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ABSTRACT. We study the C∗-algebra generated by Toeplitz operators with
symbols of vanishing (mean) oscillation on the Bergman space of the unit ball.
We show that the index calculation for Fredholm operators in this C∗-algebra
can be easily and completely reduced to the classic case of Toeplitz opera-
tors with symbols that are continuous on the closed unit ball. Moreover, in
addition to a number of other properties, we show that this C∗-algebra has
uncountably many Fredholm components.
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1. INTRODUCTION

Let B denote the open unit ball {z ∈ Cn : |z| < 1} in Cn. Let dv be the
volume measure on B with the normalization v(B) = 1. The Bergman space
L2

a(B, dv) is the subspace

{h ∈ L2(B, dv) : h is analytic on B}

of L2(B, dv). Let P be the orthogonal projection from L2(B, dv) onto L2
a(B, dv).

For each f ∈ L∞(B, dv), the Toeplitz operator Tf with symbol f is defined by the
formula

Tf h = P( f h), h ∈ L2
a(B, dv).

For any non-empty subset G of L∞(B, dv), we will write T (G) for the norm-
closed algebra generated by the Toeplitz operators {Tf : f ∈ G}. If G is closed un-
der complex conjugation, then T (G) is a C∗-algebra. In the case G = L∞(B, dv),
we will simply write T in place of T (L∞(B, dv)). Often, this T is called the full
Toeplitz algebra on the Bergman space. The main interest of this paper, how-
ever, will be on operators in T (G) for a particular G that has been introduced in
previous investigations.
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In fact, the G that we are interested in consists of functions of vanishing
oscillation on B, which were first introduced by Berger, Coburn and Zhu in [1]
(see also [2], [17]). These functions are defined in terms of the Bergman metric on
B. For each z ∈ B\{0}, we have the Möbius transform ϕz given by the formula

ϕz(ζ) =
1

1− 〈ζ, z〉

{
z− 〈ζ, z〉

|z|2 z− (1− |z|2)1/2
(

ζ − 〈ζ, z〉
|z|2 z

)}
([12], page 25). In the case z = 0, we define ϕ0(ζ) = −ζ. Then the formula

β(z, w) =
1
2

log
1 + |ϕz(w)|
1− |ϕz(w)| , z, w ∈ B,

gives us the Bergman metric on B. Recall that a function g on B is said to have
vanishing oscillation if it satisfies the following two conditions: (1) g is continu-
ous on B; (2) the limit

lim
|z|↑1

sup
β(z,w)61

|g(z)− g(w)| = 0

holds. We will write VO for the collection of functions of vanishing oscillation on
B. Moreover, we set

(1.1) VObdd = VO∩ L∞(B, dv).

That is, VObdd denotes the collection of functions of vanishing oscillation that are
also bounded on B.

Let us denote the collection of compact operators on L2
a(B, dv) by K. It was

shown in [1] that

(1.2) T (VObdd) = {Tg : g ∈ VObdd}+K.

In fact, T (VObdd) has a representation in terms of the more familiar notion of
vanishing mean oscillation. Recall that the normalized reproducing kernel for the
Bergman space is given by the formula

kz(ζ) =
(1− |z|2)(n+1)/2

(1− 〈ζ, z〉)n+1 , z, ζ ∈ B.

Also recall that a function f ∈ L2(B, dv) is said to have vanishing mean oscilla-
tion if

lim
|z|↑1
‖( f − 〈 f kz, kz〉)kz‖ = 0.

Let VMO denote the collection of functions of vanishing mean oscillation on B
defined as above. In the same spirit as (1.1), let us denote

VMObdd = VMO∩ L∞(B, dv).

That is, VMObdd denotes the collection of functions of vanishing mean oscillation
that are also bounded on B. Then we have VMObdd ⊃ VObdd [1].

It was shown in [1] that, in addition to (1.2), the equality

(1.3) T (VObdd) = T (VMObdd) = {Tg : g ∈ VMObdd}+K
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also holds. In fact, it was shown in [1] that if g ∈ VMObdd, then both operators
(1− P)MgP and PMg(1− P) are compact. Therefore for all f , g ∈ VMObdd we
have Tf Tg − Tf g ∈ K.

For any non-empty G ⊂ L∞(B, dv) and any k ∈ N, let Mk(G) denote the
collection of k× k matrices whose entries belong to G. Then each f ∈ Mk(G) gives
rise to a Toeplitz operator Tf of matrix symbol on the Bergman space L2

a(B, dv)⊗
Ck of vector-valued functions. That is, for each h ∈ L2

a(B, dv)⊗Ck, considered as
a column vector, we define

Tf h = Pk( f h),

where Pk denotes the orthogonal projection from L2(B, dv) ⊗ Ck to L2
a(B, dv) ⊗

Ck. For G ⊂ L∞(B, dv) and k ∈ N, let T (Mk(G)) denote the norm-closed algebra
generated by the Toeplitz operators {Tf : f ∈ Mk(G)} of matrix symbols. From
(1.2) and (1.3) we obtain

(1.4)


T (Mk(VObdd)) = {Tg : g ∈ Mk(VObdd)}+Kk,
T (Mk(VMObdd)) = {Tg : g ∈ Mk(VMObdd)}+Kk, and
T (Mk(VMObdd)) = T (Mk(VObdd)),

for every k∈N, where Kk is the collection of compact operators on L2
a(B, dv)⊗Ck.

Let C denote the collection of continuous functions on the closed unit ball
B. The starting point of this paper is the fact that the Fredholm index theory is
well established for operators B ∈ T (Mk(C)). See [3], [14]. We will show that in-
dex calculation for Fredholm operators in T (Mk(VMObdd)) = T (Mk(VObdd))
can be easily reduced to index calculation for operators in T (Mk(C)). Thus,
through this reduction we establish the Fredholm index theory for operators in
T (Mk(VMObdd)) = T (Mk(VObdd)).

But sometimes numerical index does not tell the whole story. In fact, we
will see later in the paper that sometimes the story numerical index tells is far
from being whole. To further explain, let us introduce some useful notation.

All Hilbert spaces in this paper are assumed to be separable. For a Hilbert
space H, let us write Fred(H) for the collection of Fredholm operators on H. We
know that Fred(H) is the union of connected components

Fredm(H) = {B ∈ Fred(H) : index(B) = m},

m ∈ Z. In fact, the Fredolm index theory is one of the best-understood theories
concerning operators. We are all accustomed to the thinking that each Fredolm
component is identified with the corresponding index. But there is one interest-
ing phenomenon that has not really been noticed in the literature. Namely, for
certain C∗-subalgebras A of B(H), the intersection

(1.5) Fredm(H) ∩A

can actually have uncountably many connected components. In such a situa-
tion, the index m hardly tells us anything about the above intersection. For each
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complex dimension n, there is a smallest k(n) ∈ N such that if k > k(n), then
T (Mk(C)) contains a Fredholm operator of index 1 [14]. (We know, of course, that
k(1) = 1.) We will see that if k > k(n), then the C∗-algebra T (Mk(VMObdd)) =
T (Mk(VObdd)) is an example of A for which (1.5) has uncountably many com-
ponents.

The phenomenon that (1.5) has uncountably many components also occurs
when A is the C∗-algebra generated by the Toeplitz operators with the famil-
iar QC symbols on the Hardy space H2 of the unit circle T [11]. Technically, the
Bergman space case and the Hardy space case are quite different. In fact, we
will have more to say about the difference between the Toeplitz algebra on the
Bergman space and that on the Hardy space later.

To conclude the introduction, let us describe the organization of the paper.
In Section 2 we present the index theory for T (Mk(VMObdd)) = T (Mk(VObdd)).
In Section 3 we give a precise representation for scalar symbols f ∈ VObdd for
which the Toeplitz operator Tf is Fredholm. We then show in Section 4 that
T (Mk(VMObdd)) = T (Mk(VObdd)) has uncountably many Fredholm compo-
nents. Finally, in Section 5 we present a number of properties that are forced on
the structure of the full Toeplitz algebra T by T (VObdd).

2. INDEX THEORY

In this section we study the index theory in

T (Mk(VMObdd)) = T (Mk(VObdd)).

Conventionally, one computes Fredolm index using paths that are continuous
in the operator norm topology. That is, if At is a Fredholm operator for every
t ∈ [a, b], and if the map t 7→ At is continuous on [a, b] with respect to the oper-
ator norm, then the integer-valued function index(At) remains constant on [a, b].
But in practical terms, the requirement that the map t 7→ At be continuous with
respect to the operator norm may not always be met. This is because, in order to
compute index, the path At has to be given by a practical formula, which does not
always lead to norm continuity. This forces one to compute index under weaker
conditions. Our first proposition offers a more practical substitute for the norm-
continuity requirement of the map t 7→ At.

PROPOSITION 2.1. Suppose that At is a Fredholm operator on a Hilbert space H
for every t ∈ [a, b]. If the maps

(2.1) t 7→ A∗t At and t 7→ At A∗t

from [a, b] into B(H) are continuous with respect to the operator norm, then the function
t 7→ index(At) remains constant on [a, b].
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Proof. For each t, let Et and Ft be the spectral measures for the self-adjoint
operators A∗t At and At A∗t respectively. Consider the point b. Since Ab is Fred-
holm, there is a c > 0 such that the essential spectra of A∗b Ab and Ab A∗b are con-
tained in [c, ∞). Hence there are 0 < c1 < c2 < c such that

sp(A∗b Ab) ∩ (c1, c2) = ∅ = sp(Ab A∗b) ∩ (c1, c2).

Since the maps (2.1) are continuous with respect to the operator norm, there are
ε1 > 0 and c1 < d1 < d2 < c2 such that

(2.2) sp(A∗t At) ∩ (d1, d2) = ∅ = sp(At A∗t ) ∩ (d1, d2) whenever t ∈ (b− ε1, b].

Let ϕ : [0, ∞) → [0, 1] be a continuous function such that ϕ = 1 on [0, d1] and
ϕ = 0 on [d2, ∞). Then it follows from (2.2) that

(2.3) Et([0, d1])= ϕ(A∗t At) and Ft([0, d1])= ϕ(At A∗t ) whenever t∈ (b−ε1, b].

Since ϕ is continuous on [0, ∞), (2.1) and (2.3) together imply that the maps

t 7→ Et([0, d1]) and t 7→ Ft([0, d1])

are continuous on (b− ε1, b] with respect to the operator norm. Therefore there is
an ε ∈ (0, ε1) such that

(2.4) ‖Eb([0, d1])− Et([0, d1])‖ < 1 and ‖Fb([0, d1])− Ft([0, d1])‖ < 1

if t ∈ (b− ε, b]. Since d1 < c, the ranks of the projections Eb([0, d1]) and Fb([0, d1])
are finite. By (2.4), for every t ∈ (b− ε, b], Et([0, d1]) and Ft([0, d1]) are also finite-
rank projections with rank(Et([0, d1])) = rank(Eb([0, d1])) and rank(Ft([0, d1])) =
rank(Fb([0, d1])). For a finite-rank orthogonal projection, its rank is the same as
its trace. Hence

(2.5) tr(Et([0, d1]))− tr(Ft([0, d1])) = tr(Eb([0, d1]))− tr(Fb([0, d1]))

for every t ∈ (b− ε, b]. On the other hand, for t ∈ (b− ε, b], the polar decompo-
sition of At gives us the identity rank(Et((0, d1])) = rank(Ft((0, d1])). From this
and (2.5) we deduce

tr(Et({0}))− tr(Ft({0})) = tr(Eb({0}))− tr(Fb({0}))

for every t ∈ (b− ε, b]. That is, the function index(At) is constant on (b− ε, b].
By the same argument, index(At) is constant on [a, a + δ) for some δ > 0.

Similarly, if s ∈ (a, b), then there is some η > 0 such that index(At) is constant
on (s− η, s + η) = (s− η, s] ∪ [s, s + η). Thus we have shown that index(At) is
locally constant on [a, b]. Since [a, b] is connected, index(At) is constant on the
entire interval [a, b].

For our specific situation, we will see that Proposition 2.1 enables us to
calculate index with only ‖ · ‖BMO-continuity, rather than the traditional ‖ · ‖∞-
continuity.
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We will write C0 for the collection of continuous functions f on B which
vanish at the boundary, i.e.,

lim
|z|↑1

f (z) = 0.

Obviously, C0 is an ideal in VObdd.

PROPOSITION 2.2. Let k ∈ N. For f ∈ Mk(VObdd), the Toeplitz operator Tf

is Fredholm on L2
a(B, dv) ⊗ Ck if and only if the equivalence class f + Mk(C0) is an

invertible element in the quotient algebra Mk(VObdd)/Mk(C0).

Proof. It was shown in [1] that the map g + C0 7→ Tg +K is an isomorphism
from VObdd/C0 onto T (VObdd)/K. By elementary C∗-algebra, this induces an
isomorphism in the matrix case. That is, the map

f + Mk(C0) 7→ Tf +Kk

is an isomorphism from Mk(VObdd)/Mk(C0) onto T (Mk(VObdd))/Kk. Obvi-
ously, this implies the Fredholmness criterion stated in the proposition.

Recall that for g ∈ L2(B, dv), we define

‖g‖BMO = sup
z∈B
‖(g− 〈gkz, kz〉)kz‖.

For an arbitrary function g on B, let us define

diff(g) = sup{|g(z)− g(w)| : β(z, w) 6 1}.

LEMMA 2.3. There is a constant C2.3 such that ‖g‖BMO 6 C2.3diff(g) for every
g ∈ L2(B, dv).

Proof. For z ∈ B and r > 0, we introduce D(z, r) = {w ∈ B : β(z, w) < r},
the Bergman-metric ball. For g ∈ L2(B, dv), define

‖g‖BMO,1 = sup
z∈B

( 1
v(D(z, 1))

∫
D(z,1)

|g(w)− gz|2dv(w)
)1/2

,

where
gz =

1
v(D(z, 1))

∫
D(z,1)

g(u)dv(u).

By Theorem 18 of [2] there is a constant 0 < C1 < ∞ such that

‖g‖BMO 6 C1‖g‖BMO,1

for every g ∈ L2(B, dv). On the other hand, for every z ∈ Bwe have

1
v(D(z, 1))

∫
D(z,1)

|g(w)− gz|2dv(w)

=
1

v(D(z, 1))

∫
D(z,1)

∣∣∣ 1
v(D(z, 1))

∫
D(z,1)

(g(w)− g(u))dv(u)
∣∣∣2dv(w)
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6
∫∫

D(z,1)×D(z,1)

|g(w)− g(u)|2
v2(D(z, 1))

dv(w)dv(u) (Cauchy–Schwarz inequality)

6 4 sup
w∈D(z,1)

|g(w)− g(z)|2 6 4(diff(g))2.

Hence the constant C2.3 = 2C1 will do for the lemma.

LEMMA 2.4. Suppose that 0 < ρ < 1 and let z, w ∈ B.
(i) If ρ < |z| < 1 and ρ < |w| < 1, then β((ρ/|z|)z, (ρ/|w|)w) 6 β(z, w).

(ii) If |w| 6 ρ < |z| < 1, then β(z, (ρ/|z|)z) 6 β(z, w).

Proof. (i) Since the function x 7→ log{(1+ x)/(1− x)} is increasing on [0, 1),
it suffices to show that

(2.6) |ϕ(ρ/|z|)z((ρ/|w|)w)|2 6 |ϕz(w)|2.

To prove (2.6), let us write z = |z|ξ and w = |w|η, where ξ and η are unit vectors
in Cn. Thus 〈ξ, η〉 = a + ib, where a, b ∈ R with a2 + b2 6 1. By Theorem 2.2.2 of
[12], we have

1− |ϕz(w)|2 =
(1− |z|2)(1− |w|2)
|1− 〈z, w〉|2 =

(1− |z|2)(1− |w|2)
|1− |z||w|〈ξ, η〉|2 .

Let c ∈ [0, 1) be such that c2 = |z||w|. Since |z|2|w|2 = c4, a minimization on
|z|2 + |w|2 gives us (1− |z|2)(1− |w|2) 6 1− 2c2 + c4 = (1− c2)2. Therefore

1− |ϕz(w)|2 6
(1− c2)2

|1− c2〈ξ, η〉|2 .

On the other hand, it also follows from Theorem 2.2.2 of [12] that

1− |ϕ(ρ/|z|)z((ρ/|w|)w)|2 =
(1− ρ2)2

|1− ρ2〈ξ, η〉|2 .

We have c2 = |z||w| > ρ2 by assumption. Thus (2.6) follows from the assertion
that

f (x) =
(1− x)2

(1− ax)2 + (bx)2

is a decreasing function on the interval [0, 1). This assertion itself, of course, is
trivial if a 6 0. In the case a > 0, to prove this assertion, it suffices to factor f (x)
in the form

f (x) =
( 1− x

1− ax

)2
· 1

1 +
( bx

1−ax
)2

and observe that both factors are decreasing on [0, 1). This proves (2.6).
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(ii) By Theorem 2.2.2 of [12], we have

|ϕw(z)|2 = 1− (1− |z|2)(1− |w|2)
|1− 〈z, w〉|2 > 1− (1− |z|2)(1− |w|2)

(1− |z||w|)2 =
( |z| − |w|

1− |z||w|

)2
,

|ϕ(ρ/|z|)z(z)|2 = 1− (1− |z|2)(1− ρ2)

(1− |z|ρ)2 =
( |z| − ρ

1− |z|ρ

)2
.

Note that the function x 7→ (|z| − x)/(1 − |z|x) is decreasing on the interval
[0, |z|]. Since we now assume |w| 6 ρ < |z|, it follows that |ϕ(ρ/|z|)z(z)| 6 |ϕw(z)|.
Hence β(z, (ρ/|z|)z) 6 β(z, w).

Let f be a function on B. For each 0 6 ρ < 1, we define the function fρ by
the formula

fρ(rξ) =

{
f (rξ) if 0 6 r 6 ρ,
f (ρξ) if ρ < r 6 1,

for ξ ∈ Cwith |ξ| = 1.

We emphasize that this defines fρ as a function on the closed ball B. In particular,
if f ∈ VO, then fρ ∈ C. For a matrix-valued function f on B, we define fρ by the
same formula.

LEMMA 2.5. For every f ∈ VO we have

lim
ρ↑1
‖ fρ − f ‖BMO = 0.

Proof. Let f ∈ VO be given. By Lemma 2.3, it suffices to show that

(2.7) lim
ρ↑1

diff( fρ − f ) = 0.

To prove this, let 0 < ρ < 1. Note that if 0 6 |w| 6 ρ, then fρ(w)− f (w) = 0.
Thus

diff( fρ − f ) 6 max{a(ρ) + b(ρ), c(ρ)},
where

a(ρ)=sup{| f (z)− f (w)| : β(z, w) 6 1, ρ < |z| < 1, ρ < |w| < 1},
b(ρ)=sup{| f ((ρ/|z|)z)− f ((ρ/|w|)w)| : β(z, w) 6 1, ρ < |z| < 1, ρ < |w| < 1},
c(ρ)=sup{| f ((ρ/|z|)z)− f (z)| : ρ< |z|<1, β(z, w)61 for some w with |w|6ρ}.

Obviously, a(ρ) → 0 as ρ ↑ 1 by virtue of the fact that f ∈ VO. By Lemma 2.4(i)
and the fact that f ∈ VO, we have b(ρ) → 0 as ρ ↑ 1. Finally, by Lemma 2.4(ii)
and the fact that f ∈ VO, we also have c(ρ) → 0 as ρ ↑ 1. This proves (2.7) and
completes the proof.

Our index calculation involves Hankel operators on the Bergman space. Re-
call that for each f ∈ L∞(B, dv), the Hankel operator H f : L2

a(B, dv)→ L2(B, dv)
	L2

a(B, dv) is defined by the formula H f h = (1− P)( f h), h ∈ L2
a(B, dv). It is well
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known that there is a constant 0 < M < ∞, which is determined by the complex
dimension n, such that

‖H f ‖ 6 M‖ f ‖BMO

for every f ∈L∞(B, dv) ([2], Theorem A). For a matrix symbol f ∈Mk(L∞(B, dv)),
we define the Hankel operator H f by the formula H f h = (1 − Pk)( f h), h ∈
L2

a(B, dv) ⊗ Ck. For our purpose, the important thing is the following relation
between Toeplitz operators and Hankel operators:

Tg f − TgTf = H∗g∗H f

for all g, f ∈ Mk(L∞(B, dv)).
With the above preparation, we can now present our index result, which

says that index calculation in T (Mk(VMObdd)) = T (Mk(VObdd)) can be re-
duced to the case of Mk(C)-symbols in a brutally simple way.

THEOREM 2.6. Let f ∈ Mk(VObdd) for some k ∈ N. If the Toeplitz operator Tf

is Fredholm on L2
a(B, dv)⊗Ck, then there is a 0 < c < 1 such that the following two

statements hold true:
(i) For every c 6 ρ < 1, the Toeplitz operator Tfρ

is Fredholm.
(ii) We have index(Tf ) = index(Tfρ

) for every c 6 ρ < 1.

Proof. Given f ∈ Mk(VObdd), let us define | f |(z) = ( f ∗(z) f (z))1/2, z ∈ B.
Suppose that Tf is Fredholm. Then by Proposition 2.2, the element f + Mk(C0) is
invertible in the quotient algebra Mk(VObdd)/Mk(C0). This invertibility implies
that there are 0 < c1 < 1 and a > 0 such that

(2.8) f ∗(z) f (z) > a for every z ∈ B satisfying the condition |z| > c1.

Obviously, we have f ∗ f ∈ Mk(VObdd) and f ∗(z) f (z) 6 ‖ f ‖2
∞, z ∈ B. Since

Mk(VObdd) is a C∗-algebra, it follows that | f | ∈ Mk(VObdd). We claim that f
admits a representation

f = u| f |+ g

satisfying the following conditions:

(1) u ∈ Mk(VObdd).
(2) There is a c1 < c < 1 such that if c 6 |z| < 1, then u(z) is a unitary matrix.
(3) g ∈ Mk(C0). In fact, g(z) = 0 whenever c 6 |z| < 1.

Indeed (2.8) implies that | f |(z) > a1/2 if c1 6 |z| < 1. Therefore ‖| f |−1(z)‖ 6
a−1/2 if c1 6 |z| < 1, where ‖ · ‖ denotes the matrix norm. Consequently,

‖| f |−1(z)− | f |−1(w)‖ = ‖| f |−1(z)(| f |(w)− | f |(z))| f |−1(w)‖

6 a−1‖| f |(w)− | f |(z)‖

for all z, w satisfying the conditions c1 6 |z| < 1 and c1 6 |w| < 1. Since | f | ∈
Mk(VObdd), by a standard construction using continuous cutoff functions, we
obtain a q ∈ Mk(VObdd) and a c1 < c < 1 such that q(z) = | f |−1(z) for every z ∈
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B satisfying the condition c 6 |z| < 1. Set h = q| f | − 1. Then 1 = q| f | − h and
h(z) = 0 if c 6 |z| < 1. Let g = − f h. Then (3) holds and we have f = f q| f |+ g.
This tells us to set u = f q, which is in Mk(VObdd), verifying (1). Now (2) simply
follows from the polar decomposition of f (z) and the fact that for c 6 |z| < 1,
q(z) = ( f ∗(z) f (z))−1/2.

By (2.8) and Proposition 2.2, T| f | is a Fredholm operator. Since T| f | is self-
adjoint, we have index(T| f |) = 0. Since g ∈ Mk(C0), the operator Tg is compact.
Hence index(Tf ) = index(Tu). Similarly, (2.8) implies that if c 6 ρ < 1, then T| f |ρ
is Fredholm. Also, (3) tells us that gρ ∈ Mk(C0) whenever c 6 ρ < 1. Hence for
each c 6 ρ < 1, Tfρ

is Fredholm with index(Tfρ
) = index(Tuρ). Thus the proof

will be complete if we can show that index(Tu) = index(Tuρ) for every c 6 ρ < 1.
To prove this, we define

Aρ =

{
Tu if ρ = 1,
Tuρ if c 6 ρ < 1.

By Proposition 2.1, we will have index(Tu) = index(Tuρ), c 6 ρ < 1, if we can
show that the maps

(2.9) ρ 7→ A∗ρ Aρ and ρ 7→ Aρ A∗ρ

are continuous with respect to the operator norm on the closed interval [c, 1].
Since u is continuous on B, the map ρ 7→ uρ is continuous on [c, 1) with respect to
the supremum norm on B. This shows that the maps in (2.9) are continuous with
respect to the operator norm on the half-open interval [c, 1). Thus what remains
is to show that these maps are also continuous with respect to the operator norm
at the point ρ = 1.

To prove the continuity at ρ = 1, we use (2), which gives us

(2.10) u∗(z)u(z) = 1 whenever c 6 |z| < 1.

Thus it follows that

(2.11) u∗ρ(z)uρ(z) = 1 if c 6 ρ < 1 and c 6 |z| < 1.

On the other hand, by definition we have

(2.12) uρ(z) = u(z) if c 6 ρ < 1 and |z| < c.

The combination of (2.10), (2.11) and (2.12) gives us the identity

u∗ρuρ = u∗u

on B for every c 6 ρ < 1. Thus, using the relation between Toeplitz operators
and Hankel operators, for every c 6 ρ < 1 we have

A∗ρ Aρ − A∗1 A1 = Tu∗ρ Tuρ − Tu∗Tu = {Tu∗u − Tu∗Tu} − {Tu∗ρuρ
− Tu∗ρ Tuρ}

= H∗u Hu − H∗uρ
Huρ .(2.13)
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On the other hand, there is a constant C1 such that ‖Hu − Huρ‖ = ‖Hu−uρ‖ 6
C1‖u− uρ‖BMO. Thus, applying Lemma 2.5, we have

lim
ρ↑1
‖Hu − Huρ‖ = 0.

Combining this with (2.13), we find that

lim
ρ↑1
‖A∗ρ Aρ − A∗1 A1‖ = 0.

Thus we have shown that the map ρ 7→ A∗ρ Aρ is continuous with respect to the
operator norm at the point ρ = 1. By a similar argument, the map ρ 7→ Aρ A∗ρ
is also continuous with respect to the operator norm at the point ρ = 1. This
completes the proof.

DEFINITION 2.7. Let E be a subset of L2(B, dv) that is closed under com-
plex conjugation. For each k ∈ N, SAk(E) denotes the collection of h ∈ Mk(E)
satisfying the condition h∗(z) = h(z) for every z ∈ B.

Let h ∈ SAk(VMO) and z ∈ B. For every self-adjoint k × k matrix B, the
identity

eih(z) − eiB = i
1∫

0

eith(z)(h(z)− B)ei(1−t)Bdt

yields the estimate

(2.14) ‖eih(z) − eiB‖ 6 ‖h(z)− B‖.

From this we conclude that if h ∈ SAk(VMO), then eih ∈ Mk(VMObdd).
Recall from [1] that if f , g ∈ VMObdd, then Tf Tg − Tf g ∈ K. For each h ∈

SAk(VMO), since eih ∈ Mk(VMObdd), there are compact operators K1 and K2
such that

Te−ih Teih = 1 + K1 and Teih Te−ih = 1 + K2.

Hence if h ∈ SAk(VMO), then the Toeplitz operator Teih on L2
a(B, dv) ⊗ Ck is

Fredholm.

THEOREM 2.8. If h ∈ SAk(VMO), then the index of the Toeplitz operator Teih

equals 0.

Proof. Let h ∈ SAk(VMO) be given. For each t ∈ [0, 1], define At = Teith .
Obviously, we have index(A0) = 0. Thus it suffices to show that index(At) is a
constant on [0, 1]. By Proposition 2.1, we only need to show that the maps

t 7→ A∗t At and t 7→ At A∗t

are continuous on [0, 1] with respect to the operator norm.
To prove this, we first note that, by (2.14), there is a constant C1 such that

‖eixh‖BMO 6 C1‖xh‖BMO = C1|x|‖h‖BMO for every x ∈ [−1, 1]. Consequently
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there is a C2 such that

(2.15) ‖Heixh‖ 6 C2|x|‖h‖BMO for every x ∈ [−1, 1].

Let s, t ∈ [0, 1] be given and write x = t− s. Then note that

Teith = Teixheish = Teixh Teish + H∗
(eixh)∗Heish .

Therefore

A∗t At−A∗s As =T(eith)∗Teith − T(eish)∗Teish

={T(eish)∗T(eixh)∗+H∗eish H(eixh)∗}{Teixh Teish+H∗
(eixh)∗Heish}−T(eish)∗Teish

=T(eish)∗(T(eixh)∗Teixh − 1)Teish + T(eish)∗T(eixh)∗H∗
(eixh)∗Heish

+ H∗eish H(eixh)∗Teixh Teish + H∗eish H(eixh)∗H∗
(eixh)∗Heish

=−T(eish)∗H∗eixh Heixh Teish + T(eish)∗T(eixh)∗H∗
(eixh)∗Heish

+ H∗eish H(eixh)∗Teixh Teish + H∗eish H(eixh)∗H∗
(eixh)∗Heish .

Combining this with (2.15), we see that ‖A∗t At − A∗s As‖ 6 4C2|t − s|‖h‖BMO.
Hence the map t 7→ A∗t At is continuous with respect to the operator norm. A
similar argument shows that the map t 7→ At A∗t is also continuous with respect
to the operator norm. This completes the proof.

3. SCALAR SYMBOLS

In this section we only consider Toeplitz operators with scalar symbols.
Equivalently, this means k = 1. We will give a more precise representation for
f ∈ VObdd for which the Toeplitz operator Tf is Fredholm on L2

a(B, dv). But this
involves the complex dimension of the underlying space Cn. That is, there is a
marked difference between the cases n > 2 and n = 1. We begin with the case
n > 2, the simpler of the two.

PROPOSITION 3.1. Suppose that n > 2. Let f ∈ VObdd. If the Toeplitz operator
Tf is Fredholm on L2

a(B, dv), then there exist a real-valued function h in VO and a
g ∈ C0 such that f = eih| f |+ g.

Proof. As we showed at the beginning of the proof of Theorem 2.6, for f ∈
VObdd, if Tf is Fredholm, then f admits a representation

(3.1) f = u| f |+ g1,

where g1 ∈ C0 and u satisfies the following two conditions:

(1) u ∈ VObdd.
(2) There is a 0 < c < 1 such that if c 6 |z| < 1, then |u(z)| = 1.
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Obviously, the proposition will follow if we can show that there exist a g2 ∈ C0
and a real-valued function h in VO such that

(3.2) u = eih + g2.

To prove this, let H denote the hollowed ball {z ∈ Cn : c < |z| < 1}, where c
is the constant in (2). Also, let T denote the unit circle {τ ∈ C : |τ| = 1}. We
can view u as a map from H to T. Since n > 2, H is simply connected. Thus the
continuous map u : H → T lifts to a continuous map from H to R, the universal
covering of T ([10], Lemma 79.1). That is, there is a continuous ζ : H → R such
that u(z) = eiζ(z) whenever c < |z| < 1.

Next we show that ζ has vanishing oscillation on H in the sense that

(3.3) lim
|z|↑1

sup
β(z,w)61

|ζ(z)− ζ(w)| = 0.

If this did not hold, then there would be a q > 0 and sequences {zj} and {wj}
with |zj| ↑ 1 as j→ ∞ such that β(zj, wj) 6 1, {w ∈ B : β(zj, w) 6 1} ⊂ H, and

|ζ(zj)− ζ(wj)| > q for every j.

Pick a positive number 0 < p < 1 such that p 6 q. We claim that for every j, there
is a w′j ∈ H satisfying the conditions

(3.4) β(zj, w′j) 6 β(zj, wj) and |ζ(zj)− ζ(w′j)| = p.

To find such a w′j, recall that ϕzj(0) = zj and ϕzj(ϕzj(wj)) = wj ([12], Theo-
rem 2.2.2). By the Möbius invariance of the Bergman metric, for every r ∈ [0, 1]
we have

β(zj, ϕzj(rϕzj(wj))) = β(ϕzj(0), ϕzj(rϕzj(wj))) = β(0, rϕzj(wj))

=
1
2

log
1 + |rϕzj(wj)|
1− |rϕzj(wj)|

6
1
2

log
1 + |ϕzj(wj)|
1− |ϕzj(wj)|

= β(zj, wj).

In particular, {ϕzj(rϕzj(wj)) : r ∈ [0, 1]} ⊂ H. Define

f (r) = |ζ(zj)− ζ(ϕzj(rϕzj(wj)))|, r ∈ [0, 1].

We have f (0) = |ζ(zj) − ζ(ϕzj(0))| = |ζ(zj) − ζ(zj)| = 0 and f (1) = |ζ(zj) −
ζ(ϕzj(ϕzj(wj)))| = |ζ(zj) − ζ(wj)| = q > p. Therefore there is an s ∈ [0, 1]
such that f (s) = p, i.e., |ζ(zj) − ζ(ϕzj(sϕzj(wj)))| = p. Thus if we set w′j =

ϕzj(sϕzj(wj)), then |ζ(zj)− ζ(w′j)| = p. This proves (3.4). Now, by (3.4), we have

|u(zj)− u(w′j)| = |e
iζ(zj) − eiζ(w′j)| = |eip − 1| for every j.

Since β(zj, w′j) 6 1, j > 1, and lim
j→∞
|zj| = 1, this contradicts the fact that u ∈ VO.

Hence (3.3) holds.
Once (3.3) is proven, it is a standard exercise using an obvious cutoff func-

tion to produce a c < d < 1 and a real-valued h ∈ VO such that h(z) = ζ(z)
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whenever d 6 |z| < 1. Therefore u(z) = eih(z) whenever d 6 |z| < 1. That is, if
we set g2 = u− eih, then g2 ∈ C0. This proves (3.2) and completes the proof of
the proposition.

Next we consider the case where n = 1. We will write D for the unit disc
{z ∈ C : |z| < 1}. Write dA for the area measure on D with the normalization
A(D) = 1. Fix a continuous function 0 6 α 6 1 on [0, 1] satisfying the conditions
that α = 1 on [2/3, 1] and that α = 0 on [0, 1/3]. For each m ∈ Z, we define the
function χm on D by the formula

(3.5) χm(rτ) = α(r)τm for all 0 6 r < 1 and τ ∈ T.

PROPOSITION 3.2. Suppose that n = 1. Let f ∈ VObdd. If the Toeplitz operator
Tf is Fredholm on L2

a(D, dA), then there exist an m ∈ Z, a real-valued function h in VO
and a g ∈ C0 such that f = χmeih| f |+ g.

Proof. As in the proof of Proposition 3.1, for f ∈ VObdd, if Tf is Fredholm,
then f admits a representation (3.1), where g1 ∈ C0 and u satisfies conditions (1)
and (2) listed there. We may, of course, assume that the constant c in (2) satisfies
the condition 2/3 < c < 1.

Again, the proposition will follow if we can show that there exist an m ∈ Z,
a real-valued function h in VO and a g2 ∈ C0 such that

(3.6) u = χmeih + g2.

To prove this, for each r ∈ (c, 1), consider the map u(r) : T → T defined by
the formula u(r)(τ) = u(rτ), τ ∈ T. Obviously, the winding number of u(r) is
independent of r ∈ (c, 1). Let m denote this common winding number.

Now consider the subset B = [0, 2π]× (c, 1) of R2, and define the continu-
ous map U : B→ T by the formula

U(θ, r) = u(reiθ), (θ, r) ∈ B.

Since B is simply connected, U lifts to a continuous map Z from B to R, the
universal covering of T. That is, there is a continuous Z : B → R such that
U(θ, r) = eiZ(θ,r) for every (θ, r) ∈ B. Since the winding number of each u(r)

equals m, we have

Z(2π, r)− Z(0, r) = 2πm for every r ∈ (c, 1).

Hence if we define

ζ(θ, r) = Z(θ, r)−mθ, (θ, r) ∈ B,

then ζ is a continuous function on B satisfying the condition ζ(2π, r) = ζ(0, r) for
every r ∈ (c, 1). Thus there is a real-valued continuous function ψ on R = {z ∈
C : c < |z| < 1} such that ζ(θ, r) = ψ(reiθ) for every (θ, r) ∈ B. A retracing of the
definitions yields

u(reiθ) = eimθeiψ(reiθ) for every (θ, r) ∈ B.
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Equivalently, we have u(rτ) = τmeiψ(rτ) for all τ ∈ T and r ∈ (c, 1).
By an argument similar to the proof of (3.3), this ψ also has vanishing oscil-

lation on R. Again, a standard exercise produces a c < d < 1 and a real-valued
h ∈ VO such that h(z) = ψ(z) whenever d 6 |z| < 1. Since 2/3 < c < d < 1 and
since α = 1 on [2/3, 1], we have u(z) = χm(z)eih(z) whenever d 6 |z| < 1. That is,
if we set g2 = u− χmeih, then g2 ∈ C0. This proves (3.6) and completes the proof
of the proposition.

LEMMA 3.3. Let η be a real-valued function in VO. If 1− eiη ∈ C0, then η ∈
VObdd.

Proof. Note that 1 − eiη ∈ C0 if and only if 1 − e−iη ∈ C0. Suppose that
η /∈ VObdd. Then, replacing η by −η if necessary, we may assume that there is a
sequence {zj}∞

j=J in B such that η(zj) = (2j + 1)π for every j > J. This, of course,

implies that |zj| ↑ 1 as j → ∞. But then 1− eiη(zj) = 2 for every j > J. Since
|zj| ↑ 1 as j→ ∞, this is not reconcilable with the condition 1− eiη ∈ C0.

Let inv(VObdd/C0) be the collection of invertible elements in VObdd/C0.
Also, write inv0(VObdd/C0) for the connected component of inv(VObdd/C0) that
contains the identity element.

PROPOSITION 3.4. Let h be a real-valued function in VO. If we have eih + C0 ∈
inv0(VObdd/C0), then h ∈ VObdd.

Proof. Since VObdd/C0 is a commutative C∗-algebra, inv0(VObdd/C0) con-
sists of the exponentials in VObdd/C0. Thus if eih + C0 ∈ inv0(VObdd/C0), then
there is an a ∈ VObdd/C0 such that eih + C0 = ea. If a = f + C0 with f ∈ VObdd,
then ea = e f + C0. Hence there is a g ∈ C0 such that eih = e f + g. Write
f = f1 + i f2, where f1 and f2 are real-valued functions in VObdd. We have

e2 f1 = e f · e f = |e f |2 = |eih − g|2 = 1 + g1,

where g1 ∈ C0. Hence f1 ∈ C0, and consequently e f1 = 1 + g2 for some g2 ∈ C0.
Thus

eih = ei f2 + g3 for some g3 ∈ C0.

Write η = f2 − h. Then the above implies that 1− eiη ∈ C0. By Lemma 3.3, this
means that η = f2− h belongs to VObdd. Since f2 is bounded, so is h = f2− η.

PROPOSITION 3.5. Let f ∈ VObdd be such that the Toeplitz operator Tf is Fred-
holm on L2

a(B, dv). If h is an unbounded, real-valued function in VO, then f + C0 and
eih f + C0 do not belong to the same connected component of inv(VObdd/C0).

Proof. If f + C0 and eih f + C0 were contained in a single component of
inv(VObdd/C0), then so would 1 + C0 and eih + C0. That is, we would have
eih + C0 ∈ inv0(VObdd/C0). By Proposition 3.4, this would imply h ∈ VObdd,
which contradicts the assumption that h is unbounded.
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4. UNCOUNTABLY MANY FREDHOLM COMPONENTS

Considering the general case of matrix symbols, we will now show that for
each k ∈ N, the intersection

(4.1) Fred(L2
a(B, dv)⊗Ck) ∩ T (Mk(VObdd))

has uncountably many connected components, and the Fredholm index hardly
tells us anything about these components.

THEOREM 4.1. Let f ∈ Mk(VObdd) for some k ∈ N, and suppose that the
Toeplitz operator Tf on L2

a(B, dv) ⊗ Ck is Fredholm. Furthermore, suppose that h is
an unbounded, real-valued function in VO. Then for every pair of s 6= t in R, the op-
erators Teish f and Teith f belong to distinct connected components of (4.1). On the other
hand, we have index(Teith f ) = index(Tf ) for every t ∈ R.

Proof. If A is a unital C∗-algebra, then the connected component of inv(A)
that contains 1 consists of elements of the form ea1 · · · ea` , a1, . . . , a` ∈ A and
` ∈ N. From this it is easy to deduce that the component of (4.1) that contains 1
consists of elements of the form

Teϕ1 ···eϕ` + K,

where ` ∈ N, ϕ1, . . . , ϕ` ∈ Mk(VObdd), and K is compact.
For s 6= t in R, if Teish f and Teith f were in the same component of (4.1), then

(4.2) Teish f = ATeith f + K1,

where A is in the component of (4.1) that contains 1 and K1 is compact. We will
show that this leads to a contradiction. Indeed by the preceding paragraph, (4.2)
implies that there are ϕ1, . . . , ϕ` ∈ Mk(VObdd) such that Teish f − Teϕ1 ···eϕ`eith f is
compact. That is,

eish f − eϕ1 · · · eϕ`eith f ∈ Mk(C0).

The Fredholmness of Tf implies that f + Mk(C0) is invertible in the quotient
Mk(VObdd)/Mk(C0). Hence the above implies that there is a G ∈ Mk(C0) such
that

eϕ1 · · · eϕ`ei(t−s)h = 1 + G.

Taking determinant on both sides, we find that

eϕeik(t−s)h = 1 + g

where ϕ = tr(ϕ1) + · · · + tr(ϕ`) and g ∈ C0. Thus eϕeik(t−s)h + C0 belongs to
inv0(VObdd/C0). Since ϕ ∈ VObdd, eϕeik(t−s)h + C0 and eik(t−s)h + C0 belong to
the same component of inv(VObdd/C0). Hence eik(t−s)h + C0 ∈ inv0(VObdd/C0).
By Proposition 3.4, this forces k(t − s)h to be bounded. Since t 6= s and h is
assumed to be unbounded, this is a contradiction. Hence Teish f and Teith f are not
in the same component of (4.1).
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To show that index(Teith f ) = index(Tf ), t ∈ R, it suffices to note that

index(Teith f ) = index(Teith Ik
) + index(Tf ),

where Ik denotes the k× k identity matrix. By Theorem 2.8, we have index(Teith Ik
)

= index(TeithIk ) = 0. Hence index(Teith f ) = index(Tf ).

But even with Theorem 4.1 established, we still need to do one more thing
before we can claim that (4.1) truly has uncountably many connected compo-
nents. Namely, we need to produce at least one unbounded, real-valued function
in VO.

EXAMPLE 4.2. We will now construct an unbounded, real-valued function h

in VO. To define the desired function, we first set the value ψ(1− 2−ν+1) =
ν

∑
j=1

j−1

for every ν ∈ N. We then define ψ to be the increasing, continuous function on
[0, 1) that is linear on each [1− 2−ν+1, 1− 2−ν], ν ∈ N. With ψ so defined, we
define h(z) = ψ(|z|), z ∈ B. Thus h is a radial function. Obviously, h is both
continuous and unbounded on B. What remains is to show that h has vanishing
oscillation.

Let z, w ∈ B. By Theorem 2.2.2 of [12], we have

1− |ϕz(w)|2 =
(1− |z|2)(1− |w|2)
|1− 〈w, z〉|2 6

(1− |z|2)(1− |w|2)
(1− |w||z|)2 .

Elementary algebra then leads to

|ϕz(w)|2 > 1− (1− |z|2)(1− |w|2)
(1− |w||z|)2 =

( |w| − |z|
1− |w||z|

)2
.

Note that the function x 7→ log{(1 + x)/(1 − x)} is increasing on the interval
[0, 1). Therefore for z, w ∈ B satisfying the condition |z| 6 |w|, we have

(4.3) β(w, z) =
1
2

log
1 + |ϕz(w)|
1− |ϕz(w)| >

1
2

log
(1 + |w|)(1− |z|)
(1− |w|)(1 + |z|) .

Hence if we have both |z| 6 |w| and β(z, w) 6 1, then (1− |z|)/(1− |w|) 6 e2 <
24. For a pair of z, w satisfying these two conditions, there are ν 6 ν′ in N such
that |z| ∈ [1 − 2−ν+1, 1 − 2−ν) and |w| ∈ [1 − 2−ν′+1, 1 − 2−ν′). From this we
deduce

2−ν

2−ν′+1 6
1− |z|
1− |w| < 24.

That is, ν′ < ν + 5. Using this inequality and definition of ψ, we have

|h(z)− h(w)| = ψ(|w|)− ψ(|z|) 6 ψ(1− 2−ν′)− ψ(1− 2−ν+1)

=
ν′+1

∑
j=1

j−1 −
ν

∑
j=1

j−1 =
ν′+1

∑
j=ν+1

j−1 6
5

ν + 1
6

5
log 1

1−|z|
.
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Thus if we drop the condition |z| 6 |w| but retain the requirement β(z, w) 6 1,
then

|h(z)− h(w)| 6 5

min
{

log 1
1−|z| , log 1

1−|w|

} .

From this inequality one sees that h ∈ VO.

In the special case of scalar symbols, we have a more precise description of
Fredholm components. But for this more precise description, we again need to
separate the cases of complex dimension n > 2 and complex dimension n = 1.
Write VO(r) (respectively, VO(r)

bdd) for the collection of real-valued functions in VO
(respectively, in VObdd).

THEOREM 4.3. Suppose that n > 2. Let f1, f2 ∈ VObdd be such that the Toeplitz
operators Tf1 and Tf2 are Fredholm. Let f1 = eih1 | f1|+ g1 and f2 = eih2 | f2|+ g2 be the
representations provided by Proposition 3.1, i.e., g1, g2 ∈ C0 and h1, h2 ∈ VO(r). Then
Tf1 and Tf2 belong to the same connected component of

(4.4) Fred(L2
a(B, dv)) ∩ T (VMObdd) = Fred(L2

a(B, dv)) ∩ T (VObdd)

if and only if h2 − h1 ∈ VO(r)
bdd. Consequently, there is a natural one-to-one correspon-

dence between the connected components in (4.4) and the elements in the quotient linear
space VO(r)/VO(r)

bdd.

Proof. For a non-negative function ϕ in VObdd, if Tϕ is Fredholm, then Tϕ

belongs to the component of (4.4) that contains the identity operator. Hence for
each ν ∈ {1, 2}, Tfν

and Teihν belong to the same component of (4.4). Moreover,
Tf1 and Tf2 belong to one single component of (4.4) if and only Teih1 and Teih2

belong to one single component of (4.4). If h2 − h1 ∈ VO(r)
bdd, then obviously Teih1

and Teih2 belong to the same component of (4.4). On the other hand, we can write
f = eih1 and h = h2 − h1, consequently eih2 = eih f . Thus, by Proposition 3.5, if
Teih1 and Teih2 belong to the same component of (4.4), then h = h2− h1 is bounded.
This completes the proof.

Recall that for m ∈ Z, the function χm was defined by (3.5). It is well known
that the index of the Toeplitz operator Tχm on L2

a(D, dA) equals −m ([3], [14]).

THEOREM 4.4. Suppose that n = 1. Let f1, f2 ∈ VObdd be such that the Toeplitz
operators Tf1 and Tf2 are Fredholm. Let f1 = χm1eih1 | f1|+ g1 and f2 = χm2eih2 | f2|+
g2 be the representations provided by Proposition 3.2, i.e., m1, m2 ∈ Z, g1, g2 ∈ C0 and
h1, h2 ∈ VO(r). Then Tf1 and Tf2 belong to the same connected component of

(4.5) Fred(L2
a(D, dA)) ∩ T (VMObdd) = Fred(L2

a(D, dA)) ∩ T (VObdd)
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if and only if both conditions m1 = m2 and h2− h1 ∈ VO(r)
bdd are satisfied. Consequently,

there is a natural one-to-one correspondence between the connected components in (4.5)
and the elements in the product set Z× {VO(r)/VO(r)

bdd}.
Using the fact that index(Tχm) = −m, the proof of Theorem 4.4 follows the

same argument as in the proof of Theorem 4.3. Therefore we will not repeat the
proof here.

5. VANISHING OSCILLATION AND ESSENTIAL CENTER

Recall that we write T for the full Toeplitz algebra on the Bergman space. In
other words, T is the C∗-algebra on L2

a(B, dv) generated by the full set of Toeplitz
operators {Tf : f ∈ L∞(B, dv)}. In this section, we will consider T (VObdd)
from the view point of the essential center of T . Recall that if A is a C∗-algebra of
operators on a Hilbert spaceH, then its essential center is defined to be

EssCen(A) = {B ∈ A : [B, A] is compact for every A ∈ A}.

What particular interests us here is the inclusion relation

(5.1) EssCen(T ) ⊃ T (VObdd),

which was established in [1]. We will see that much can be gleaned from this
inclusion.

We begin with the main technical result of the section. Recall that a state ϕ
on a unital C∗-algebra A is said to be faithful if it has the property that for every
positive element A ∈ A, the condition A 6= 0 implies ϕ(A) > 0.

PROPOSITION 5.1. The quotient algebra EssCen(T )/K does not admit any faith-
ful state. Consequently, if (X,M, µ) is any probability space, then EssCen(T )/K is not
isomorphic to any unital C∗-subalgebra of L∞(X,M, µ).

The technical part of the proof of Proposition 5.1 is the construction of cer-
tain radial functions in VObdd. For each integer k > 2, let uk be a continuous
function on [0, 1) satisfying the following conditions:

(i) 0 6 uk 6 1 on [0, 1);
(ii) uk = 0 on [0, 1− 2−k) ∪ [1− 2−4k, 1);

(iii) uk = 1 on [1− 2−2k, 1− 2−3k)

(v) sup{|uk(r)− uk(r′)| : r, r′ ∈ [1− 2−j+1, 1− 2−j]} 6 1/k for every j ∈ N.

Such a continuous function exists; in fact we can obviously pick one that is linear
on each [1− 2−j+1, 1− 2−j], j ∈ N. Next we pick a sequence of natural numbers

2 6 k(1) < k(2) < k(3) < · · · k(i) < · · ·

such that

(a) 4k(i) < k(i + 1) for every i ∈ N and
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(b) k(i) > 2i for every i ∈ N.
Now for each i ∈ Nwe define the radial function

gi(z) = uk(i)(|z|), z ∈ B,

on the unit ball. Moreover, for each subset E of Nwe define

gE = ∑
i∈E

gi.

Obviously, it follows from (ii) and (a) that each gE is a continuous function on B.
Furthermore, by (i), (ii) and (a) we have ‖gE‖∞ 6 1 for every E ⊂ N.

LEMMA 5.2. For every subset E ⊂ N we have gE ∈ VObdd.

Proof. By the boundedness mentioned above, it suffices to show that gE ∈
VO. Let us first estimate diff(gi) for each i ∈ N. We claim that

(5.2) diff(gi) 6
5

k(i)
for every i ∈ N.

Let z, w ∈ B. Recall from (4.3) that if we have both |z| 6 |w| and β(z, w) 6 1, then
(1− |z|)/(1− |w|) 6 e2 < 24. For a pair of z, w satisfying these two conditions,
there are j 6 j′ in N such that |z| ∈ [1− 2−j+1, 1− 2−j) and |w| ∈ [1− 2−j′+1, 1−
2−j′). Hence

2−j

2−j′+1 6
1− |z|
1− |w| < 24.

That is, j′< j+ 5. Using this inequality and (v), the usual telescoping trick gives us

|gi(z)−gi(w)|
= |uk(i)(|z|)− uk(i)(|w|)|

6sup{|uk(i)(r)−uk(i)(s)| : r∈ [1−2−j+1, 1−2−j), s∈ [1−2−j′+1, 1−2−j′)}

6
5

k(i)
,

which proves (5.2).
Let E ⊂ N be given. To show that gE ∈ VO, pick any ε > 0. Using (b), we

can partition E in the form E = F ∪ E′, where F is a finite set and ∑
i∈E′

(5/k(i)) 6 ε.

Since F is finite, by (ii) there is a 0 < t0 < 1 such that gi(ζ) = 0 for all i ∈ F and
ζ ∈ B satisfying the condition |ζ| > t0. For this t0, there is a t0 < t1 < 1 such that
for any pair of z, w ∈ B, if we have both β(z, w) 6 1 and |z| > t1, then |w| > t0.
Hence if z, w ∈ B are such that β(z, w) 6 1 and |z| > t1, then gi(z) = 0 = gi(w)
for every i ∈ F. Thus if |z| > t1 and β(z, w) 6 1, then

|gE(z)− gE(w)| 6 ∑
i∈E′

diff(gi) 6 ∑
i∈E′

5
k(i)

6 ε.

This proves that gE has vanishing oscillation on B.
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LEMMA 5.3. Let E ⊂ N. Then the Toeplitz operator TgE on L2
a(B, dv) is compact

if and only if the set E is finite.

Proof. If E is a finite set, then by (ii) the support of gE is obviously a compact
subset of B, and consequently the Toeplitz operator TgE is compact.

On the other hand, Lemma 5.2 tells us that gE ∈ VObdd for every E ⊂
N. Thus if TgE is compact, then gE ∈ C0 (see Theorems B and A in [1]). By
condition (iii), if gE ∈ C0, then E has to be a finite subset of N.

Proof of Proposition 5.1. We need the following fact: there is an uncountable
family {Eλ : λ ∈ Λ} of infinite subsets of N such that for every pair of λ 6= λ′

in Λ, the intersection Eλ ∩ Eλ′ is finite. The construction of such a family is a
standard exercise in textbooks. But instead a reference, it will be easier to simply
give a proof: arrange the natural numbers as the vertices of a binary tree. That
is, 1 has descendants 2 and 3, 2 has descendants 4 and 5, and 3 has descendants
6 and 7, and so on. Then we simply let Λ be the collection of all possible paths
down the tree starting from 1. For each path λ ∈ Λ, let Eλ be the collection of
natural numbers found along λ. The finite intersection property follows from the
fact that any two distinct paths will diverge at some point.

By Lemma 5.2 and (5.1), in the quotient algebra EssCen(T )/K we have the
element

Aλ = TgEλ
+K

for every λ ∈ Λ. Since TgEλ
is obviously a positive operator on L2

a(B, dv), Aλ is
a positive element in EssCen(T )/K. Since each Eλ is an infinite set, Lemma 5.3
tells us that Aλ 6= 0. Suppose that there were a faithful state ϕ on EssCen(T )/K.
Then ϕ(Aλ) > 0 for every λ ∈ Λ. Since the index set Λ is uncountable, there is a
c > 0 such that the set

Λc = {λ ∈ Λ : ϕ(Aλ) > c}
is infinite. Since c > 0, we can pick an m ∈ N such that mc > 1. Now let

λ(1), . . . , λ(m)

be m distinct elements in Λc. For every pair of 1 6 ` < ν 6 m, the intersection
Eλ(`) ∩ Eλ(ν) is finite. Hence there is a finite subset F of N such that

(5.3) {Eλ(`)\F} ∩ {Eλ(ν)\F} = ∅ for every pair of 1 6 ` < ν 6 m.

For each 1 6 ν 6 m, define Eν = Eλ(ν)\F. Also, define E =
m⋃

ν=1
Eν. Then it follows

from (5.3) that

(5.4) gE =
m

∑
ν=1

gEν .

Since F is a finite set, by Lemma 5.3 we have TgEλ(ν)
− TgEν

= TgEλ(ν)\Eν
∈ K for

every 1 6 ν 6 m. Thus Aλ(ν) = TgEν
+K, 1 6 ν 6 m. Combining this with (5.4),
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we find that
Aλ(1) + · · ·+ Aλ(m) = TgE +K.

Properties (i), (ii) and (a) ensure that ‖gE‖∞ 6 1. Hence ‖Aλ(1) + · · ·+ Aλ(m)‖ 6
1. Since ϕ is a state, it follows that

ϕ(Aλ(1) + · · ·+ Aλ(m)) 6 1.

On the other hand, by virtue of the membership λ(ν) ∈ Λc, 1 6 ν 6 m, we have

ϕ(Aλ(1) + · · ·+ Aλ(m)) = ϕ(Aλ(1)) + · · ·+ ϕ(Aλ(m)) > mc > 1.

The last two displayed inequalities obviously contradict each other.

Suppose that A is a unital C∗-algebra of operators on a Hilbert space H. If
A contains K(H), the collection of compact operators on H, then K(H) is the
smallest nonzero, closed ideal in A. In this case EssCen(A) can be alternately
described as the collection of operators in A that commute with A modulo its
smallest nonzero, closed ideal. In other words, if A ⊃ K(H), then EssCen(A) is
C∗-algebraically defined.

For the Toeplitz algebra T on the Bergman space and the the Toeplitz alge-
bra T Hardy on the Hardy space, we have T ⊃ K and T Hardy ⊃ KHardy. Thus,
in view of the comments in the preceding paragraph, it makes sense to compare
the two essential centers EssCen(T ) and EssCen(T Hardy), and that was the rea-
son for establishing Proposition 5.1. But before we make such a comparison, it is
necessary to recall the relevant definitions and notations in the Hardy-space case.

As usual, let S denote the unit sphere {z : |z| = 1} in Cn. Let dσ be the
standard spherical measure on S. That is, dσ is the positive, regular Borel measure
on S with σ(S) = 1 that is invariant under the orthogonal group O(2n), i.e., the
group of isometries on Cn ∼= R2n which fix 0. Recall that the Hardy space H2(S)
is just the norm closure of C[z1, . . . , zn] in L2(S, dσ). Given any f ∈ L∞(S, dσ),
the Toeplitz operator THardy

f on the Hardy space H2(S) is defined by the formula

THardy
f h = PHardy( f h), h ∈ H2(S),

where PHardy is the orthogonal projection from L2(S, dσ) onto H2(S). The Toeplitz
algebra T Hardy on H2(S) is the C∗-algebra generated by {THardy

f : f ∈ L∞(S, dσ)}.
Let KHardy denote the collection of compact operators on H2(S).

Suppose that S is a set of bounded operators on a Hilbert space H. Recall
that the essential commutant of S is defined to be

EssCom(S) = {X ∈ B(H) : [X, A] is compact for every A ∈ S}.

For a C∗-subalgebra A of B(H), we always have EssCom(A) ⊃ EssCen(A).
Let VMObdd(S) be the collection of bounded functions of vanishing mean

oscillation on the sphere S. That is, VMObdd(S) is the collection of f ∈ L∞(S, dσ)
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satisfying the condition

lim
|z|↑1
‖( f − 〈 f kHardy

z , kHardy
z 〉)kHardy

z ‖ = 0,

where kHardy
z is the normalized reproducing kernel for the Hardy space H2(S). It

is now a well-known fact that

(5.5) EssCom(T Hardy)=EssCen(T Hardy)={THardy
g : g∈VMObdd(S)}+KHardy.

Recall that (5.5) was first proved by Davidson in [4] for the case n = 1 and gener-
alized to the case n > 2 by Ding, Guo and Sun in [6], [8]. For the latest develop-
ment along this line, see [7]. By the symbol calculus on T Hardy, we have

(5.6) ({THardy
g : g ∈ VMObdd(S)}+KHardy)/KHardy ∼= VMObdd(S).

See [5] or Lemma 4.12 of [16].
The Bergman space Toeplitz algebra T is known to coincide with its ideal

generated by the commutators [9], [13]. Consequently, there is no symbol calculus
on the whole of the C∗-algebra T . On the other hand, since there is a symbol
calculus on T Hardy, the commutator ideal in T Hardy is well known to be a proper
ideal. Therefore the two Toeplitz algebras T and T Hardy are not isomorphic as C∗-
algebras. Now we can show that the two essential centers are also not isomorphic
as C∗-algebras.

PROPOSITION 5.4. The C∗-algebras EssCen(T ) and EssCen(T Hardy) are not
isomorphic to each other.

Proof. Suppose that there were an isomorphism

ψ : EssCen(T )→ EssCen(T Hardy).

Since the collection of compact operators is the smallest nonzero ideal in each
essential center, ψ induces an isomorphism

ψ∗ : EssCen(T )/K → EssCen(T Hardy)/KHardy

between the quotient algebras. Combining this with (5.5) and (5.6), we would
have

EssCen(T )/K ∼= VMObdd(S).
Since VMObdd(S) is a unital C∗-subalgebra of L∞(S, dσ), this contradicts Propo-
sition 5.1.

REMARK 5.5. Because T ⊃ K and T Hardy ⊃ KHardy, Proposition 5.4 actu-
ally gives us a new proof of the fact that the two Toeplitz algebras T and T Hardy

are not isomorphic. The point is that this proof does not use [9], [13].

Actually, we can make a stronger statement than just that T � T Hardy.

PROPOSITION 5.6. LetA be a C∗-algebra of bounded operators on the Hardy space
H2(S). If A ⊃ T Hardy, then A is not isomorphic to T .
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Proof. Suppose that A ⊃ T Hardy. Again, because T Hardy ⊃ KHardy and
T ⊃ K, if it were true thatA ∼= T , then we would have EssCen(A) ∼= EssCen(T ),
which would further imply

(5.7) EssCen(A)/KHardy ∼= EssCen(T )/K.

But since A ⊃ T Hardy, we have EssCen(A) ⊂ EssCom(T )Hardy. Thus we con-
clude that EssCen(A)/KHardy is a unital C∗-subalgebra of

EssCom(T )Hardy/KHardy ∼= VMObdd(S).

Combining this with (5.7), we would have to conclude that EssCen(T )/K is
isomorphic to a unital C∗-subalgebra of L∞(S, dσ), which contradicts Proposi-
tion 5.1.

In view of Proposition 5.6, one may wonder, if A is a C∗-subalgebra of
T Hardy, can A be isomorphic to T ? The answer is still negative if 1 ∈ A. This
is because, by the symbol calculus, the conditions A ⊂ T Hardy and 1 ∈ A imply
that the commutator ideal inA is a proper ideal. That is, for the proof of this fact,
we do need to know that T coincides with its commutator ideal.

Finally, we can present Proposition 5.6 in a slightly different form.

PROPOSITION 5.7. Let A be a unital C∗-subalgebra of T . If A ⊃ K, then A is
not isomorphic to T Hardy.

Proof. Suppose that there were an isomorphism ψ : A → T Hardy. Under
the condition A ⊃ K, we have ψ(K) = KHardy. Thus ψ is unitarily implemented.
That is, there is a unitary operator U : L2

a(B, dv)→ H2(S) such that

ψ(A) = U∗AU for every A ∈ A.

Accordingly, T is isomorphic to U∗T U, which is a C∗-subalgebra of B(H2(S))
containing U∗AU = ψ(A) = T Hardy. But this contradicts Proposition 5.6.

Acknowledgements. This work was partially supported by a NSFC grant (11271387)
and Chongqing Natural Sience Foundation (cstc 2013jjB0050). The second author was par-
tially supported by Simons Foundation grant #196300. We thank the referee for the careful
reading of the manuscript and for the many helpful suggestions.

REFERENCES

[1] C. BERGER, L. COBURN, K. ZHU, Function theory on Cartan domains and the
Berezin–Toeplitz symbol calculus, Amer. J. Math. 110(1988), 921–953.

[2] D. BÉKOLLÉ, C. BERGER, L. COBURN, K. ZHU, BMO in the Bergman metric on
bounded symmetric domains, J. Funct. Anal. 93(1990), 310–350.

[3] L. COBURN, Singular integral operators and Toeplitz operators on odd spheres, Indi-
ana Univ. Math. J. 23(1973), 433–439.



TOEPLITZ OPERATORS AND TOEPLITZ ALGEBRA WITH SYMBOLS OF VANISHING OSCILLATION 131

[4] K. DAVIDSON, On operators commuting with Toeplitz operators modulo the compact
operators, J. Funct. Anal. 24(1977), 291–302.

[5] A. DAVIE, N. JEWELL, Toeplitz operators in several complex variables, J. Funct. Anal.
26(1977), 356–368.

[6] X. DING, S. SUN, Essential commutant of analytic Toeplitz operators, Chinese Sci. Bull.
42(1997), 548–552.

[7] J. ESCHMEIER, K. EVERARD, Toeplitz projections and essential commutants, J. Funct.
Anal. 269(2015), 1115–1135.

[8] K. GUO, S. SUN, The essential commutant of the analytic Toeplitz algebra and some
problems related to it [Chinese], Acta Math. Sinica (Chin. Ser.) 39(1996), 300–313.

[9] T. LE, On the commutator ideal of the Toeplitz algebra on the Bergman space of the
unit ball in Cn, J. Operator Theory 60(2008), 149–163.

[10] J. MUNKRES, Topology, 2nd Ed., Prentice Hall, Upper Saddle River, NJ 2000.

[11] A. ORENSTEIN, An algebra of functions on the unit circle and Toeplitz operators in
symmetrically-normed ideals, Ph.D. Dissertation, SUNY Buffalo, Buffalo, NY 2016.

[12] W. RUDIN, Function Theory in the Unit Ball of Cn, Springer-Verlag, New York-Berlin
1980.

[13] D. SUÁREZ, The Toeplitz algebra on the Bergman space coincides with its commuta-
tor ideal, J. Operator Theory 51(2004), 105–114.

[14] U. VENUGOPALKRISHNA, Fredholm operators associated with strongly pseudocon-
vex domains in Cn, J. Funct. Anal. 9(1972), 349–373.

[15] J. XIA, On the essential commutant of T (QC), Trans. Amer. Math. Soc. 360(2008), 1089–
1102.

[16] J. XIA, Singular integral operators and essential commutativity on the sphere, Canad.
J. Math. 62(2010), 889-913.

[17] K. ZHU, VMO, ESV, and Toeplitz operators on the Bergman space, Trans. Amer. Math.
Soc. 302(1987), 617–646.

JINGBO XIA, DEPARTMENT OF MATHEMATICS, STATE UNIVERSITY OF NEW YORK

AT BUFFALO, BUFFALO, NY 14260, U.S.A.
E-mail address: jxia@acsu.buffalo.edu

DECHAO ZHENG, CENTER OF MATHEMATICS, CHONGQING UNIVERSITY,
CHONGQING, 401331, P.R. CHINA and DEPARTMENT OF MATHEMATICS, VANDERBILT

UNIVERSITY, NASHVILLE, TN 37240, U.S.A.
E-mail address: dechao.zheng@vanderbilt.edu

Received September 9, 2015; revised May 11, 2016.


	1. INTRODUCTION
	2. INDEX THEORY
	3. SCALAR SYMBOLS
	4. UNCOUNTABLY MANY FREDHOLM COMPONENTS
	5. VANISHING OSCILLATION AND ESSENTIAL CENTER
	REFERENCES

