp), we can write a positive element A ∈ Mp(E′n) as
A0 A1 · · · An
A∗1 A0
...

. . .
A∗n A0

 ,

where Ai ∈ Mp. Consider εIp ⊗ In + A, where Ip denotes the identity matrix in
Mp, for ε > 0, and let B = (εIp + A0)

−1/2, we have that
Ip BA1B · · · BAnB

BA∗1 B Ip
...

. . .
BA∗nB Ip

 > 0.
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This implies that (BA1B, . . . , BAnB) is a row contraction, and hence

(θ−1)(p)




Ip BA1B · · · BAnB
BA∗1 B Ip

...
. . .

BA∗nB Ip




= Ip ⊗ δ0 +
n

∑
i=1

BAiB⊗ δi +
n

∑
i=1

BA∗i B⊗ δ∗i > 0,

by Proposition 5.1. Thus,

(εIp + A0)⊗ δ0 +
n

∑
i=1

Ai ⊗ δi +
n

∑
i=1

A∗i ⊗ δ∗i > 0, for all ε > 0,

which is the same as (θ−1)(p)(εIp ⊗ In + A) > 0, for all ε > 0. Since θ is unital, we
know that (θ−1)(p)(A) > 0. Hence, θ−1 is also completely positive.

We recall the following result of Kavruk:

THEOREM 5.8 ([10]). Let S be a finite dimensional operator system. Then S is
C∗-nuclear if and only if Sd is C∗-nuclear.

COROLLARY 5.9. The operator system E′n is C∗-nuclear.

Proof. Since Sn is C∗-nuclear, Sd
n is C∗-nuclear by the above theorem. But

E′n = Sd
n up to complete order isomorphism.

REMARK 5.10. The operator system E′n seems more elementary to deal with
and if we could show directly that E′n is C∗-nuclear, then that would imply by
Kavruk’s result that Sn is C∗-nuclear, which in turn would give another proof of
the nuclearity of the Cuntz algebras. However, we have been unable to prove
directly that E′n is C∗-nuclear.

6. A LIFTING THEOREM FOR THE JOINT NUMERICAL RADIUS

The local lifting property of an operator system S is defined in [12]:

DEFINITION 6.1. Let S be an operator system, A be a unital C∗-algebra,
I CA be an ideal, q : A → A/I be the quotient map and φ : S → A/I be a unital
completely positive map. We say φ lifts locally, if for every finite dimensional
operator system S0 ⊆ S , there exists a completely positive map ψ : S0 → A such
that q ◦ψ = φ. We say that S has the operator system locally lifting property (OSLLP)
if for every C∗-algebraA and every ideal I ⊆ A, every unital completely positive
map φ : S → A/I lifts locally.

THEOREM 6.2 ([12]). Let S be an operator system, then the following are equiva-
lent:
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(i) S has the OSLLP;
(ii) S ⊗min B(H) = S ⊗max B(H).

We have seen that the operator system Sd
n is C∗-nuclear (Theorem 5.8). In

particular, we have that for a Hilbert spaceH,

Sd
n ⊗min B(H) = Sd

n ⊗max B(H).

Thus, the operator system Sd
n has the lifting property (LP).

By using the LP of Sd
n , we are able to derive the following result concerning

the joint numerical radius.

THEOREM 6.3. Let A be a unital C∗-algebra and J C A be an ideal. Suppose
T1 + J, . . . , Tn + J ∈ A/J, then there exist W1, . . . , Wn ∈ A with Wi + J = Ti + J for
each 1 6 i 6 n, such that w(W1, . . . , Wn) = w(T1 + J, . . . , Tn + J).

Proof. Suppose w(T1 + J, . . . , Tn + J) = K. If K = 0, then clearly Ti + J = 0
for each 1 6 i 6 n, and we can choose Wi = 0 for every 1 6 i 6 n.

So we consider the case when K > 0. A little scaling shows that

w
( T1

2K
+ J, . . . ,

Tn

2K
+ J
)
=

1
2

.

Thus, by Corollary 5.4 and Remark 5.6, the linear map φ : Sd
n → A/J defined by

φ(δ0) = I + J, φ(δi) =
T∗i
2K

+ J, φ(δ∗i ) =
Ti
2K

+ J,

is unitally completely positive.
By the argument before the theorem, we know that Sd

n has the LP, so there
exists a unitally completely positive map φ̂ : Sd

n → A such that π ◦ φ̂ = φ, where
π denotes the canonical map from A onto A/J. Let W∗i = 2Kφ̂(δi), then we have
that W∗i + J = Ti + J. Moreover, by Corollary 5.4, we know that (W1

2K , . . . , Wn
2K ) is a

dual row contraction. Hence, by Remark 5.6, we have that

w(W1, . . . , Wn) 6 K.

Now, to complete the proof, we need to show that w(W1, . . . , Wn) = K. Suppose
that

w
(W1

2K
, . . . ,

Wn

2K

)
<

1
2

.

Then there exists an ε > 0, such that

w
( (1 + ε)W1

2K
, . . . ,

(1 + ε)Wn

2K

)
<

1
2

.

However, this implies that

I ⊗ 1 +
n

∑
i=1

Si ⊗
(1 + ε)W∗i

2K
+

n

∑
i=1

S∗i ⊗
(1 + ε)Wi

2K
> 0,
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in Sn ⊗min A. Since id⊗π is completely positive, we further have that

I ⊗ 1 + J +
n

∑
i=1

Si ⊗
(1 + ε)T∗i + J

2K
+

n

∑
i=1

S∗i ⊗
(1 + ε)Ti + J

2K
> 0.

It now follows that

w(T1 + J, . . . , Tn + J) 6
K

1 + ε
,

which is a contradiction.
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