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ABSTRACT. This paper provides a new proof of the index formula for block
Toeplitz operators. The idea is to calculate a certain integral formula for the
winding number using Fourier series, expressing this in terms of Hankel op-
erators, and producing the expected index.

KEYWORDS: Index formula, winding number, Toeplitz operator.

MSC (2010): 47B35, 55M25, 47A53.

INTRODUCTION

Let S1 = R/Z and let g : S1 → Mn(C) be a continuous function. We denote
by gk ∈ Mn(C) the kth Fourier coefficient of g,

gk =

1∫
0

g(t)e−2πiktdt, k ∈ Z.

The Toeplitz operator T(g) and the Hankel operator H(g) generated by the ma-
trix function g are the bounded linear operators on `2(N,Cn) given by the infinite
block matrices (gj−k)

∞
j,k=1 and (gj+k−1)

∞
j,k=1, respectively. It is well known that

T(g) is a Fredholm operator if and only if det g(t) 6= 0 for t ∈ S1 and that in this
case the index Ind T(g) of T(g) equals minus the winding number W(det g) of
det g about the origin. The earliest proof is [7].

One method of proving the index formula Ind T(g) = −W(det g), due in-
dependently to Atiyah [1] and Douglas [3], is to show these two functions are lo-
cally constant, respect composition of loops, and agree on the fundamental loop
g(t) = {eit, 1, . . . , 1} in the diagonal matrices. Another proof, which is the one
given in [2], is based on Markus and Feldman’s theorem [9]. This theorem says
that if an operator matrix T = (Tjk)

n
j,k=1 is constituted by Hilbert space opera-

tors that commute pairwise modulo trace class operators and if T is Fredholm,
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then det T is also Fredholm and Ind T = Ind det T. In this way the problem is
reduced to the case n = 1. Here we give a proof that does not reduce to the case
n = 1, nor require the topological arguments mentioned. We were motivated to
find such a direct algebraic and non-topological proof in our attempt to prove a
generalization of this formula involving higher degree differential forms.

The idea behind the proof given here is standard in the pseudodifferential
operators community; see, e.g., the classic paper [6] or the lecture notes [8] (where
it is “between the lines”) or the very recent paper [5]. However, in the case of one-
dimensional block Toeplitz operators, this idea can be broken down to an almost
elementary and very short reasoning, which encouraged us to publish our proof
which works equally well for all cases.

1. MAIN RESULT AND PROOF

It suffices to prove the index formula for continuously differentiable matrix
functions g. Therefore, we assume henceforth that g is in C1. We define g̃ by
g̃(t) = g(−t). We have the Fourier series

g(t) = ∑
k∈Z

gke2πikt, g−1(t) = ∑
k∈Z

hke2πikt,

g̃(t) = ∑
k∈Z

g−ke2πikt, g̃−1(t) = ∑
k∈Z

h−ke2πikt.

Since the derivative g′ is in L2, it follows that ∑
k∈Z
|k|2|gk|22 < ∞. This implies that

the Hilbert–Schmidt norm ‖H(g)‖2 is finite:

‖H(g)‖2
2 =

∞

∑
k=1

k|gk|22 < ∞.

Analogously, we see that H(g−1), H(g̃), H(g̃−1), and also the Hankel operators
resulting after replacing g by det g, are all Hilbert–Schmidt. Finally, we define
W(g) by

W(g) =
1

2πi

1∫
0

tr g−1(t)g′(t)dt.

For n = 1, this is the usual winding number of g. We will show that if n > 1, then
W(g) is nothing but the usual winding number of det g.

Here is the main result.

THEOREM. Let g : S1 → GLn(C) be a C1 function. Then the following quantities
coincide:

(i) −Ind T(g),
(ii) −Ind T(det g),

(iii) W(g),
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(iv) W(det g),
(v) tr H(g)H(g̃−1)− tr H(g−1)H(g̃),

(vi) tr H(det g)H(det g̃−1)− tr H(det g−1)H(det g̃).

Proof. We have

W(g) =
1

2πi

1∫
0

tr
(

∑
j∈Z

hje2πijt
)(

∑
k∈Z

2πikgke2πikt
)

dt

=

1∫
0

tr ∑
j,k∈Z

khjgke2πi(j+k)tdt

= tr ∑
k∈Z

kgkh−k = tr
∞

∑
k=1

kgkh−k − tr
∞

∑
k=1

khkg−k

= tr H(g)H(g̃−1)− tr H(g−1)H(g̃).

A well-known formula due to Cálderon, Hörmander, Fedosov, and probably still
others, states that if T is Fredholm and R is an operator such that I − RT and
I − TR are trace class, then Ind T = tr (I − RT) − tr (I − TR). Another well-
known identity, quoted in Proposition 2.14 of [2], implies that

T(g−1)T(g) = I − H(g−1)H(g̃), T(g)T(g−1) = I − H(g)H(g̃−1).

As the Hankel operators are Hilbert–Schmidt, we deduce from this general index
formula that

−Ind T(g) = tr [I − T(g)T(g−1)]− tr [I − T(g−1)T(g)]

= tr H(g)H(g̃−1)− tr H(g−1)H(g̃).

To complete the proof we are left with verifying the equality W(g) = W(det g),
which is a consequence of the identity

(det g)′

det g
= tr (g−1g′),

or, more generally, d log det g = tr (g−1dg). This identity can easily be proved
by elementary linear algebra. Another argument is as follows. Both sides are
left invariant 1-forms on GLn(C) which equal the trace map on the Lie algebra
Mn(C). And, if γ(t) = B + tA for B ∈ GLn(C) and A ∈ Mn(C), then γ(t) ∈
GLn(C) for t small, and tr (γ−1(0)γ′(0)) = tr (B−1 A), while on the other hand,

d
dt

log det (γ(t))
∣∣∣
t=0

=
1

det (γ(0))
d
dt

(
det (B)det (I+tB−1 A)

)∣∣∣
t=0

= tr (B−1 A).
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