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ABSTRACT. Necessary conditions for the invertibility of Toeplitz plus Han-
kel operators T(a) + H(b) with generating functions a, b ∈ L∞(T) satisfying
the relation a(t)a(1/t) = b(t)b(1/t), t ∈ T are obtained. In addition, suffi-
cient conditions for the invertibility of such operators are also provided and
efficient representations for the corresponding inverses are derived.
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1. INTRODUCTION

Toeplitz and Hankel operators appear in various fields of mathematics, phy-
sics and statistical mechanics [5], [13], and in spite of their remarkably distinctive
features, they are closely related to each other. It is not surprising that Toeplitz
plus Hankel operators T(a) + H(b) also attracted considerable attention. Some
particular points of interest are Fredholm properties, index, and invertibility of
such operators.

At present, there is a well-developed Fredholm theory of Toeplitz plus Han-
kel operators with piecewise continuous generating functions acting on different
Banach and Hilbert spaces (see Sections 4.95–4.102 in [5], Sections 4.5 and 5.7 in
[14], and [15], [16]), whereas formulas for the index of Toeplitz plus Hankel op-
erators T(a) + H(b) with various assumptions about the generating functions a
and b have been established in [6], [16].

The present paper deals with the invertibility of elements from a class of
Toeplitz plus Hankel operators T(a) + H(b), acting on classical Hardy spaces
Hp(T), 1 < p < ∞ on the unit circle T. For Toeplitz operators T(a) with scalar
generating functions a this problem is well studied. There are efficient criteria
of invertibility expressed in terms of winding numbers of the operator gener-
ating functions. Moreover, the corresponding inverse operators can be readily
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constructed. For Toeplitz plus Hankel operators the situation is completely dif-
ferent. For example, Fredholm Toeplitz plus Hankel operators are not necessarily
one-sided invertible. The behavior of such operators resembles the behavior of
matrix Toeplitz operators. Recall that the kernel and cokernel dimension of a
matrix Toeplitz operator can be expressed via partial indices of the Wiener–Hopf
factorization of the corresponding generating matrix. At the same time, for an ar-
bitrary matrix-function there is no efficient procedure to obtain its Wiener–Hopf
factorization or partial indices. Correspondingly, for arbitrary generating func-
tions a and b there is no efficient tool to investigate the invertibility or one-sided
invertibility of the operators T(a) + H(b). Nevertheless, for a number of special
cases, for example, if

b(t) = ±a(t), or b(t) = ±t±1a(t), or a(t) ≡ 1 and b(t)b(1/t) = 1,

the invertibility of such operators has been discussed in [1], [3], [4], [8], [9]. How-
ever, even if the invertibility of the operator T(a) + H(b) is established, the con-
struction of the corresponding inverse is still a challenging problem with no
known efficient solution yet. Thus inverses for the operators T(a) + H(a) and
I + H(a) acting on H2(T) are presented in [2], [12] for special functions a. In
the more general situation explicit formulas for inverses of Toeplitz plus Han-
kel operators have been derived only recently and only for operators of the form
I + H(b) with generating functions b satisfying the condition b(t)b(1/t) = 1 for
all t ∈ T [4].

In this paper we also deal with the invertibility problem for a special class
of Toeplitz plus Hankel operators. Namely, let Mp(L∞), 1 < p < ∞ denote the
set of Toeplitz plus Hankel operators

T(a) + H(b) : Hp(T)→ Hp(T),

the generating functions of which a, b ∈ L∞(T) satisfy the relation

(1.1) a(t)a(1/t) = b(t)b(1/t), t ∈ T.

Such operators have been studied in [3], [8], [9], [10]. In particular, the dimen-
sions of the subspaces ker(T(a) + H(b)) and coker (T(a) + H(b)) of the opera-
tor T(a) + H(b) ∈ Mp(L∞) with piecewise continuous generating functions a
and b are computed in [3]. Papers [8], [9] are based on the same condition (1.1)
but the functions a and b belong to L∞(T) and in addition to defect numbers,
they also contain an effective description of the subspaces ker(T(a) + H(b)) and
coker (T(a) + H(b)). For some operators T(a) + H(b) ∈ Mp(L∞) generalized
inverses are constructed in [10].

In the present paper, the results of [9] are used in order to describe sets of
invertible operators T(a) + H(b) in Mp(L∞). Moreover, for invertible Toeplitz
plus Hankel operators from Mp(L∞), effective formulas for their inverses are ob-
tained.
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Note that this approach can be employed in order to study the invertibility
of Wiener–Hopf plus Hankel operators and to obtain efficient representations for
their inverses if one uses results of [7], [11].

2. AUXILIARY RESULTS

Let us recall definitions and known results that are needed in what follows.
By Hp = Hp(T) and Hp

= Hp(T) we denote the Hardy spaces of all func-
tions f ∈ Lp(T) the Fourier coefficients

f̂n :=
1

2π

2π∫
0

f (eiθ)e−inθ dθ

of which vanish for all n < 0 and n > 0, respectively. It is well known that the
Riesz projection P,

P :
∞

∑
n=−∞

f̂neinθ 7→
∞

∑
n=0

f̂neinθ ,

is bounded on the space Lp(T), p ∈ (1, ∞) and its range is the whole space Hp.
The operator Q := I − P is also a projection and its range is a subspace of the
codimension one in Hp.

Let J : Lp 7→ Lp be the flip operator,

(J f )(t) :=
1
t

f (1/t), t ∈ T.

This operator J satisfies the relations

J2 = I, JPJ = Q, JQJ = P,

and for any a ∈ L∞,
JaJ = ãI,

where ã(t) := a(1/t), t ∈ T.
Further, any element a ∈ L∞ generates two operators acting on the space

Hp, 1 < p < ∞. Namely, the Toeplitz operator T(a) and the Hankel operator
H(a) are defined by

T(a) : f 7→ Pa f , H(a) : f 7→ PaQJ f .

It is clear that the operators T(a) and H(a) are bounded. Moreover, for any a, b ∈
L∞ the identities

(2.1) T(ab) = T(a)T(b) + H(a)H(b̃), H(ab) = T(a)H(b) + H(a)T(b̃),

hold.
Consider now Toeplitz plus Hankel operators T(a) + H(b) ∈ Mp(L∞) and

recall that any duo of functions (a, b) satisfying the relation (1.1) is called the
matching pair. It is well known that for any Fredholm operator T(a) + H(b)
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the element a ∈ L∞(T) is invertible. Therefore, in what follows we always as-
sume that the generating function a belongs to the group GL∞ of invertible ele-
ments from L∞. Correspondingly, with each matching pair (a, b) one can asso-
ciate another matching pair (c, d) defined by the relations c := ab−1(= b̃ã−1),
d := ab̃−1(= bã−1) and called the subordinated pair for the pair (a, b). The ele-
ments c and d of the subordinated pair satisfy the equation

cc̃ = 1, dd̃ = 1.

Any function g satisfying the previous relation is called matching function.
Let us recall some properties of Toeplitz operators with generating matching

functions.

PROPOSITION 2.1 ([9]). Assume that g is a matching function. Then
(i) If the operator T(g) : Hp → Hp is Fredholm, then the function g admits Wiener–

Hopf factorization in Hp,

(2.2) g(t) = σ(g)g+(t) t−n g̃−1
+ (t), g̃−1

+ (∞) = 1,

where g+ ∈ Hq, g−1
+ ∈ Hp, 1/p + 1/q = 1; n is the index of the operator T(g), and

σ(g) = ±1 is called the factorization signature of g.
(ii) If n = ind T(g) > 0, then T(g) is invertible from the right and the operators

P±g :=
1
2
(I ± JQgP) : ker T(g)→ ker T(g),

considered on the kernel of the operator T(g) are complementary projections on this space.
(iii) If (2.2) is the Wiener–Hopf factorization of g in Hp and n > 0, then the following

systems of functions B±(g) form bases in the spaces im P±g :
(a) If n = 2m, m ∈ N, then

B±(g) := {g−1
+ (tm−k−1± σ(g)tm+k) : k=0, 1, . . . , m− 1}, and dim im P±g =m.

(b) If n = 2m + 1, m ∈ Z+, then

B±(g) := {g−1
+ (tm+k ± σ(g)tm−k) : k = 0, 1, . . . , m} \ {0},

and

(2.3) dim im P±g = m +
1± σ(g)

2
.

3. INVERTIBILITY AND INVERSES OF TOEPLITZ PLUS HANKEL OPERATORS

In this section the invertibility of Toeplitz plus Hankel operators from the
set Mp(L∞) is studied. For any matching pair (a, b) we consider the Toeplitz op-
erators T(c) and T(d), where (c, d) is the subordinated pair for (a, b). In what fol-
lows, we always assume that these two operators are Fredholm. It is well known
that any Fredholm Toeplitz operator T(g) is one sided invertible and by T−1

r (g)
or T−1

l (g) we respectively denote a right or a left inverse for the operator T(g).
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We start this section with necessary conditions for the invertibility of oper-
ators from Mp(L∞).

THEOREM 3.1. Assume that an operator T(a) + H(b) ∈ Mp(L∞) is invertible
and let κ1 := ind T(c), κ2 := ind T(d).

(i) if κ1 > κ2 or κ1κ2 > 0, then |κ1| 6 1 and |κ2| 6 1.
(ii) if κ1 < 0 and κ2 > 0, then

(a) if κ1 and κ2 are even numbers, then κ2 = −κ1;
(b) if κ1 is an odd number and κ2 is an even one, then κ2 = −κ1 + σ(c);
(c) if κ1 is an even number and κ2 is an odd one, then κ2 = −κ1 − σ(d);
(d) if κ1 and κ2 are odd numbers, then κ2 = −κ1 + σ(c)− σ(d).

Proof. Assume first that κ1 > κ2 or κ1κ2 > 0. If κ1 > 1, then the operator
T(c) is right invertible and if κ2 > 1, then by Theorem 6.1(i) of [9] the kernel of
the operator T(a) + H(b) can be represented in the form

ker(T(a) + H(b)) = im P−c u ϕ+(im P+
d ),

where ϕ+ : ker T(d)→ ker(T(a) + H(b)) is the injective operator defined by

ϕ+(s) :=
1
2
(T−1

r (c)T(ã−1)s− JQcPT−1
r (c)T(ã−1)s + JQã−1s).

Since κ1 > 1, Proposition 2.1 implies that ker P−c contains non-zero elements, and
the operator T(a) + H(b) is not invertible.

Now let κ1 > 1 and κ2 6 0. By Theorem 6.1(iii) of [9], we have ker(T(a) +
H(b)) = im P−c . Further, by Proposition 2.1 im P−c 6= {0} and the operator T(a) +
H(b) is not invertible either.

Consider next the case where κ1 < −1 and κ2 6 0. By Theorem 6.1(ii) of [9],
one has

coker (T(a) + H(b)) = im P−
d
u ϕ+(im P+

c ).

But ind T(c) = −κ1 > 1, so that im P+
c 6= {0} by Proposition 2.1(iii). Since ϕ+ is

an injective operator, it follows that coker (T(a) + H(b)) 6= {0} and the operator
T(a) + H(b) is not invertible. Combining all the above cases together, we obtain
that |κ1| 6 1.

In order to find the possible range for the index κ2, we consider the adjoint
for the operator T(a) + H(b). Note that the operator (T(a) + H(b))∗ = T(a) +

H(b̃) belongs to the set Mq(L∞), 1/p + 1/q = 1, and (d, c) is the subordinated

pair for the pair (a, b̃). Since ind T(d) = −κ2, ind T(c) = −κ1, and we are still
working under the assumption κ1 > κ2 or κ1κ2 > 0, the above considerations
entail the inequality |κ2| 6 1.

Let us now explore the situation κ1 < 0, κ2 > 0. As already mentioned,
there are four cases to deal with. For definiteness, we consider the case where
κ1 = ind T(c) < 0 and κ2 = ind T(d) > 0 are odd numbers. Let n and m be the
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integers satisfying the relations

κ1 + 2n = 1, κ2 = 2m + 1.

Further, let c+ be the plus factor in the Wiener–Hopf factorization of the function
c and {c−1

+ } be the one-dimensional subspace of Hp generated by the function
c−1
+ . Moreover, let S be the following subspace of Hp,

S :=
1− σ(c)

2
{c−1

+ }u ϕ+(im P+
d ).

Assume that
n < dim S.

Then there is a function ψ ∈ S, ψ 6= 0 such that the first n Fourier coefficients
ψ̂0, ψ̂1, . . . , ψ̂n−1 of ψ are equal to zero. By Theorem 6.2(i) of [9], ψ ∈ ker(T(a) +
H(b)). Thus the kernel of T(a) + H(b) contains a non-zero element, which con-
tradicts the invertibility of this operator. Therefore, the assumption n < dim S is
wrong. Hence, n > dim S and using equation (2.3), we obtain

n > dim
(1− σ(c)

2
{c−1

+ }u ϕ+(im P+
d )
)
=

1− σ(c)
2

+ m +
1− σ(d)

2
,

or

(3.1)
1− κ1

2
>

1− σ(c)
2

+
κ2 − 1

2
+

1− σ(d)
2

.

Similar considerations for the adjoint operator T(a) + H(b̃) and the relations
σ(d) = σ(d), σ(c) = σ(c) lead to the inequality

(3.2)
κ2 + 1

2
>

1− σ(d)
2

+
−1− κ1

2
+

1 + σ(c)
2

.

Comparing (3.1) and (3.2), one observes that

σ(c)− σ(d) 6 κ2 + κ1 6 σ(c)− σ(d),

and the assertion (ii)(d) of Theorem 3.1 follows.
The other three cases connected with the condition κ1 < 0, κ2 > 0 can be

considered analogously.

REMARK 3.2. It is worth mentioning that if a and b are continuous at one of
the points t = −1 or t = 1, then σ(c) = σ(d), and the case (ii)(d) produces the
condition κ2 = −κ1 only.

Indeed, if a and b are continuous, say at t = 1, then c = ab−1 and d = ab̃−1

are matching functions also continuous at the same point t = 1. By Proposi-
tion 5.6 of [9] we have

σ(c) = a(1)b−1(1) = a(1)b̃−1(1) = σ(d),

since the functions b and b̃ take the same value at the point t = 1.
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Our next goal is to obtain sufficient conditions of the invertibility for the
operators from Mp(L∞) and to provide efficient representations for their inverses.
In this work we will restrict ourselves to the situation where |κ1| 6 1, |κ2| 6 1.
This situation is represented by nine cases, namely,

(i) ind T(c) = 0, ind T(d) = 0;
(ii) ind T(c) = 1, ind T(d) = 0;

(iii) ind T(c) = 0, ind T(d) = 1;
(iv) ind T(c) = 1, ind T(d) = 1;
(v) ind T(c) = 0, ind T(d) = −1;

(vi) ind T(c) = −1, ind T(d) = 0;
(vii) ind T(c) = −1, ind T(d) = −1;

(viii) ind T(c) = 1, ind T(d) = −1;
(ix) ind T(c) = −1, ind T(d) = 1.

Our first result is concerned with right invertible operators.

THEOREM 3.3. Let T(a) + H(b) ∈ Mp(L∞) and let (c, d) be the corresponding
subordinated pair. If the operators T(c) and T(d) are invertible from the right, then the
operator T(a) + H(b) is also invertible from the right and the operator

(3.3) B := (I − H(c̃))T−1
r (c)T(ã−1)T−1

r (d) + H(a−1)T−1
r (d),

is one of the right inverses for the operator T(a) + H(b).

Proof. The proof of this result is straightforward. Consider the product
(T(a) + H(b))B. It is

(T(a)+H(b))B=(T(a)+H(b))[(I−H(c̃))T−1
r (c)T(ã−1)T−1

r (d)+H(a−1)T−1
r (d)].

Let us describe how the operators T(a) and H(b)) interact with the operators
H(c̃) and H(a−1). Taking into account relations (2.1), one obtains

H(b)H(c̃) = T(bc)− T(b)T(c) = T(a)− T(b)T(c),(3.4)

T(a)H(c̃) = H(ac̃)− H(a)T(c) = H(b)− H(a)T(c),(3.5)

T(a)H(a−1) = H(aa−1)− H(a)T(ã−1) = −H(a)T(ã−1),(3.6)

H(b)H(a−1) = T(bã−1)− T(b)T(ã−1) = T(d)− T(b)T(ã−1).(3.7)

The relations (3.4)–(3.5) imply that

(T(a) + H(b))(I − H(c̃)T−1
r (c)T(ã−1)T−1

r (d))

= (T(b)T(c) + H(a)T(c))T−1
r (c)T(ã−1)T−1

r (d)

= (T(b) + H(a))T(c)T−1
r (c)T(ã−1)T−1

r (d)

= T(b)T(ã−1)T−1
r (d) + H(a)T(ã−1)T−1

r (d).
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On the other hand, the identities (3.6)–(3.7) lead to the expression

(T(a) + H(b))H(a−1)T−1
r (d)

= −H(a)T(ã−1)T−1
r (d) + T(d)T−1

r (d)− T(b)T(ã−1)T−1
r (d)

= I − H(a)T(ã−1)T−1
r (d)− T(b)T(ã−1)T−1

r (d).

Consequently

(T(a) + H(b))B = I,

and the operator B is a right inverse for the Toeplitz plus Hankel operator T(a) +
H(b).

COROLLARY 3.4. Let T(a) + H(b) ∈ Mp(L∞) and let (c, d) be the correspond-
ing subordinated pair. Assume that the operators T(c) and T(d) satisfy one of the condi-
tions:

(i) ind T(c) = 0, ind T(d) = 0;
(ii) ind T(c) = 1, ind T(d) = 0 and σ(c) = 1;

(iii) ind T(c) = 0, ind T(d) = 1 and σ(d) = −1;
(iv) ind T(c) = 1, ind T(d) = 1, σ(c) = 1, σ(d) = −1.

Then the operator T(a) + H(b) is invertible and the inverse operator (T(a) + H(b))−1

is given by the formula (3.3) where the right inverses of the operators T(c) or/and T(d)
shall be replaced by the corresponding inverses if necessary.

Proof. If ind T(c) = 0 and ind T(d) = 0, then the operators T(c) and T(d)
are invertible. Relations (3.1) and (3.7) of [9] show that the operator T(a) + H(b)
is also invertible and the result follows from Theorem 3.3.

Assume now that ind T(c) = 1, ind T(d) = 0 and σ(c) = 1. Then by Theo-
rem 6.1(iii) of [9], the operator T(a) + H(b) is right invertible and

ker(T(a) + H(b)) = im P−c .

By Proposition 2.1(iii), the conditions ind T(c) = 1 and σ(c) = 1 ensure that
im P−c = {0}. Therefore, the operator T(a) + H(b) is invertible and the inverse
operator (T(a) + H(b))−1 can be written in the form (3.3).

The consideration of the two remaining cases is based on assertion (i) of
Proposition 6.1 in [9]. Thus the kernel of the operator T(a) + H(b) has the form

ker(T(a) + H(b)) = im P−c u ϕ+(im P+
d ).

By Proposition 2.1(iii), in either case the space ker(T(a) + H(b)) consists of the
element 0 only, and the proof is completed.

REMARK 3.5. If the functions a and b admit bounded Wiener–Hopf factor-
ization, then the cases (ii)–(iii) do not appear, since in such situation, ind T(c) +
ind T(d) is always an even number. Moreover, if a and b are continuous at the
point t = 1 or t = −1, then the situation (iv) is not possible either.
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Indeed, if a function u ∈ L∞, then the representation

(3.8) u(t) = u+(t)tnu−(t), u−(∞) = 1,

where u±1
+ ∈ H∞ and u±1

− ∈ H∞ is called the bounded Wiener–Hopf factorization
of u. It is well known [5] that if u ∈ L∞ admits a bounded Wiener–Hopf factor-
ization (3.8), then for any p ∈ (1, ∞) the Toeplitz operator T(u) : Hp → Hp is
Fredholm and ind T(u) = −n. Therefore, for a and b admitting bounded Wiener–
Hopf factorization, the functions c and d also admit a bounded Wiener–Hopf fac-
torization and

ind T(c) = ind T(a)− ind T(b), ind T(d) = ind T(a) + ind T(b),

so that ind T(c) + ind T(d) = 2 ind T(a).
As far as the other assertion of Remark 3.5 is concerned, the parity of the

factorization signatures has been established earlier (see Remark 3.2).

Let us emphasize that Corollary 3.4 and the representation (3.3) is, in a
sense, a very surprising result. There is a vast literature devoted to the study
of the Fredholmness and one-sided invertibility of Wiener–Hopf plus Hankel op-
erators but mainly in the situation where the generating functions satisfy the re-
lation b = a or b = ã. Of course, such generating functions constitute a matching
pair. However, even in these relatively simple situations there are no efficient
representations for the operators (T(a) + H(b))−1. On the other hand, for a wide
class of functions u the one-sided inverses of the Toeplitz operators T(u) can be
effectively constructed. Therefore, the above formula (3.3) represents an efficient
tool for finding inverses for operators T(a) + H(b) ∈Mp(L∞).

EXAMPLE 3.6. Let us consider the operator T(a) + H(b) in the case where
a = b. In this situation c(t) = 1 and d(t) = a(t)ã−1(t). Hence, H(c̃) = 0, T(c) = I
and if ind T(d) = 0, then the operator T(a) + H(a) is also invertible and

(T(a) + H(a))−1 = (T(ã−1) + H(a−1))T−1(aã−1).

EXAMPLE 3.7. Consider now the case where b = ã. Then c(t) = a(t)ã−1(t)
but d(t) = 1. Hence, if the operator T(aã−1) is invertible, then the operator T(a)+
H(ã) is also invertible and

(T(a) + H(ã))−1 = (I − H(ãa−1))T−1(aã−1)T(ã−1) + H(a−1).

EXAMPLE 3.8. Let a(t) = 1 and b(t)b̃(t) = 1 for all t ∈ T. In this situation,
c(t) = b̃(t), d(t) = b(t) and if T(b) is invertible, then the operator I + H(b) is also
invertible and

(3.9) B = (I + H(b))−1 = (I − H(b))T−1(b̃)T−1(b).

REMARK 3.9. The inverses of the operators I + H(b) with piecewise con-
tinuous matching functions b generating invertible operators T(b) have been de-
rived in the recent paper [4]. Thus if the operator T(b) is invertible, then the
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operator (I + H(b))−1 from [4] has the form

(3.10) B1 = T−1(b̃)(I + H(b̃))T−1(b).

Let us show that (3.9) and (3.10) are one and the same operator. Indeed, comput-
ing the difference between the operators B1 and B, we obtain

(3.11) B1 − B = T−1(b̃)(H(b̃) + T(b̃)H(b)T−1(b̃))T−1(b).

However, it follows from (2.1) that

T(b̃)H(b) = H(b̃b)− H(b̃)T(b̃) = −H(b̃)T(b̃).

Hence, the expression in the brackets on the right-hand side of (3.11) is

H(b̃) + T(b̃)H(b)T−1(b̃) = H(b̃)− H(b̃)T(b̃)T−1(b̃) = 0,

so B = B1 and this is how it has to be.

Consider next the case of non-positive indices of the operators T(c) and
T(d).

COROLLARY 3.10. Let T(a) + H(b) ∈Mp(L∞) and let (c, d) be the correspond-
ing subordinated pair. Assume that the operators T(c) and T(d) satisfy one of the condi-
tions:

(i) ind T(c) = −1, ind T(d) = 0 and σ(c) = −1;
(ii) ind T(c) = 0, ind T(d) = −1 and σ(d) = 1;

(iii) ind T(c) = −1, ind T(d) = −1, σ(c) = −1, σ(d) = 1.
Then the operator T(a) + H(b) is invertible and the inverse operator (T(a) + H(b))−1

is given by formula

(T(a) + H(b))−1 =− H(c̃)(T−1
l (c)T(ã−1)T−1

l (d)(I − H(d)) + T−1
l (c)H(ã−1))

+ H(a−1)T−1
l (d)(I − H(d)) + T(a−1),

where the left inverses of the operators T(c) or/and T(d) shall be replaced by the corre-
sponding inverses if necessary.

Proof. The invertibility of T(a) + H(b) follows from Corollary 3.4 if one
passes to the adjoint operator,

(T(a) + H(b))∗ = T(a) + H(b̃),

and takes into account the fact that (d, c) is the subordinated pair for the matching

pair (a, b̃). As soon as the invertibility of the operator T(a) + H(b) is established,
the formula (40) of [10] for the generalized inverses of operators from Mp(L∞)
can be used as the representation of the inverse operator.

REMARK 3.11. Another way to obtain a representation for the inverse oper-
ator (T(a)+ H(b))−1 in this case is to pass to the adjoint operator (T(a)+ H(b))∗,
use formula (3.3), and write the adjoint for the operator obtained.
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REMARK 3.12. Again, it is worth mentioning that for functions a and b ad-
mitting bounded Wiener–Hopf factorization, the situations (i) and (ii) from Corol-
lary 3.10 do not appear (see Remark 3.5).

It remains to consider the cases (viii) and (ix). We start with the situation
(viii).

THEOREM 3.13. Let T(a) + H(b) ∈ Mp(L∞) and let (c, d) be the subordinated
pair for the pair (a, b). If

ind T(c) = 1, ind T(d) = −1, σ(c) = 1, σ(d) = 1,

then the operator T(a) + H(b) is invertible and its inverse is given by the formula

(T(a) + H(b))−1 =− H(c̃)(T−1
r (c)T(ã−1)T−1

l (d)(I − H(d)) + T−1
r (c)H(ã−1))

+ H(a−1)T−1
l (d)(I − H(d)) + T(a−1).

Proof. By Theorem 6.1(iii) of [9] we obtain that

ker(T(a) + H(b)) = im P−c = {0}, coker (T(a) + H(b)) = im P−
d
= {0},

so the operator T(a) + H(b) is invertible. (Note that assertion (iii) of Theorem 6.1
in [9] contains typos. Namely, the operator P+

d
has to be replaced by P−

d
and vice

versa.) Moreover, this operator satisfies all conditions of Theorem 6 in [10], hence
the generalized inverse for the operator T(a) + H(b) represented by formula (40)
from [10] is the inverse operator (T(a) + H(b))−1.

EXAMPLE 3.14. Let b be a matching function. Consider the operator

A = I + H(b).

In this case a(t) ≡ 1, c(t) = b̃(t), d(t) = b(t) and if ind T(b) = −1 and σ(b) = 1,
then the operator A is invertible and its inverse is given by the formula

(I + H(b))−1 = I − H(b)T−1
r (b̃)T−1

l (b)(I − H(b)).

Note that for piecewise continuous matching function b this case has been con-
sidered in [4] where the operator (I + H(b))−1 is represented in a different form.

Consider now the remaining case: ind T(c) = −1, ind T(d) = 1.

THEOREM 3.15. Let T(a) + H(b) ∈ Mp(L∞) and let (c, d) be the subordinated
pair for the pair (a, b). If

ind T(c) = −1, ind T(d) = 1, σ(c) = −1, σ(d) = −1,

then the operator T(a) + H(b) is invertible and its inverse is given by the formula

(T(a)+H(b))−1=T(t−1)(I−c−1
+ tQt−1)

×[(I−H(t2 c̃))T−1
r (t−2c)T(ã−1t−1)T−1

r (d)+H(a−1t)T−1
r (d)],(3.12)

where c+ is the plus factor in factorization (2.2) for the function c.
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Proof. Note that the invertibility of the operator T(a) + H(b) follows from
Theorem 6.2(i) and Theorem 6.3(i) of [9]. Thus according to Theorem 6.2(i) of [9],
the kernel of the operator T(a) + H(b) is

ker(T(a)+H(b))={ψ∈{T(t−1)u} : u∈{zc−1
+ uϕ+(im P+

d )}, z∈C and û0=0},
where û0 is the zeroth Fourier coefficient of the function u. The condition σ(d) =
−1 implies that im P+

d = {0}, so the zeroth Fourier coefficient of the function u =

zc−1
+ has to be equal to zero. But c+ is a factorization factor in the Wiener–Hopf

factorization of the function c. Therefore, the corresponding Fourier coefficient of
the function u can be equal to zero if and only if z = 0. Hence the kernel of the
operator T(a) + H(b) consists of the element 0 only. The relation

coker (T(a) + H(b)) = {0}
can be verified analogously, but instead of Theorem 6.2(i) of [9] one has to use
Theorem 6.3(i) of [9]. Thus

ker(T(a) + H(b)) = {0}, coker (T(a) + H(b)) = {0},
and the operator T(a) + H(b) is invertible.

It remains to derive a formula for the inverse operator. Note that in the case
at hand the operator T(a) + H(b) does not satisfy the conditions of Theorem 6 of
[10], so that the corresponding formula (40) of [10] cannot be used. Anyway, let
us first consider a general situation where an invertible operator A on a Banach
space X is represented as the product of two operators, i.e.

(3.13) A = CD,

with the operators C and D acting on the same Banach space X. It follows
from (3.13) that C and D are, correspondingly, right and left invertible opera-
tors. It is remarkable that in this case the inverse operator A−1 for the opera-
tor A can be constructed from one-sided inverses C−1

r and D−1
l of C and D. If

these operators are Fredholm, then their one-sided invertibility and the equation
0 = ind A = ind C + ind D show that dim ker C = dim ker D∗. Taking into ac-
count that (ker C) ∩ (im D) = 0, one obtains X = ker C u im D. Now we can
employ a special projection on the range im D of the operator D. Indeed, the
operator D considered as acting from the space X into the subspace im D is in-
vertible and let D−1

0 : im D → X be the corresponding inverse operator. Let P0

be the projection from X onto im D parallel to ker C. Then the operator D−1
0 P0 is

one of the right inverses for the operator D : X → im D, hence

AD−1
0 P0C−1

r = (CD)(D−1
0 P0)C−1

r = C(DD−1
0 P0)C−1

r ,

and taking into account the relation

DD−1
0 P0 = P0 = I − (I − P0),

one obtains

(3.14) AD−1
0 P0C−1

r = CC−1
r − C(I − P0)C−1

r .
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Since im (I − P0) = ker C, the last operator in the right-hand side of (3.14) is just
the zero operator. Therefore,

AD−1
0 P0C−1

r = CC−1
r = I.

Thus the operator D−1
0 P0C−1

r is a right inverse for the operator A. However, the
operator A is invertible, hence

(3.15) A−1 = D−1
0 P0C−1

r ,

and it does not matter which right inverse C−1
r of the operator C is used.

Consider now the operator T(a) + H(b) and represent it in the form

A = T(a) + H(b) = A1D = (T(a1) + H(b1))T(t),

where a1(t) = a(t)t−1 and b1(t) = b(t)t, t ∈ T. Recall that T(t−1) is a left inverse
for the operator D = T(t). Moreover, a right inverse of the operator A1 can be
derived from our previous results. More precisely, the elements c1 and d1 of the
subordinated pair (c1, d1) for the matching pair (a1, b1) are

c1(t) = a1(t)b−1
1 (t) = a(t)t−1b−1(t)t−1 = c(t)t−2,

d1(t) = a1(t)b̃−1
1 (t) = a(t)t−1b̃−1(t)t = d(t).

It follows that

ind T(c1) = ind T(c) + 2 = −1 + 2 = 1, ind T(d1) = ind T(d) = 1.

Hence, both operators T(c1) and T(d1) are invertible from the right. Therefore,
by Theorem 3.3 the operator A1 : Hp → Hp is right invertible and one of its right
inverses has the form

A−1
1,r = (I − H(t2 c̃))T−1

r (t−2c)T(ã−1t−1)T−1
r (d) + H(a−1t)T−1

r (d).

Moreover, according to Theorem 6.1 of [9] the kernel of the operator T(a1) +
H(b1) is

ker(T(a1) + H(b1)) = im P−c1
+ ϕ+(im P+

d1
).

Further, taking into account the relations

ind T(d1) = 1, σ(d1) = σ(d) = −1,

and assertion (iii) of Proposition 2.1, we obtain that P+
d1

is the zero operator. Hence

ker(T(a1) + H(b1)) = im P−c1
= {z c−1

+ : z ∈ C},

where c+ is the plus factor in the Wiener–Hopf factorizations

c(t) = σ(c)c+(t) t c̃−1
+ (t), c1(t) = σ(c)c+(t) t−1(t) c̃−1

+ ,

for both the function c and the function c1.
Now we can derive the operator P0 projecting the space Hp onto the sub-

space im T(t) parallel to ker(T(a1) + H(b1)), and obtain a representation for the
inverse operator (T(a) + H(b))−1. Recall that im T(t) = {h ∈ Hp : ĥ0 = 0},
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where ĥ0 is the zeroth Fourier coefficient of the function h. Let us define the op-
erator P0 : Hp → Hp by P0 := I − c−1

+ tQt−1, where I is the identity operator
and Q = I − P. Note that the zeroth Fourier coefficient ĉ+0 of the function c+ is
equal to 1 and for any ϕ ∈ Hp one has tQt−1 ϕ = ϕ̂0. Therefore, the operator P0
is the projection on im T(t) parallel to ker(T(a1) + H(b1)). Now one can use the
representation (3.15), and formula (3.12) is proved.

Thus in the case |κ1| 6 1, |κ2| 6 1 the problem of the invertibility of Toeplitz
plus Hankel operators T(a) + H(b) has been investigated in all details. The re-
maining cases of possible invertibility, which are mentioned in Theorem 3.1, can
be treated analogously. However, the study of such operators requires more effort
and the results expected seem to be not as transparent as in the cases considered.

In conclusion let us mention Toeplitz plus Hankel operators from Mp(L∞)
which are not even one-sided invertible.

COROLLARY 3.16. Let T(a) + H(b) ∈Mp(L∞) and let (c, d) be the correspond-
ing subordinated pair. If the operators T(c) and T(d) satisfy one of the following condi-
tions:

(i) ind T(c) = 1, ind T(d) = −1, σ(c) = −1, σ(d) = −1,
(ii) ind T(c) = −1, ind T(d) = 1, σ(c) = 1, σ(d) = 1.

then the operator T(a) + H(b) is not one-sided invertible.

Proof. Indeed, in each case the corresponding operator T(a) + H(b) pos-
sesses a non-zero kernel and cokernel.

REMARK 3.17. Let Z+ := N∪{0}. In the natural basis {tn}n∈Z+
of the space

Hp, 1 < p < ∞, Toeplitz and Hankel operators with generating function a ∈ L∞

can be, respectively, represented as infinite matrices (âk−j)
∞
k,j=0 and (âk+j+1)

∞
k,j=0,

where âk is the k-th Fourier coefficient of the function a. In this form, Toeplitz and
Hankel operators appear on the spaces lp(Z+) (see Section 2.3 in [5]). The study
of Toeplitz plus Hankel operators on the spaces lp(Z+) is much more difficult
since it is associated with two specific problems. Namely, with the multiplier
and factorization problems. However, Theorem 3.3 and Corollary 3.4(i) do not
involve any factorization arguments, so similar assertions are valid for the spaces
lp(Z+) if a and b belongs to the corresponding multiplier sets.
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