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ABSTRACT. We generalize a recent construction of Exel and Pardo, from dis-
crete groups acting on finite directed graphs to locally compact groups acting
on topological graphs. To each cocycle for such an action, we construct a C∗-
correspondence whose associated Cuntz–Pimsner algebra is the analog of the
Exel–Pardo C∗-algebra.
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INTRODUCTION

Let E denote a directed graph with vertex set E0 and edge set E1, as in Sec-
tion 5 of [21]. When E is finite with no sources, Exel and Pardo have shown in [7]
how to attach a Cuntz–Krieger-like C∗-algebra OG,E to an action of a countable
discrete group G on E, equipped with a cocycle ϕ from G× E1 into G that is com-
patible with the action of G on E0. This set-up is powerful as it encompasses the
C∗-algebras O(G,X) of self-similar groups introduced by Nekrashevych [20] and
the Katsura algebras OA,B associated with two N × N integer matrices A and B
in [13]. Our aim with this paper is to generalize Exel and Pardo’s construction, al-
lowing G to be uncountable and E to be infinite, possibly with sources. In fact, we
develop the basic construction of the C∗-algebra at a significantly greater level of
generality: we start with a locally compact group G acting on a topological graph
E and a cocycle ϕ for this action.

The main idea is that there is a natural way to associate to the given data
(E, G, ϕ) a C∗-correspondence Yϕ over the crossed product C0(E0)o G, and the
Cuntz–Pimsner algebra associated with this correspondence provides the desired
algebra. In Section 10 of [7], Exel and Pardo also give a description of OG,E (in
the case they consider) as a Cuntz–Pimsner algebra, but our approach has an
interesting conceptual feature, besides that it works without any restriction on
G and E. Considering first the case where ϕ is the “trivial” cocycle, that sends
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(g, e) to g for every g ∈ G, e ∈ E1, our correspondence Yϕ reduces to the crossed
product X o G of the graph correspondence X = XE by the action of G naturally
associated with the action of G on E. For a general ϕ, the correspondence Yϕ is
equal to X o G as a right Hilbert (C0(E0)o G)-module, but the cocycle ϕ is used
to deform the left action of C0(E0)o G on X o G.

The paper is organized as follows. In Section 2 we review some facts about
cocycles for actions of locally compact groups on locally compact Hausdorff spac-
es. In Section 3 we consider an action of a locally compact group G on a topolog-
ical graph E as in Section 3 of [4], introduce the concept of a cocycle ϕ for such an
action (in a slightly more general way than Exel and Pardo) and show how to con-
struct the desired C∗-correspondence Yϕ. As a result, we can form the Toeplitz
algebra TYϕ and the Cuntz–Pimsner algebra OYϕ associated to Yϕ. In Section 4
we show that if two systems (E, G, ϕ) and (E′, G, ϕ′) are cohomology conjugate
in a natural sense, then Yϕ is isomorphic to Yϕ′ , hence the resulting algebras are
isomorphic. In Section 5 we restrict our attention to the case where G is discrete
and E is a directed graph and give a description of TYϕ in terms of generators and
relations. When E is row-finite, we also give a similar description of OYϕ , which
in particular shows that OYϕ is isomorphic to the Exel–Pardo algebra OG,E when
E is finite and sourceless. For completeness we also show in Section 6 that the
Exel–Pardo correspondence obtained in Section 10 of [7] is isomorphic to our Yϕ.
Finally, in Section 7 we present several examples of triples (E, G, ϕ) that illustrate
the flexibility of our setting and indicate the diversity of C∗-algebras that arise
from this construction.

1. PRELIMINARIES

We recall some of the well-known theory of cocycles for group actions (see,
e.g., Section 4.2 of [24]). Let G be a locally compact group acting continuously by
homeomorphisms on a nonempty locally compact Hausdorff space S, and let T be
a locally compact group. We sometimes write the action as a map σ : G× S→ S,
and we also write

gx = g · x = σ(g, x) for g ∈ G, x ∈ S.

A cocycle for the action G y S with values in T is a continuous map ϕ : G× S → T
satisfying the cocycle identity

ϕ(gh, x) = ϕ(g, hx)ϕ(h, x) for all g, h ∈ G, x ∈ S.

We will primarily be concerned with the case T = G.
When S is discrete, the action G y S is a disjoint union of transitive actions

on the orbits Gx, and the restriction ϕ|G×Gx is a cocycle ϕx for this transitive
action. In fact, the cocycle ϕ can be reconstructed from these restricted cocycles
ϕx; indeed the cocycles for the actions on the orbits may be chosen will do.
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If S′ is another G-space that is conjugate to S via a homeomorphism θ : S′ →
S, then θ transports (in the reverse direction) the cocycle ϕ for the action on S to
a cocycle ϕ′ for the action on S′ via

ϕ′(g, x) = ϕ(g, θ(x)) for g ∈ G, x ∈ S′.

EXAMPLE 1.1. If π : G → T is any continuous homomorphism, then the
map ϕ defined by

ϕ(g, x) = π(g)

is a T-valued cocycle for the action G y S, and these are precisely the cocycles
that are constant in the second coordinate. In particular, the map ϕ(g, x) = 1 is a
cocycle, where 1 denotes the identity element of T.

EXAMPLE 1.2. If G = Z then there is a bijection between the set of T-valued
cocycles for G y S and the set of continuous maps ξ : S→ T, given by

ξ(x) = ϕ(1, x),

where 1 denotes the identity element of G. We will need to use this, and for
convenience we will call ξ the generating function of ϕ.

EXAMPLE 1.3. If ϕ : G × S → T is a cocycle and π : T → R is a continu-
ous homomorphism to another locally compact group, then π ◦ ϕ is an R-valued
cocycle.

The cocycle identity is precisely what is needed so that the equation

(1.1) g · (x, t) = (gx, ϕ(g, x)t) for g ∈ G, x ∈ S, t ∈ T

defines an action of G on S× T. Two T-valued cocycles ϕ and ϕ′ for the action
G y S are cohomologous if there is a continuous map ψ : S→ T such that

(1.2) ϕ′(g, x) = ψ(gx)ϕ(g, x)ψ(x)−1 for all g ∈ G, x ∈ S.

Conversely, starting with a T-valued cocycle ϕ for the action G y S and a contin-
uous map ψ : S → T, the map ϕ′ defined by (1.2) is also a cocycle for the action
G y S (which is then cohomologous to ϕ by construction). Moreover, the respec-
tive actions · and ·′ of G on S× T are conjugate: the homeomorphism θ on S× T
defined by

θ(x, t) = (x, ψ(x)t)

satisfies

g ·′ θ(x, t) = θ(g · (x, t)) for all g ∈ G, x ∈ S, t ∈ T.

A cocycle is a coboundary if it is cohomologous to the trivial cocycle ϕ(g, x) = 1.
If the group T is abelian, then the set of T-valued cocycles for the action G y S is
an abelian group, the coboundaries form a subgroup, and the set of cohomology
classes of cocycles is the quotient group.
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EXAMPLE 1.4. Let ϕ, ϕ′ be T-valued cocycles for an action Z y S, with
respective generating functions ξ, ξ ′. Let the Z-action be generated by the home-
omorphism τ on S. Then ϕ and ϕ′ are cohomologous if and only if there is a
continuous map ψ : S→ T such that

ξ ′(x) = ψ(τ(x))ξ(x)ψ(x)−1 for all x ∈ S,

in which case ψ also satisfies (1.2).

The following elementary result is presumably folklore, but we could not
find it in the literature, so we include the short proof.

LEMMA 1.5. Let G y S, and let ϕ : G× S→ G be a cocycle. Then the following
are equivalent:

(i) The cocycle (g, e) 7→ g is a coboundary.
(ii) There is a continuous map ψ : S→ G such that

ψ(gx) = gψ(x) for all g ∈ G, x ∈ S.

(iii) S is G-equivariantly homeomorphic to a space of the form G× R, where G acts by
left translation in the first factor.

Proof. (i)⇔ (ii) follows immediately from the definitions, and (iii)⇒ (ii) is
trivial. Assuming (ii), put R = ψ−1({1}). It is an elementary exercise to show
that the map θ : S→ G× R defined by

θ(x) = (ψ(x), ψ(x)−1x)

is a G-equivariant homeomorphism, giving (iii).

We have not seen the following terminology in the literature, but it surely
expresses a standard relationship. Since we will need it, we record it formally.

DEFINITION 1.6. Suppose that we have two actions of G on respective spac-
es S and S′, with respective T-valued cocycles ϕ and ϕ′. We say that the systems
(G, S, ϕ) and (G, S′, ϕ′) are cohomology conjugate if there is a homeomorphism
θ : S′ → S that intertwines the actions and transports ϕ to a cocycle that is coho-
mologous to ϕ′.

Suppose that G acts on a finite set S. Let the group T be abelian, and write
it additively. Let ϕ : G× S→ T be a cocycle. Then the function

g 7→ ∑
x∈S

ϕ(g, x)

is a cohomology invariant, because for any map ψ : S→ T we have

∑
x∈S

(ϕ(g, x) + ψ(gx)− ψ(x)) = ∑
x∈S

ϕ(g, x) + ∑
x∈S

ψ(gx)− ∑
x∈S

ψ(x) = ∑
x∈S

ϕ(g, x),
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since x 7→ gx is a permutation of S. In particular, if G = Z and ϕ has generating
function ξ : S→ T, then the number

∑
x∈S

ξ(x)

is a cohomology invariant. We call this number the signature of the cocycle ϕ. We
will find it useful to record the following consequence, which is surely folklore.

LEMMA 1.7. Let Z y S and Z y S′, and let ϕ and ϕ′ be T-valued cocycles
for the respective actions. If S and S′ are finite, T is abelian, and the cocycles ϕ and ϕ′

have different signatures, then the systems (Z, S, ϕ) and (Z, S′, ϕ′) are not cohomology
conjugate in the sense of Definition 1.6.

Lemma 1.8 below is 4.2.13 of [24]. Zimmer proved the result in greater gen-
erality, involving Borel actions and cocycles, but we restrict ourselves to the dis-
crete case. We briefly summarize the proof for convenient reference.

LEMMA 1.8 (Zimmer). Let G and T be discrete groups, let H be a subgroup of
G, and let ϕ : G × G/H → T be a T-valued cocycle for the canonical action by left
translation. Define πϕ : H → T by

πϕ(h) = ϕ(h, H).

Then πϕ is a homomorphism, and moreover the map ϕ 7→ πϕ gives a bijection from the
set of cohomology classes of T-valued cocycles for the action G y G/H to the set of
conjugacy classes of homomorphisms from H to T.

Proof. It follows immediately from the cocycle identity that πϕ defines a
homomorphism.

Now let π : H → T be a homomorphism. Choose a cross-section η :
G/H → G such that η(H) = 1, and define ϕ0 : G× G/H → H by

ϕ0(g, x) = η(gx)−1gη(x).

It is an easy exercise in the definitions to check that ϕ0 is a cocycle with values in
H, and that

πϕ0 = idH .

Then ϕ := π ◦ ϕ0 : G× G/H → T is a cocycle, and one readily checks that with
πϕ = π. Thus the map ϕ 7→ πϕ is onto the set of homomorphisms from H to T.

Let ϕ, ϕ′ : G × G/H → T be cocycles, with associated homomorphisms
π, π′. Suppose that ϕ′ is cohomologous to ϕ, and choose a map ψ : G/H → T
such that

ϕ′(g, x) = ψ(gx)ϕ(g, x)ψ(x)−1 for all g ∈ G, x ∈ G/H.

Then for all h ∈ H we have

π′(h) = ψ(hH)π(h)ψ(H)−1 = Ad ψ(H) ◦ π(h),

so the element ψ(H) ∈ T conjugates π to π′.



314 ERIK BÉDOS, S. KALISZEWSKI AND JOHN QUIGG

Conversely, let t ∈ T, and suppose that π′ = Ad t ◦ π. Note that

π(η(gx)−1gη(x)) = ϕ(η(gx)−1gη(x), H) = ϕ(η(gx)−1, gη(x)H)ϕ(gη(x), H)

= ϕ(η(gx), η(gx)−1gη(x)H)−1 ϕ(g, η(x)H)ϕ(η(x), H)

= ϕ(η(gx), H)−1 ϕ(g, x)ϕ(η(x), H),

because η(gx)−1gη(x) ∈ H and η(x)H = x, and similarly for π′ and ϕ′. Thus

ϕ′(g, x) = ϕ′(η(gx), H)t−1 ϕ(η(gx), H)−1 ϕ(g, x)ϕ(η(x), H)tϕ′(η(x), H)−1

= ψ(gx)ϕ(g, x)ψ(x)−1,

where ψ : G/H → T is defined by

ψ(x) = ϕ′(η(x), H)t−1 ϕ(η(x), H)−1,

and hence ϕ′ is cohomologous to ϕ.

REMARK 1.9. Note that, in the notation of the above proof, if we are given
a cocycle ϕ, we can explicitly compute how the cocycle πϕ ◦ ϕ0 is cohomologous
to ϕ:

πϕ ◦ ϕ0(g, x) = ϕ(η(gx)−1gη(x), H) = ϕ(η(gx), H)−1 ϕ(g, x)ϕ(η(x), H)

= τ(gx)ϕ(g, x)τ(x)−1,

where τ : G/H → T is defined by

τ(x) = ϕ(η(x), H)−1.

REMARK 1.10. With the hypotheses of Lemma 1.8, if T is abelian then the
group of cohomology classes of cocycles of T-valued cocycles for G y G/H is
isomorphic to the group of homomorphisms from H to T.

The following result is surely standard, but since we could not find it in the
literature and we need to refer to it later, we give the elementary proof.

LEMMA 1.11. Let a be a positive integer, and let

Za = Z/aZ = {0, 1, . . . , a− 1}

be the quotient group. Let Z act on Za in the canonical manner, by translation modulo a.
For any c ∈ Z define ξc : Za → Z by

ξc(x) =

{
0 if x < a− 1,
c if x = a− 1,

and let ϕc be the cocycle with generating function ξc. Then {ϕc : c ∈ Z} is a complete set
of representatives for the set of cohomology classes of Z-valued cocycles for the canonical
action Z y Za.
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Proof. The action ofZ onZa is generated by the permutation τ ofZa given by

τ(x) = x + 1.

In the notation of the proof of Lemma 1.8, choose the cross section η : Za → Z to
be given by

η(k + aZ) = k for k = 0, 1, . . . , a− 1.
The special aZ-valued cocycle ϕ0 as in the proof of Lemma 1.8 has generating
function

ϕ0(1, x) = 1 + η(x)− η(τ(x)) =

{
0 if x < a− 1,
a if x = a− 1.

As in the proof of Lemma 1.8 (see also Remark 1.10), every Z-valued cocycle
is cohomologous to a unique cocycle of the form π ◦ ϕ0 for a homomorphism
π : aZ → Z. The homomorphism π is uniquely determined by the number
c = π(a) ∈ Z, and a routine calculation shows that the generating function of the
cocycle π ◦ ϕ0 is given by ξc.

With the notation of Lemma 1.11, we of course see immediately that for
distinct c the cocycles ϕc are noncohomologous, since ϕc has signature c. But
in fact the following corollary (which again is surely folklore) shows that much
more is true.

COROLLARY 1.12. For systems (Z, S, ϕ), where Z y S transitively, S is finite,
and ϕ : Z× S→ Z is a cocycle, the signature of ϕ is a complete invariant for cohomology
conjugacy.

Proof. Let (Z, S, ϕ) be such a system, and let S have cardinality a. By tran-
sitivity this system is cohomology conjugate to a system of the form (Z,Za, ϕ′),
where Z acts on Za by the usual translation modulo a. It follows from Lemma 1.11
that the cocycle ϕ′ is determined up to cohomology by its signature, and more-
over every integer can occur as the signature of some cocycle for this action
Z y Za.

2. COCYCLES FOR GRAPH ACTIONS

Let E = (E0, E1, r, s) be a topological graph in the sense of Katsura [9], that
is, E0 and E1 are locally compact Hausdorff spaces, r : E1 → E0 is continuous,
and s : E1 → E0 is a local homeomorphism.

In Section 2 of [9], Katsura constructs a correspondence X = XE over the
commutative C∗-algebra A :=C0(E0) as the completion of the pre-correspondence
Cc(E1), with operations defined for a ∈ A and x, y ∈ Cc(E1) by

(a · x)(e) = a(r(e))x(e), (x · a)(e) = x(e)a(s(e)), 〈x, y〉A(v) = ∑
s(e)=v

x(e)y(e).

We will call X the graph correspondence of E.
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Katsura defines C∗(E) as the Cuntz–Pimsner algebraOX([9], Definition 2.10).
Here we use the conventions of Definition 3.5 in [10] for Cuntz–Pimsner algebras.

Let G be a locally compact group acting continuously on E in the sense of
Section 3 in [4], that is, G acts in the usual way by homeomorphisms on the spaces
E0 and E1, and for each g ∈ G the maps e 7→ ge on edges and v 7→ gv on vertices
constitute an automorphism of the topological graph E.

Let α denote the associated action of G on A:

αg(a)(v) = a(g−1v) for g ∈ G, a ∈ A, v ∈ E0.

By Proposition 5.4 of [4], we can define an α-compatible action γ of G on the
graph correspondence X via

γg(x)(e) = x(g−1e) for g ∈ G, x ∈ Cc(E1), e ∈ E1.

Here we use the conventions of Definition 3.1 in [5] for actions on correspon-
dences. By Proposition 3.5 of [5], there is a C∗-correspondence Y := X oγ G over
the crossed product B := A oα G, which contains Cc(G, X) as a dense subspace,
and which satisfies

b · ξ(g) =
∫
G

b(h) · γh(ξ(h−1g))dh,

ξ · b(g) =
∫
G

ξ(h) · αh(b(h−1g))dh,

〈ξ, η〉AoαG(g) =
∫
G

αh−1(〈ξ(h), η(hg)〉A)dh,

for b ∈ B, ξ, η ∈ Cc(G, X), and g ∈ G. We call Y the crossed product of the action
(X, G). This correspondence is both full in the sense that span〈Y, Y〉B = B, and
nondegenerate in the sense that BY = Y. The left B-module multiplication is given
by a homomorphism φY : B→ L(Y) = M(K(Y)), which is the integrated form of
a covariant pair (π, U), where π : A→ L(Y) is the nondegenerate representation
determined by

(2.1) (π(a)ξ)(h) = a · ξ(h) for a ∈ A, ξ ∈ Cc(G, X), h ∈ G,

and U : G→L(Y) is the strongly continuous unitary representation determined by

(2.2) (Ugξ)(h) = γg(ξ(g−1h)) for g ∈ G, ξ ∈ Cc(G, X), h ∈ G

(see the proof of Proposition 3.5 of [5]).
We will want to compute with the B-correspondence Y using two-variable

functions. Since A = C0(E0), we can identify the crossed product A oα G as a
completion of the convolution ∗-algebra Cc(E0 × G) with operations

(b ∗ c)(v, g) =
∫
G

b(v, h)c(h−1v, h−1g)dh,(2.3)

b∗(v, g) = ∆(g−1)b(g−1v, g−1),(2.4)
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for b, c ∈ Cc(E0×G) and (v, g) ∈ E0×G. (See, for example, page 53 of [23].) Since
we will play a similar game with X oγ G, we pause to provide a little detail on
how (2.3)–(2.4) are derived from the usual operations on the convolution algebra
Cc(G, A), given by

(b ∗ c)(g) =
∫
G

b(h)αh(c(h−1g))dh,(2.5)

b∗(g) = ∆(g−1)αg(b(g−1))∗.(2.6)

We do it for (2.5); it is much easier for (2.6). Using the embeddings

Cc(E0 × G) ⊂ Cc(G, Cc(E0)) ⊂ Cc(G, A),

for b, c ∈ Cc(E0 × G) and (v, g) ∈ E0 × G, we have

(b ∗ c)(v, g) = (b ∗ c)(g)(v) =
∫
G

b(h)αh(c(h−1g))dh(v)

(∗)
=
∫
G

(b(h)αh(c(h−1g)))(v)dh =
∫
G

b(h)(v)αh(c(h−1g))(v)dh

=
∫
G

b(v, h)c(h−1g)(h−1v)dh =
∫
G

b(v, h)c(h−1v, h−1g)dh.

The point is that at the equality (∗) we are using that in the line above we have a
norm-convergent integral of a continuous A-valued function with compact sup-
port, and evaluation at v is a bounded linear functional.

Now we argue similarly for

Cc(E1 × G) ⊂ Cc(G, Cc(E1)) ⊂ Cc(G, X),

where in a couple of computations we will have a norm-convergent integral of an
X-valued function with compact support, and we use the property that evalua-
tion at an edge e is a bounded linear functional on X, since on Cc(E1) the uniform
norm is less than the norm from the Hilbert A-module X. For b ∈ Cc(E0 × G),
ξ, η ∈ Cc(E1 × G), (e, g) ∈ E1 × G, and v ∈ E0, we have

(b · ξ)(e, g) =
∫
G

b(r(e), h)ξ(h−1e, h−1g)dh,

(ξ · b)(e, g) =
∫
G

ξ(e, h)b(h−1s(e), h−1g)dh, and

〈ξ, η〉AoαG(v, g) =
∫
G

∑
s(e)=hv

ξ(e, h)η(e, hg)dh.

(2.7)
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Indeed,

(b · ξ)(e, g) = (b · ξ)(g)(e) =
∫
G

b(h) · γh(ξ(h−1g))dh(e)

=
∫
G

(b(h) · γh(ξ(h−1g)))(e)dh =
∫
G

b(h)(r(e))γh(ξ(h−1g))(e)dh

=
∫
G

b(r(e), h)ξ(h−1g)(h−1e)dh =
∫
G

b(r(e), h)ξ(h−1e, h−1g)dh, and

(ξ · b)(e, g) = (ξ · b)(g)(e) =
∫
G

ξ(h) · αh(b(h−1g))dh(e)

=
∫
G

(ξ(h) · αh(b(h−1g)))(e)dh =
∫
G

ξ(h)(e)αh(b(h−1g))(s(e))dh

=
∫
G

ξ(e, h)b(h−1g)(h−1s(e))dh =
∫
G

ξ(e, h)b(h−1s(e), h−1g)dh, and

〈ξ, η〉AoαG(v, g) = 〈ξ, η〉AoαG(g)(v) =
∫
G

αh−1(〈ξ(h), η(hg)〉A)dh(v)

=
∫
G

(αh−1(〈ξ(h), η(hg)〉A)(v))dh =
∫
G

〈ξ(h), η(hg)〉A(hv)dh

(∗)
=
∫
G

∑
s(e)=hv

ξ(h)(e)η(hg)(e)dh =
∫
G

∑
s(e)=hv

ξ(e, h)η(e, hg)dh,

where in the equality at (∗) the sum is finite by Lemma 1.4 of [9], since ξ(h) ∈
Cc(E1).

We can also compute with the covariant pair (π, U) of (2.1) and (2.2) using
two-variable functions: for a ∈ A = C0(E0), ξ ∈ Cc(E1 × G), g, h ∈ G, and e ∈ E1

we have

(π(a)ξ)(e, h) = a(r(e))ξ(e, h),(2.8)

(Ugξ)(e, h) = ξ(g−1e, g−1h).(2.9)

LEMMA 2.1. The inductive limit topology on Cc(E1 × G) is stronger than the
norm topology from Y.

Proof. It suffices to show that if {ξi} is a net in Cc(E1 × G) converging uni-
formly to 0 and such the supports of the ξi’s are all contained in some fixed com-
pact set K, then

‖〈ξi, ξi〉B‖ → 0.

Choose compact sets K1 ⊂ E1 and K2 ⊂ G such that K ⊂ K1 × K2. By the ele-
mentary Lemma 2.2 below, we can choose n ∈ N such that for all v ∈ E0 the set
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s−1(v)∩K1 has at most n elements. Let ε > 0, and choose i0 such that for all i > i0
we have

|ξi(e, g)| < ε for all (e, g) ∈ E1 × G.

For all i > i0 and (v, g) ∈ E0 × G,

〈ξi, ξi〉B(v, g) =
∫
G

∑
s(e)=hv

ξi(e, h)ξi(e, hg)dh =
∫
K2

∑
s(e)=hv

ξi(e, h)ξi(e, hg)dh,

which has absolute value bounded above by nε2 times the measure of K2, and
this suffices to show that ‖〈ξi, ξi〉B‖ → 0 uniformly.

In the above proof we used the following elementary lemma, which we
could not find in the literature (although it is similar to Corollary 3.9 (2) of [4]).

LEMMA 2.2. For any compact set K ⊂ E1 there is a positive integer n such that
for all v ∈ E0 the set s−1(v) ∩ K has at most n elements.

Proof. Let L = s(K), a compact subset of E0. By Lemma 1.4 of [9], each
v ∈ E0 has a neighborhood Uv such that for some positive integer nv the set
K ∩ s−1(Uv) has at most nv elements. Covering L by finitely many Uv’s gives the
lemma.

We will soon modify the B-correspondence Y using a cocycle. The follow-
ing definition of cocycle generalizes that of Section 2 in [7], where the authors
consider discrete groups acting on finite graphs.

DEFINITION 2.3. A cocycle for the action of G on the topological graph E is
a cocycle ϕ for the action of G on the edge space E1 that also satisfies the vertex
condition

(2.10) ϕ(g, e)s(e) = gs(e) for all g ∈ G, e ∈ E1.

In (2.3.1) of [7] (for finite graphs), Exel and Pardo impose a stronger version
of (2.10), namely ϕ(g, e)v = gv for all g ∈ G, e ∈ E1, and v ∈ E0; our weakened
version above is all that is needed, and allows for greater flexibility. For exam-
ple, the elementary theory of cohomology for cocycles (see Section 3) would be
significantly hampered with the Exel–Pardo version.

REMARK 2.4. Note that (2.10) implies that for all (g, e) ∈ G× E1 the product
g−1 ϕ(g, e) lies in the isotropy subgroup Gs(e) of G at the vertex s(e). Thus, the
existence of nontrivial cocycles, i.e., other than the map (g, e) 7→ g, depends upon
having nontrivial isotropy of the action on vertices.

Let ϕ be a cocycle for the action of G on E. We use ϕ to modify the B-
correspondence Y as follows: we keep the same structure as a Hilbert B-module,
as well as the same left A-module action determined by (2.8). In the following we
use the technique of (1.1) to define an action of G on the Hilbert B-module Y: for
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g ∈ G and ξ ∈ Cc(E1 × G) define the function Vgξ ∈ Cc(E1 × G) by

(2.11) (Vgξ)(e, h) = ξ(g−1e, ϕ(g−1, e)h).

PROPOSITION 2.5. (i) The map g 7→ Vg given by (2.11) is a strongly continuous
unitary representation of G on the Hilbert B-module Y.

(i) With π as in (2.8) and V as above, the pair (π, V) is a covariant representation of
the system (A, G, α) on the Hilbert B-module Y.

Proof. (i) First note that the map g 7→ Vg is multiplicative from G into the
set of linear operators on Cc(E1 × G):

(VgVhξ)(e, k) = (Vhξ)(g−1e, ϕ(g−1, e)k) = ξ(h−1g−1e, ϕ(h−1, g−1e)ϕ(g−1, e)k)

= ξ(h−1g−1e, ϕ(h−1g−1, e)k) = (Vghξ)(e, k).

Since V1G ξ = ξ for all ξ ∈ Cc(E1×G) (where 1G here denotes the identity element
of G), we deduce that V is a homomorphism from G to the group of invertible
linear operators on Cc(E1 × G).

Now we show that the inner products on Cc(E1 × G) are preserved by
each Vg:

〈Vgξ, Vgη〉B(v, h) =
∫
G

∑
s(e)=kv

(Vgξ)(e, k)(Vgη)(e, kh)dk

=
∫
G

∑
s(e)=kv

ξ(g−1e, ϕ(g−1, e)k)η(g−1e, ϕ(g−1, e)kh)dk

=
∫
G

∑
s(e)=kv

ξ(e, k)η(e, kh)dk

(after e 7→ ge and k 7→ ϕ(g−1, e)−1k, since a short computation using the cocycle
identity and (2.10) shows that s(e) = kv if and only if s(g−1e) = ϕ(g−1, e)−1kv )

= 〈ξ, η〉B(v, h).

In particular, Vg is isometric on Cc(E1 × G), and hence extends uniquely to an
isometry on the completion Y; moreover, since Vg maps Cc(E1 × G) onto itself,
this extension, which we continue to denote by Vg, is in fact an isometric linear
map of Y onto itself. Upon taking limits we see that these extensions still satisfy
VgVh = Vgh for all g, h ∈ G.

For b ∈ Cc(E0 × G) we have

(Vg(ξ · b))(e, h) = (ξ · b)(g−1e, ϕ(g−1, e)h)

=
∫
G

ξ(g−1e, k)b(k−1s(g−1e), k−1 ϕ(g−1, e)h)dk

=
∫
G

ξ(g−1e, ϕ(g−1, e)k)b(k−1 ϕ(g−1, e)−1s(g−1e), k−1h)dk
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(after k 7→ ϕ(g−1, e)k)

=
∫
G

ξ(g−1e, ϕ(g−1, e)k)b(k−1 ϕ(g, g−1e)s(g−1e), k−1h)dk

=
∫
G

ξ(g−1e, ϕ(g−1, e)k)b(k−1gs(g−1e), k−1h)dk (by (2.10))

=
∫
G

(Vgξ)(e, k)b(k−1s(e), k−1h)dk = ((Vgξ) · b)(e, h).

Thus by continuity the map Vg on Y is right B-linear, and this combined with
its other properties makes it a unitary operator on the Hilbert B-module Y ([15],
Theorem 3.5).

For the strong continuity, by uniform boundedness it suffices to show that if
ξ ∈ Cc(E1 × G) and gi → 1 in G then ‖Vgi ξ − ξ‖ → 0. Arguing by contradiction,
we can replace {gi} by a subnet and relabel so that no subnet of {‖Vgi ξ− ξ‖} con-
verges to 0. Again replacing {gi} by a subnet, we can suppose that the gi’s are all
contained in some compact neighborhood U of 1. It then follows from continuity
of the operations, and of the function ϕ, that the supports of the functions Vvi ξ’s
are all contained in some fixed compact set K ⊂ E1 × G. Then by Lemma 2.1
it suffices to show that Vgi ξ → ξ uniformly. Arguing by contradiction, we can
replace by a subnet so that no subnet of Vgi ξ converges uniformly to ξ. Then we
can find ε > 0 such that, after again replacing by a subnet, for all i there exists
(ei, hi) ∈ E1 × G such that

|Vgi ξ(ei, hi)− ξ(ei, hi)| > ε.

In particular, we must have (ei, hi) ∈ K for all i, so that after replacing by a subnet
again we have (ei, hi) → (e, h) for some (e, h) ∈ E1 × G. But then by continuity
we have

ε 6 |Vgi ξ(ei, hi)− ξ(ei, hi)| → |ξ(e, h)− ξ(e, h)| = 0,

which is a contradiction.
(ii) It suffices to show that for all g ∈ G, a ∈ A, and ξ ∈ Cc(E1 × G) we

have Vgπ(a)ξ = π(αg(a))Vgξ, and we check this by evaluating at an arbitrary
pair (e, h) ∈ E1 × G:

(Vgπ(a)ξ)(e, h) = (π(a)ξ)(g−1e, ϕ(g−1, e)h) = a(r(g−1e))ξ(g−1e, ϕ(g−1, e)h)

= a(g−1r(e))(Vgξ)(e, h) = αg(a)(r(e))(Vgξ)(e, h)

= (π(αg(a))Vgξ)(e, h).

DEFINITION 2.6. The integrated form of the covariant representation (π, V)
of Proposition 2.5 is a nondegenerate representation of B in L(Y), giving Y the
structure of a B-correspondence that we denote by Yϕ.
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EXAMPLE 2.7. For the special cocycle (g, e) 7→ g the correspondence Yϕ

reduces to the crossed product Y = X oγ G.

It will be useful to handle the left module action of B on Yϕ in terms of
two-variable functions: for b ∈ Cc(E0 × G) ⊂ B and ξ ∈ Cc(E1 × G) ⊂ Yϕ, the
function b · ξ ∈ Cc(E1 × G) is given by

(b · ξ)(e, g) =
( ∫

G

(iA(b(h))iG(h) · ξ)dh
)
(e, g)

=
∫
G

(iA(b(h))iG(h) · ξ)(e, g)dh (by Lemma 2.1)

=
∫
G

b(h)(r(e))(iG(h) · ξ)(e, g)dh (by (2.8))

=
∫
G

b(r(e), h)(Vhξ)(e, g)dh =
∫
G

b(r(e), h)ξ(h−1e, ϕ(h−1, e)g)dh.

Following [10] we can associate two C∗-algebras to the correspondence Yϕ:
the Toeplitz algebra TYϕ and the Cuntz–Pimsner algebra OYϕ . It will follow from
Corollary 4.4 (or Corollary 5.2) that OYϕ is isomorphic to the C∗-algebra OG,E
associated to (E, G, ϕ) by Exel and Pardo in [7] in the case where E is finite and
sourceless, G is discrete and ϕ satisfies ϕ(g, e)v = v for all (g, e) ∈ G × E1 and
v ∈ E0.

DEFINITION 2.8. We will call OYϕ the Exel–Pardo algebra associated to the
system (E, G, ϕ).

REMARK 2.9. Exel and Pardo show that in the case they consider, OG,E is
nuclear whenever G is amenable (cf. Corollary 10.12 of [7]). In our more general
context, assume that the action of the locally compact group G on the locally com-
pact Hausdorff space E0 is amenable in the sense of Anantharaman-Delaroche
(see Section 2 of [2]). Then B = C0(E0)oα G is nuclear ([2], Theorem 5.3), and
it then follows from Theorem 7.2 and Corollary 7.4 of [10] that TYϕ and OYϕ are
nuclear. If G is discrete, then B is nuclear if and only if the action of G on E0 is
amenable, cf. Théorème 4.5 of [1]. Hence, when G is discrete, Theorem 7.2 of [10]
gives that TYϕ is nuclear if and only if G acts amenably on E0.

REMARK 2.10. By Proposition 3.2 of [6], there is also a C∗-correspondence
Yr := X oγ,r G over the reduced crossed product Br := C0(E0) oα,r G, which
contains Cc(G, X) as a dense subspace and is constructed in a similar way as Y.
To be able to talk about the reduced C∗-correspondence Yϕ

r , i.e., to define a left
action of Br on Yr involving ϕ, one will have to find out if π ×V factors through
Br in general. If G acts amenably on E0, then B = Br (cf. Theorem 5.3 of [2]), so
the problem does not show up in this case.



ON EXEL–PARDO ALGEBRAS 323

REMARK 2.11. In Section 2 of [7], Exel and Pardo show how to extend the
action and cocycle to the set E∗ of finite paths, and it is clear that their proof
works whenever E is a directed graph and G is discrete. We see a way to carry
this further, to form a sort of Zappa–Szép product of E∗ by G with respect to ϕ,
and thereby obtain a new category of paths E∗oϕ G in the sense of Spielberg [22],
except that right cancellation property will not hold in general, and a little bit of
work is necessary to force the category to have no inverses. Several natural ques-
tions arise: is the algebra C∗(E∗ oϕ G) that Spielberg’s theory associates to this
category of paths isomorphic (or related) to the Toeplitz algebra TYϕ ? And then
is a suitable quotient of C∗(E∗ oϕ G) isomorphic to the Cuntz–Pimsner algebra
OYϕ ? We plan to pursue this in subsequent work.

3. COHOMOLOGY FOR GRAPH COCYCLES

Throughout this section G will be a locally compact group acting on a topo-
logical graph E.

DEFINITION 3.1. Let ϕ, ϕ′ be cocycles for the action G y E. We say ϕ and
ϕ′ are cohomologous if there is a continuous function ψ : E1 → G such that for all
g ∈ E and e ∈ E1 we have

ϕ′(g, e) = ψ(ge)ϕ(g, e)ψ(e)−1,(3.1)

ψ(e)s(e) = s(e).(3.2)

Note that (3.1) just says that ϕ and ϕ′ are cohomologous as cocycles for the
action G y E1. The extra condition (3.2) is necessary to make the theory work for
actions on topological graphs.

LEMMA 3.2. If ϕ is a cocycle for the action of G on the topological graph E and
ψ : E1 → G is a continuous map satisfying (3.2), then the map ϕ′ : E1×G → G defined
by (3.1) is also a cocycle for the action of G on E.

Proof. As we mentioned above, the cocycle identity holds for ϕ′ by the stan-
dard theory of actions on spaces (and is a routine computation). We verify (2.10):

ϕ′(g, e)s(e) = ψ(ge)ϕ(g, e)ψ(e)−1s(e) = ψ(ge)ϕ(g, e)s(e) = ψ(ge)gs(e)

= ψ(ge)s(ge) = s(ge) = gs(e).

In the general theory of cocycles for actions on spaces, the constant function
(g, e) 7→ 1 is a cocycle (where 1 here denotes the identity element of G). But not
necessarily for the action of G on the topological graph E.

LEMMA 3.3. For an action of G on a topological graph E, the following are equiv-
alent:

(i) The constant function (g, e) 7→ 1 is a cocycle for the action G y E.
(ii) gs(e) = s(e) for all (g, e) ∈ G× E1.
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(iii) In Definition 2.3, the axiom (2.10) is redundant.

Proof. (ii) trivially implies (iii), which in turn trivially implies (i). Assume
(i). Then for all g ∈ E and e ∈ E1 we have

gs(e) = 1Gs(e) = s(e),

giving (ii).

DEFINITION 3.4. We say that an action of G on a topological graph E fixes
sources if it satisfies the equivalent conditions (i)–(iii) in Lemma 3.3.

COROLLARY 3.5. If the action G y E fixes sources, and if ψ : E1 → G is a
continuous map satisfying (3.2), then the map ϕ : G× E1 → G defined by

(3.3) ϕ(g, e) = ψ(ge)ψ(e)−1

is a cocycle for the action G y E.

DEFINITION 3.6. If the action G y E fixes sources, a cocycle ϕ as in (3.3) is
a coboundary for the action G y E.

REMARK 3.7. Thus, when the action G y E fixes sources, coboundaries are
precisely the cocycles that are cohomologous to the cocycle taking the constant
value 1.

Cohomologous cocycles give isomorphic correspondences.

THEOREM 3.8. If ϕ and ϕ′ are cohomologous cocycles for the action G y E, then
the B-correspondences Yϕ and Yϕ′ are isomorphic.

Proof. Let ϕ′(e, g) = ψ(eg)ϕ(e, g)ψ(e)−1 for a continuous map ψ : E1 → G
satisfying (3.2). We will construct an isomorphism Φ : Yϕ → Yϕ′ . To begin, we
define Φ as a linear map on Cc(E1 × G) by

(Φξ)(e, g) = ξ(e, ψ(e)−1g) for ξ ∈ Cc(E1 × G).

We show that Φ preserves inner products:

〈Φξ, Φη〉(v, g) =
∫
G

∑
s(e)=hv

(Φξ)(e, h)(Φη)(e, hg)dh

=
∫
G

∑
s(e)=hv

ξ(e, ψ(e)−1h)(η(e, ψ(e)−1hg))dh

=
∫
G

∑
s(e)=hv

ξ(e, h)(η(e, hg))dh,

after h 7→ ψ(e)h, since by (3.2) s(e) = hv if and only if s(e) = ψ(e)hv,

= 〈ξ, η〉(v, g).
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Thus Φ extends uniquely to an isometric linear operator on the Hilbert B-module
Y. The following computation implies that Φ is right B-linear: for ξ ∈ Cc(E1×G)
and b ∈ Cc(E0 × G) we have

(Φ(ξ · b))(e, g) = (ξ · b)(e, ψ(e)−1g)

=
∫
G

ξ(e, h)b(h−1s(e), h−1ψ(e)−1g)dh

=
∫
G

ξ(e, ψ(e)−1h)b(h−1ψ(e)s(e), h−1g)dh, (after h 7→ ψ(e)−1h)

=
∫
G

ξ(e, ψ(e)−1h)b(h−1s(e), h−1g)dh, (by (3.2))

=
∫
G

(Φξ)(e, h)b(h−1s(e), h−1g)dh = ((Φξ) · b)(e, g).

This combined with the other properties of Φ makes it a unitary map from the
Hilbert B-module Yϕ to the Hilbert B-module Yϕ′ ([15], Theorem 3.5).

Then the following computation implies that Φ is left B-linear, from which
the theorem will follow:

(Φ(b · ξ))(e, g) = (b · ξ)(e, ψ(e)−1g) =
∫
G

b(r(e), h)ξ(h−1e, ϕ(h−1, e)ψ(e)−1g)dh

=
∫
G

b(r(e), h)ξ(h−1e, ψ(h−1e)−1 ϕ′(h−1, e)g)dh

=
∫
G

b(r(e), h)(Φξ)(h−1e, ϕ′(h−1, e)g)dh = (b · (Φξ))(e, g).

As an immediate consequence of Theorem 3.8, we get the following corol-
lary.

COROLLARY 3.9. Assume that G also acts on another topological graph F =
(F0, F1, r′, s′) and that ϕ and ϕ′ are cocycles for G y E and G y F, respectively.
If (E, G, ϕ) and (F, G, ϕ′) are cohomology conjugate in the sense that there exist G-
equivariant homeomorphisms θj : Fj → Ej for j = 0, 1 such that r ◦ θ1 = θ0 ◦ r′,
s ◦ θ1 = θ0 ◦ s′, and the map (g, f ) → ϕ(g, θ1( f )) is a cocycle for G y F that is coho-
mologous to ϕ′, then Yϕ is isomorphic to Yϕ′ , and it follows that TYϕ (respectively OYϕ )
is isomorphic to TYϕ′ (respectively OYϕ′ ).

In the following proposition we consider the question of whether the cocy-
cle (g, e) 7→ g can be a coboundary for a graph action.

PROPOSITION 3.10. Suppose the action G y E fixes sources. Then the following
are equivalent:

(i) The cocycle (g, e) 7→ g is a coboundary.
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(ii) There is a continuous map ψ : E1 → G such that for all g ∈ G and e ∈ E1 we
have

ψ(ge) = gψ(e).

(iii) E1 is G-equivariantly homeomorphic to G×Ω for some space Ω, where G acts by
left translation in the first factor.

Proof. Since the action fixes sources, we have gs(e) = s(e) for all g ∈ G and
e ∈ E1, and consequently it is easy to see that (g, e) 7→ g is a coboundary for
the action of G on the topological graph E if and only if it is a coboundary for
the action of G on the space E1, so the result follows immediately from Proposi-
tion 1.5.

REMARK 3.11. Suppose that the action G y E fixes sources and that the
map (g, e) 7→ g is a coboundary. In view of Proposition 3.10, we may assume that
E1 =G×Ω and g(h, x) = (gh, x) for all g, h ∈ G and x ∈ Ω. It is interesting to
examine the range and source maps of E. Define continuous maps σ, ρ : Ω→
E0 by

σ(x) = s(1, x), ρ(x) = r(1, x).

Then for all (g, x) ∈ G×Ω we have

s(g, x) = gs(1, x) = s(1, x) = σ(x).

On the other hand, for the range map we have

r(g, x) = gr(1, x) = gρ(x).

It is tempting to conjecture that much more can be said about this situation. As
a kind of converse, let ρ, σ : Ω → E0 be continuous maps between some locally
compact Hausdorff spaces Ω and E0. Assume that σ is a local homeomorphism
and that G is a discrete group acting by homeomorphisms on E0 in such a way
that

gσ(x) = σ(x)
for all g ∈ G, x ∈ Ω. Set E1 := G×Ω and define r, s : E1 → E0 by

r(h, x) = hρ(x), s(h, x) = σ(x),

for all (h, x) ∈ E1. Then one checks readily that E = (E1, E0, r, s) is a topological
graph. Moreover, letting G act on E1 by g(h, x) = (gh, x) for all g ∈ G and
(h, x) ∈ E1, we obtain an action of G on E that is easily seen to satisfy gs(e) = s(e)
for all e ∈ E1.

QUESTION 3.12. If the action of G on E fixes sources, what can be said about
the correspondence Yϕ for the cocycle ϕ(g, e) = 1? In the case where E is finite
with no sources, Exel and Pardo ([7], Example 3.6) show that OG,E ' C∗(E). But
we would like to understand this (admittedly rather trivial) situation better. We
discuss a special case toward the end of Example 6.5.
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4. GENERATORS AND RELATIONS

Throughout this section, E = (E0, E1, r, s) will be a directed graph, G will be
a discrete group acting on E, and ϕ : G× E1 → G will be a cocycle for this action.
We will describe the Toeplitz algebra TYϕ in terms of generators and relations, and
give a similar description of the Cuntz–Pimsner algebra OYϕ when E is assumed
to be row-finite. In the case where E is finite and sourceless, we thereby recover
Exel and Pardo’s initial definition of OG,E in Section 3 of [7].

We use the notation introduced in Section 3 and refer the reader to [10] for
undefined terminology and notation on C∗-correspondences. Let (tYϕ , tB) denote
the universal Toeplitz representation of (Yϕ, B) in TYϕ , (kYϕ , kB) the universal
Cuntz–Pimsner covariant representation of (Yϕ, B) in OYϕ , and (iA, iG) the uni-
versal covariant homomorphism of (A, G) in M(B). (Of course, since G is discrete
we have iA : A→ B.)

We work with the crossed product B = A oα G and the B-correspondence
Yϕ in terms of the generators:

(i) χe,g denotes the element of Cc(E1 × G) ⊂ Yϕ given by the characteristic
function of {(e, g)}.

(ii) δv,g denotes the element of Cc(E0 × G) ⊂ B given by the characteristic
function of {(v, g)}.

(iii) Similarly for χe ∈ Cc(E1) ⊂ X and δv ∈ Cc(E0) ⊂ A.

Thus

(i) Cc(E1 × G) = span{χe,g : e ∈ E1, g ∈ G}.
(ii) Cc(E0 × G) = span{δv,g : v ∈ E0, g ∈ G}.

(iii) A is the c0-direct sum of the 1-dimensional ideals generated by the projec-
tions δv for v ∈ E0.

DEFINITION 4.1. Let D be a C∗-algebra. A representation of (E, G, ϕ) in D is
a family {Pv, Se, Ug : v ∈ E0, e ∈ E1, g ∈ G} such that:

(EP i) {Pv, Se : v ∈ E0, e ∈ E1} is a Toeplitz E-family in D,
(EP ii) the map U : g 7→ Ug is a unitary representation of G in M(D),

(EP iii) for all g ∈ G, v ∈ E0, and e ∈ E1 we have

UgPv = PgvUg and UgSe = SgeUϕ(g,e),

and
(EP iv) D is generated as a C∗-algebra by

{PvUg : v ∈ E0, g ∈ G} ∪ {SeUg : e ∈ E1, g ∈ G}.

We frequently shorten the notation for the family to {Pv, Se, Ug}. If the above
condition (EP i) is replaced by

(EP’ i) {Pv, Se : v ∈ E0, e ∈ E1} is a Cuntz–Krieger E-family in D,
then we say {Pv, Se, Ug} is a CK-representation of (E, G, ϕ) in D.
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Since the left B-module Yϕ is nondegenerate, the canonical homomorphisms
tB : B→ TYϕ and kB : B→ OYϕ are nondegenerate; we denote by tB and kB their
extensions to the multiplier algebra M(B). We define a representation {pv, se, ug}
of (E, G, ϕ) in TYϕ by

pv = tB(iA(δv)), se = tYϕ(χe,1), ug = tB(iG(g)),

and a CK-representation {p′v, s′e, u′g} in OYϕ by

p′v = kB(iA(δv)), s′e = kYϕ(χe,1), u′g = kB(iG(g)).

Note that

iA(δv) = δv,1, iG(g) = ∑
v∈E0

δv,g,

where 1 denotes the identity element of G and the sum converges in the strict
topology of M(B). Also, the technology of discrete crossed products is set up so
that

iA(δv)iG(g) = δv,g,

and it follows that

δv′ ,gδv,h =

{
δgv,gh if v′ = gv,
0 otherwise.

We have

iA(δv) · χe,h =

{
χe,h if v = r(e),
0 otherwise;

χe,h · iA(δv) =

{
χe,h if s(e) = hv,
0 otherwise;

iG(g) · χe,h = χge,ϕ(g,e)h, χe,h · iG(g) = χe,hg.

Consequently

δv,g · χe,h =

{
χge,ϕ(g,e)h if v = r(ge),
0 otherwise;

χe,h · δv,g =

{
χe,hg if s(e) = hv,
0 otherwise.

The inner product on basis elements satisfies

〈χe,1, χe′ ,1〉 =
{

δs(e),1 if e = e′,
0 otherwise,

and so

〈χe,g, χe,h〉 = 〈χe,1 · iG(g), χe,1 · iG(h)〉 = iG(g−1)〈χe,1, χe,1〉iG(h)

= iG(g−1)δs(e),1iG(h) = δs(g−1e),g−1h,

while 〈χe,g, χe′ ,h〉 = 0 if e 6= e′.
Also, ∑

v∈E0
δv = 1 in M(A), where the series converges strictly, and similarly

∑
v∈E0

δv,1 = 1 in M(B). Consequently (as has been mentioned in the literature,
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probably many times), ∑
v∈E0

pv = 1 strictly in M(TYϕ), and similarly for the pro-

jections p′v in M(OYϕ).
The following shows that TYϕ is the universal C∗-algebra for representa-

tions of (E, G, ϕ), which gives a presentation of TYϕ in terms of generators and
relations.

THEOREM 4.2. Let {Pv, Se, Ug} be a representation of (E, G, ϕ) in a C∗-algebra
D. Then there is a unique surjective homomorphism Φ from TYϕ onto D such that

Φ(pv) = Pv, Φ(se) = Se, and Φ(ug) = Ug,

for all v ∈ E0, e ∈ E1, and g ∈ G.

Proof. We will construct a Toeplitz representation (ψ, ζ) of the correspon-
dence (Yϕ, B) in D, and we work primarily with the generators. First of all,
the family {Pv} of orthogonal projections uniquely determines a homomorphism
P̃ : A → D. Then the relation (EP iii) immediately implies that the pair (P̃, U) is
a covariant homomorphism of the system (A, G, α) in D, and the integrated form
is a homomorphism ζ : B→ D, given on generators by

ζ(δv,g) = PvUg for v ∈ E0, g ∈ G.

Next, we define a linear map ψ : Cc(E1 × G) → D as the unique linear extension
of the map given on generators by

ψ(χe,g) = SeUg for e ∈ E1, g ∈ G.

The computation

ψ(χe,g)
∗ψ(χe′ ,h) = (SeUg)

∗(Se′Uh) = U∗g S∗e Se′Uh,

which is 0 unless e = e′, in which case we can continue as

= Ug−1 Ps(e)Uh = Pgs(e)Ug−1h = δgs(e),g−1h

= ζ(〈χe,g, χe′ ,h〉) (which is also 0 if e 6= e′),

implies that ψ is bounded, and hence extends uniquely to a bounded linear map
ψ : Yϕ → D. Then combining the above with the computation

ζ(δv,g)ψ(χe,h) = PvUgSeUh = PvSgeUϕ(g,e)h,

which is 0 unless v = r(ge), in which case we can continue as

= SgeUϕ(g,e)h = ψ(χge,ϕ(g,e)h)

= ψ(δv,g · χe,h) (which is also 0 if v 6= r(ge)),

shows that (ψ, ζ) is a Toeplitz representation of (Yϕ, B) in D.
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The associated homomorphism Φ = ψ×T ζ from TYϕ to D is surjective, by
the properties of representations. Moreover, by construction this homomorphism
is the unique one satisfying the following, for all v ∈ E0, e ∈ E1, and g ∈ G:

Φ(pv) = Pv, Φ(se) = Se, and Φ(ug) = Ug.

In the following lemma we will gather some information about the Katsura
ideal of the B-correspondence Yϕ, under a mild assumption on E.

LEMMA 4.3. Assume that E is row-finite, i.e., |r−1(v)| < ∞ for all v ∈ E0.
Then the Katsura ideal JX for the A-correspondence X is G-invariant, the image of the
left-module map φ : B→ L(Yϕ) is contained in K(Yϕ), and

JYϕ ⊂ JX oα G = span{δv,g : (v, g) ∈ E0 × G, 0 < |r−1(v)|}.
Proof. Let

E0
rg = r(E1), E0

so = E0 \ E0
rg.

Thus E0
so is the set of sources and E0

rg is the set of regular vertices. Also, E0 is the
disjoint union of these two G-invariant subsets. Put J0 = c0(E0

so). It is well-known
that

JX = c0(E0
rg), J0 = ker π.

Moreover, we have a direct-sum decomposition A = JX ⊕ J0 into complementary
G-invariant ideals. The crossed product is thus a direct sum

B = (JX oα G)⊕ (J0 oα G)

of complementary ideals. Since the left-module map φ : B → L(Yϕ) coincides
with π ×V, we get

J0 oα G ⊂ ker φ.
Thus

(ker φ)⊥ ⊂ (J0 oα G)⊥ = JX oα G.

As JYϕ = φ−1(K(Yϕ)) ∩ (ker φ)⊥, we can finish by showing that φ(B) ⊂ K(Yϕ),
and by the above it suffices to show that if v ∈ E0

rg and g ∈ G then

(4.1) φ(δv,g) = ∑
r(e)=v

θχe,1,χg−1e,ϕ(g−1,e)
,

which is finite rank. Since Cc(E1 × G) is dense in Yϕ, it suffices to check the
equality of the above two operators on a basis vector χe′ ,h. Recall that δv,g · χe′ ,h =
χge,ϕ(g,e′)h if v = r(ge′) and 0 otherwise.

We first show that

(4.2) φ(δv,1) = ∑
r(e)=v

θχe,1,χe,1
.

For any e ∈ r−1(v) we have

θχe,1,χe,1
χe′ ,h = χe,1 · 〈χe,1, χe′ ,h〉,
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which is 0 if e 6= e′. Thus if r(e′) 6= v we have

∑
r(e)=v

θχe,1,χe,1
χe′ ,h = 0 = φ(δv,1)χe′ ,h.

So now suppose that r(e′) = v. Then

∑
r(e)=v

θχe,1,χe,1
χe′ ,h = θχ

e′ ,1,χe′ ,1
χe′ ,h = χe′ ,1 · 〈χe′ ,1, χe,h〉 = χe′ ,1 · δs(e′),h

= χe′ ,h = φ(δv,1)χe′ ,h,

verifying (4.2).
Now we can prove (4.1):

φ(δv,g) = φ(δv,1iG(g)) = φ(δv,1)Vg = ∑
r(e)=v

θχe,1,χe,1
Vg = ∑

r(e)=v
θχe,1,V∗g χe,1

= ∑
r(e)=v

θχe,1,Vg−1 χe,1
= ∑

r(e)=v
θχe,1,χg−1e,ϕ(g−1,e)

.

We can now deduce that, keeping the row-finiteness assumption on the
graph E, the Cuntz–Pimsner algebra OYϕ is the universal C∗-algebra for CK-
representations of (E, G, ϕ), which gives a presentation of OYϕ in terms of gener-
ators and relations.

COROLLARY 4.4. Let {Pv, Se, Ug} be a CK-representation of (E, G, ϕ) in a C∗-
algebra D. If E is row-finite, then there is a unique surjective homomorphism Φ : OYϕ →
D such that

Φ(p′v) = Pv, Φ(s′e) = Se, and Φ(u′g) = Ug

for all v ∈ E0, e ∈ E1, and g ∈ G.

Proof. With the notation from the proof of Theorem 4.2, we must show that
the Toeplitz representation (ψ, ζ) is Cuntz–Pimsner covariant. That is, we must
show that for all b in the Katsura ideal JYϕ of Yϕ we have ψ(1) ◦φ(b) = ζ(b), where
φ : B → L(Yϕ) is the left module homomorphism and ψ(1) : K(Yϕ) → D is the
homomorphism associated to the Toeplitz representation (ψ, ζ). By Lemma 4.3,
and by linearity, density, and continuity, it suffices to compute that for all (v, g) ∈
E0

rg × G

ψ(1) ◦ φ(δv,g) = ψ(1)
(

∑
r(e)=v

θχe,1,χg−1e,ϕ(g−1,e)

)
= ∑

r(e)=v
ψ(χe,1)ψ(χg−1e,ϕ(g−1,e))

∗

= ∑
r(e)=v

Se(Sg−1eUϕ(g−1,e))
∗ = ∑

r(e)=v
Se(Ug−1 Se)

∗ = ∑
r(e)=v

SeS∗e Ug

= PvUg = ζ(δv,g).

If E is finite, then OYϕ is unital, and Corollary 4.4 shows that it has exactly
the same universal properties as the Exel–Pardo algebra OG,E (cf. Definition 3.2
of [7]). Hence, if E is finite with no sources, then OYϕ is isomorphic to OG,E. We
will give another proof of this fact in Corollary 5.2.
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In the proof of Lemma 4.3 we showed that when E is row-finite we have
φ(B) ⊂ K(Yϕ), where φ : B→ L(Yϕ) is the left-module homomorphism. In fact,
assuming a bit more about E, we can identify the Katsura ideal.

COROLLARY 4.5. If E is row-finite and has no sources, then the Katsura ideal JYϕ

of the B-correspondence Yϕ coincides with B.

Proof. By the preceding, we only need to show that the left-module homo-
morphism φ : B → K(Yϕ) is injective. Our new hypotheses imply that, in the
notation of the proof of Lemma 4.3, B = JX oα G. Recall the CK-representation

p′v = kB(iA(δv)), s′e = kYϕ(χe,1), u′g = kB(iG(g))

of (E, G, ϕ) in OYϕ , and let (ψ, ζ) be the associated Toeplitz representation of the
B-correspondence Yϕ in OYϕ , so that in particular

ζ = πA × u′,

where πA : A→ OYϕ is determined by

πA(a) = ∑
v∈E0

a(v)p′v for a ∈ Cc(E0).

Then clearly ζ = kB, the canonical homomorphism from B to OYϕ . Thus ζ is
injective by Proposition 4.11 of [10]. Since we have shown above that ψ(1) ◦ φ = ζ,
it follows that φ is injective.

REMARK 4.6. We imposed the row-finite hypothesis on the graph in Corol-
lary 4.4 because otherwise it would be problematic to get our hands on the Kat-
sura ideal JYϕ of the correspondence Yϕ. Even when ϕ is the cocycle (g, e) 7→ g,
so that Yϕ = X oγ G, the relationship between the two ideals JXoγG and JX oα G
of B = A oα G is murky. There are partial results: the two ideals coincide when
G is amenable ([8], Proposition 2.7), or is discrete and has Exel’s approximation
property ([3], Theorem 5.5), but it is unknown whether the two ideals coincide
for arbitrary G. However, when G is discrete, E is row-finite with no sources, and
ϕ is the cocycle (g, e) 7→ g, Corollary 4.5 gives that JXoG = B = A o G = JX o G,
and we can then conclude from Theorem 4.1 of [3] that OXoG ' OX o G, i.e.,
OYϕ ' C∗(E)o G. In the case where E is finite and sourceless, this was pointed
out by Exel and Pardo in Example 3.5 of [7].

5. THE EXEL–PARDO CORRESPONDENCE

When G is discrete and the graph E is finite, Exel and Pardo ([7], Section 10)
define a correspondence, that they denote by M, over the crossed product B =
A oα G. (Warning: they call this crossed product A, whereas we write A for
C0(E0).) Exel and Pardo also require E to have no sources, but they remark in
Section 2 of [7] that this assumption, as well as finiteness of E, are probably only
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necessary in Section 3 of their paper, whence it happens that this does not concern
us in our paper.

Throughout this section we assume that G is a discrete group acting on a
directed graph E, and that ϕ is a cocycle for this action.

Our construction of the B-correspondence Yϕ in Section 2 is different from
that of Exel and Pardo ([7], Section 10), so it behooves us to compare them.

THEOREM 5.1. Let M be the B-correspondence constructed in Section 10 of [7].
Then Yϕ ' M as B-correspondences.

Proof. We review the construction of M, but using slightly different notation
and adapting it to our more general context. It should be clear that we produce
the same structure as in [7]. For v ∈ E0 let δv ∈ Cc(E0) ⊂ A be the characteristic
function of {v}. For each E ∈ E1 let

Be = iA(δs(e))B,

which is a closed right ideal of B, and hence a Hilbert B-module in the obvious
way. Then form a new Hilbert B-module as the direct sum

M =
⊕
e∈E1

Be.

An element m ∈ M is an E1-tuple

m = (me)e∈E1 ,

and the coordinates have the form

me = iA(δs(e))be with be ∈ B.

The left B-module structure on M is the integrated form of a covariant pair of left
module multiplications of A and G, defined on the generators by

(δv ·m)e =

{
me if v = r(e),
0 otherwise;

(g ·m)e = iA(δs(e))iG(ϕ(g, g−1e))mg−1e.

We will define an isomorphism Ψ : Yϕ → M of B-correspondences. We be-
gin by defining Ψ on the dense subspace Cc(E1×G), and by linear independence
it suffices to define

(Ψχe,g)e′ =

{
iA(δs(e))iG(g) if e′ = e,
0 otherwise.

The following computation implies that Ψ preserves inner products on Cc(E1 ×
G): for e, f ∈ E1 and g, h ∈ G we have

〈Ψχe,g, Ψχ f ,h〉 = ∑
e′∈E1

(Ψχe,g)
∗
e′(Ψχ f ,h)e′ ,

which is 0 unless e = f = e′, and when e = f we have

〈Ψχe,g, Ψχe,h〉 = (Ψχe,g)
∗
e (Ψχe,h)e = (iA(δs(e))iG(g))∗(iA(δs(e))iG(h))
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= iG(g−1)iA(δs(e))iG(h) = iA(δg−1s(e))iG(g−1h)

= δg−1s(e),g−1h = 〈χe,g, χe,h〉.

Thus Ψ extends uniquely to an isometric linear map from Yϕ to M, which we
continue to denote by Ψ.

As pointed out in Section 10 of [7],

Be = span{iA(δs(e))iG(g) : g ∈ G},

and it follows that Ψ has dense range, and hence is surjective.
The following computations imply that Ψ is right B-linear:

(Ψ(χe,h · δv))e′ =

{
(Ψχe,h)e′ if s(e) = v,
0 otherwise,

=

{
iA(δs(e))iG(h) if s(e) = v, e′ = e,
0 otherwise,

while

((Ψχe,h) · δv)e′ =

{
(Ψχe,h)e′ if s(e′) = v,
0 otherwise,

=

{
iA(δs(e))iG(h) if s(e′) = v, e′ = e,
0 otherwise,

so Ψ(χe,h · δv) = (Ψχe,h) · δv, and

(Ψ(χe,h · g))e′ = (Ψχe,hg)e′ =

{
iA(δs(e))iG(hg) if e′ = e,
0 otherwise,

while

((Ψχe,h) · g)e′ = (Ψχe,h)e′ · g

=

{
iA(δs(e))iG(h) · g if e′ = e,
0 otherwise,

=

{
iA(δs(e))iG(hg) if e′ = e,
0 otherwise,

so Ψ(χe,h · g) = (Ψχe,h) · g. This combined with the other properties of Ψ makes
it a unitary map from the Hilbert B-module Yϕ to the Hilbert B-module M ([15],
Theorem 3.5).

The following computations imply that Ψ is left B-linear:

(Ψ(δv · χe,h))e′ =

{
(Ψχe,h)e′ if v = r(e),
0 otherwise,

=

{
iA(δs(e))iG(h) if v = r(e), e′ = e,
0 otherwise,

while

(δv · (Ψχe,h))e′ =

{
(Ψχe,h)e′ if v = r(e′),
0 otherwise,

=

{
iA(δs(e))iG(h) if v = r(e′), e′ = e,
0 otherwise,

so Ψ(δv · χe,h) = δv · (Ψχe,h), and

(Ψ(g · χe,h))e′ = (Ψχge,ϕ(g,e)h)e′ =

{
iA(δs(ge))iG(ϕ(g, e)h) if e′ = ge,
0 otherwise,
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while

(g · (Ψχe,h))e′ =

{
iA(δs(e′))iG(ϕ(g, g−1e′))iA(δs(e))iG(h) if g−1e′ = e,
0 otherwise,

since (Ψχe,h)g−1e′ = iA(δs(e))iG(h) if g−1e′ = e and 0 if not,

=

{
iA(δs(ge))iA(δϕ(g,e)s(e))iG(ϕ(g, e)h) if e′ = ge,
0 otherwise,

=

{
iA(δs(ge))iG(ϕ(g, e)h) if e′ = ge,
0 otherwise,

since ϕ(g, e)s(e) = gs(e) = s(ge), so Ψ(g · χe,h) = g · (Ψχe,h). Therefore Ψ is an
isomorphism of B-correspondences.

COROLLARY 5.2. Assume that E is finite with no sources. Then the Cuntz–
Pimsner algebra OYϕ is isomorphic to the Exel–Pardo algebra OG,E.

Proof. It follows immediately from Theorem 5.1 that the Cuntz–Pimsner al-
gebras OYϕ and OM are isomorphic. As OM is isomorphic to OG,E (cf. Theo-
rem 10.15 of [7]), the result follows.

6. EXAMPLES

6.1. Assume that a discrete group G acts on a nonempty set S and that ϕ is a
G-valued cocycle for G y S, so we have

(6.1) ϕ(gh, x) = ϕ(g, h · x)ϕ(h, x) for all g, h ∈ G, x ∈ S.

As in Example 3.3 of [7], we may regard G as acting on the graph ES that has one
single vertex and S as its edge set (so ES is a bouquet of loops). The cocycle ϕ
for G y S is then automatically a cocycle for G y ES, which we also denote by
ϕ. We may then form the Toeplitz algebra TYϕ and the Cuntz–Pimsner algebra
OYϕ . Since ES is sourceless, it follows from Corollary 5.2 that OYϕ is isomorphic
to the Exel–Pardo algebra OG,ES whenever S is finite. Moreover, an important
motivation in [7] is that if (G, S) is a self-similar group, then OG,ES is isomorphic
to the C∗-algebra O(G, S) introduced in [20]. Similarly, the C∗-algebra T (G, S)
studied in [14] is easily seen to be isomorphic to TYϕ in this case.

For completeness, we include some comments on self-similar groups (some-
times called self-similar actions) in the terminology of this paper. Given an action
G y S as above and a G-valued cocycle ϕ for G y S, let S∗ denote the set of all
finite words in the alphabet S and let ∅ ∈ S∗ denote the empty word. One may
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then inductively extend the action of G on S to an action of G on S∗ and ϕ to a
cocycle for G y S∗, also denoted by ϕ, such that g ·∅ = ∅, ϕ(g,∅) = g and

(6.2) g · (vw) = (g · v)(ϕ(g, v) · w),

for all g ∈ G and v, w ∈ S∗. We refer to Lemma 5.1 of [17] for a proof. Alter-
natively, we note that this is just a special case of Proposition 2.4 in [7] if one
identifies S∗ with the set of finite paths on ES.

If S is finite and the action G y S∗ is faithful, then equation (6.2) says that
the pair (G, S) is a self-similar group in the sense of [19], [20] (see also [14]). (Note
that ϕ(g, v) is denoted by g|v in these references.) Conversely, assume that (G, S)
is a self-similar group, that is, S is a nonempty finite set, a faithful action of G
on S∗ fixing the empty word is given and ϕ : G × S∗ → G is a map such that
ϕ(g,∅) = g and (6.2) holds. Then it can be shown (see Section 1.3 of [19]) that
ϕ is a cocycle for G y S∗ and that G y S∗ restricts to an action of G on S. In
particular, the restriction of ϕ to G× S is a G-valued cocycle for G y S.

As pointed out in [17], see also [18], it appears that self-similar (actions of)
groups in a generalized sense were already considered in the 1972 thesis of Perrot,
without assuming finiteness of S or faithfulness of G y S∗. Considering S∗ as
the free monoid on a given set S, the key issue in Perrot’s work is the existence of
a left action (g, w) → g · w of G on S∗ such that ∅ is fixed, and of a right action
(g, w) → ϕ(g, w) of S∗ on G such that (6.2) holds. It follows from [17] (see in
particular Subsection 5.1) that this happens if and only if there exist an action of
G on S and a G-valued cocycle for this action. This setting is precisely the one
that is generalized in the work of Exel and Pardo.

6.2. A natural class of examples of Z-valued cocycles for actions of Z on finite
sets, related to the work of Katsura in [13] (see also Example 3.4 of [7]), is as
follows. Let a ∈ N and b ∈ Z. For any m ∈ N and k ∈ Za, let ϕa,b(m, k) ∈ Z and
σa,b(m, k) ∈ Za be the unique numbers satisfying

bm + k = ϕa,b(m, k)a + σa,b(m, k).

It is well-known that σa,b : Z×Za → Za is the action of Z on Za given by

σa,b(m, k) = bm + k mod a

and that ϕa,b : Z× Za → Z is a cocycle for σa,b. We call ϕa,b an EPK-cocycle (for
“Exel–Pardo–Katsura”) and the triple (Za, σa,b, ϕa,b) an EPK-system. Clearly, we
have

σa,b+`a = σa,b for all ` ∈ Z,

so when a is fixed we really only have a distinct actions σa,b with b = 0, . . . , a− 1.
Moreover, for b, b′ ∈ Za, the actions σa,b and σa,b′ are conjugate if and only if
gcd(a, b) = gcd(a, b′), so

{σa,d : d ∈ Za is either 0 or a positive divisor of a}
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forms a complete set of representatives of conjugacy classes for the actions σa,b.
However, as we will see below, something interesting happens with the cocycles.

For b ∈ Z, writing b = qa + r where q ∈ Z and 0 6 r 6 a− 1, we get

σa,b(1, k) = r + k mod a.

Set c = a− r. The generating function of ϕa,b is then given by

ϕa,b(1, k) =

{
q if k < c,
q + 1 if k > c.

Thus the signature of the cocycle ϕa,b is

a−1

∑
k=0

ϕa,b(1, k) = qc + (q + 1)r = qa + r = b.

Hence, it follows from Lemma 1.7 that if b, b′ ∈ Z, then the two EPK-systems
(Za, σa,b, ϕa,b) and (Za, σa,b′ , ϕa,b′) are not cohomology conjugate whenever b 6= b′.

If b is relatively prime to a, then the action σa,b of Z on Za is obviously tran-
sitive. Otherwise, the EPK-system (Za, σa,b, ϕa,b) may be decomposed as follows.
Setting d = gcd(a, b) = gcd(a, r) and a′ = a/d, one finds that there are d orbits

{i + dZa}d−1
i=0 ,

each having a′ elements. Set b′ = b/d and r′ = r/d, so that b′ is relatively prime
to a′ and b′ = qa′ + r′ with 0 6 r′ < a′. For each i = 0, . . . , d− 1, the restriction of
the cocycle ϕa,b to the orbit i + dZa has generating function given by

k 7→
{

q if i + kd < (a′ − r′)d,
q + 1 if i + kd > (a′ − r′)d.

A quick computation shows that the inequality i + kd < (a′ − r′)d is equivalent
to k < (a′ − r′) for each i = 0, . . . , d− 1. Thus this restricted cocycle has signature

(a′ − r′)q + r′(q + 1) = a′q + r′ = b′.

Since the cocycle ϕa′ ,b′ for the transitive action σa′ ,b′ of Z on Za′ also has signa-
ture b′, we conclude from Corollary 1.12 that the restriction of the action σa,b and
the cocycle ϕa,b to the orbit i + dZa is cohomology conjugate to the EPK-system
(Za′ , σa′ ,b′ , ϕa′ ,b′). (In fact, a routine computation shows that the map k 7→ i + kd
transports the system (Za′ , σa′ ,b′ , ϕa′ ,b′) to the restriction of the action σa,b and the
cocycle ϕa,b to i + dZa.) In this way, we see that the EPK-system (Za, σa,b, ϕa,b) is
cohomology conjugate with the system obtained from pasting d disjoint copies of
the transitive system (Za′ , σa′ ,b′ , ϕa′ ,b′).

More generally, let us now consider a bijection σ of Za and let ξ : Za → Z.
We get an action of Z on Za by setting m · k = σm(k) and we may then form the
Z-valued cocycle ϕ determined by ξ with respect to this action. Letting EZa be
the graph having one vertex and Za as its edge set, we get an action of Z on EZa

and we may regard ϕ as a cocycle for Z y EZa . The Cuntz–Pimsner algebra OYϕ
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is then the universal unital C∗-algebra generated by Cuntz isometries s0, . . . , sa−1
and a unitary u satisfying the relations

usk = sσ(k)u
ξ(k), k = 0, 1, . . . , a− 1.

Indeed, using these relations, one computes readily that

umsk = sσm(k)u
ϕ(m,k)

for m ∈ Z and k ∈ Za, and these are precisely the relations for the associated
Exel–Pardo algebra.

To ease notation, when m ∈ Z and m = qa + r for q ∈ Z and 0 6 r 6 a− 1,
we will write q = m|a and [m]a = r. If b ∈ Z is given, and we let σ : Za → Za
be defined by σ(k) = [b + k]a and ξ : Za → Z be given by ξ(k) = (b + k)|a, then
the associated action of Z on Za is σa,b, while ϕ = ϕa,b. Hence Oa,b := OYϕa,b is
the universal unital C∗-algebra generated by Cuntz isometries s0, . . . , sa−1 and a
unitary u satisfying the relations

usk = s[b+k]a u(b+k)|a, k = 0, 1, . . . , a− 1.

This gives, for example, Oa,0 ' Oa = C∗(EZa) (in accordance with the fact
that ϕa,0(m, k) = 0 for all m ∈ Z and k ∈ Za), and Oa,a = Oa ⊗ C(T) '
C∗(EZa) oid Z (in accordance with the fact that ϕa,a(m, k) = m for all m ∈ Z
and k ∈ Za). More interestingly, O2,1 is the universal unital C∗-algebra generated
by two Cuntz isometries s0, s1 and a unitary u satisfying the relations

us0 = s1, us1 = s0u.

It is then not difficult to see that O2,1 is the universal unital C∗-algebra generated
by an isometry s0 and a unitary u satisfying the relations

u2s0 = s0u, s0s∗0 + us0s∗0u∗ = 1,

that is, O2,1 ' Q2, where Q2 is the C∗-algebra studied in [16] (see also refer-
ences therein). As mentioned in [16] (right after Remark 3.2), Q2 is isomorphic
to the C∗-algebra O(E2,1) considered in Example A.6 of [12]. In fact, we have
Oa,b ' O(Ea,b) in general, where Ea,b denotes the topological graph defined in
Example A.6 of [12]; this follows readily from the description ofO(Ea,b) given on
page 1182 of [12].

6.3. The class of EPK-systems may be put in a general framework. Let us first
remark that if a discrete group G acts on a set S 6= ∅, ϕ is a G-valued cocycle for
G y S, and τ is an endomorphism of G, then we may define another action ·′ of
G on S by setting

g ·′ x = τ(g) · x
and a G-valued cocycle ϕτ for this action by setting

ϕτ(g, x) = ϕ(τ(g), x),

as is easily verified.
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Next, let ρ be an injective endomorphism of a discrete group G and set H =
ρ(G). To be interesting for what follows, G should be infinite and ρ should not
be surjective. Choose a set Sρ of coset representatives for G/H containing e. For
each g ∈ G, let s(g) denote the unique element of Sρ satisfying s(g)H = gH. For
g ∈ G and x ∈ Sρ, set

g · x = s(gx), ϕ(g, x) = ρ−1(s(gx)−1gx).

Since s(gx)H = gxH, we have s(gx)−1gx ∈ H = ρ(G), so ϕ(g, x) is well-defined
and lies in G. It is then not difficult to check that this gives an action of G on Sρ,
that ϕ is a cocycle for this action and that this construction does not depend on
the choice of coset representatives for G/H, up to cohomology conjugacy. Such
a construction appears in Example 2.2 of [14] in the case where G = Zn for some
n ∈ N and ρ : Zn → Zn is of the form ρ(m) = Am for some A ∈ Mn(Z) with
|det A | > 1, in which case Sρ is finite with |Sρ| = |det A |.

Now, let τ be another endomorphism of G. We then get an action ·′ of G on
Sρ and a G-valued cocycle ϕτ for this action, given by

g ·′ x = s(τ(g)x), ϕτ(g, x) = ρ−1(s(τ(g)x)−1τ(g)x)

for g ∈ G and x ∈ Sρ.
For example, let G = Z, a ∈ N (a > 2) and b ∈ Z, set ρ(m) = am and

τ(m) = bm for m ∈ Z, and choose Sρ = Za. Then the action ·′ of Z on Za is equal
to σa,b and ϕτ is equal to ϕa,b, so we recover the EPK-system associated with a and
b. When G = Zn, one may similarly consider ρ associated with some A ∈ Mn(Z)
(|det A | > 1) and τ associated with some B ∈ Mn(Z).

6.4. Triples (E, G, ϕ) where G is a discrete group acting on a directed graph E,
in the trivial way on E0, might be produced as follows:

(•) Pick a directed graph E and a discrete group G.
(•) Let G act trivially on E0.
(•) For each v, w ∈ E0, set vE1

w = {e ∈ E1 : r(e) = v, s(e) = w}. Note that E1 is
the disjoint union of all these sets.

(•) Set RE = {(v, w) ∈ E0 × E0 : vE1
w 6= ∅}.

(•) For each (v, w) ∈ RE, pick an action of G on vE1
w and a cocycle v ϕw for this

action.
(•) Paste these actions and these cocycles together to obtain an action of G on

E1 and a cocycle ϕ for it.
Since G acts trivially on E0, it is clear that we get an action of G on the graph

E and that ϕ is a cocycle for this action. Moreover, it is easy to see that if v ϕ′w
is also a cocycle for the chosen action of G on vE1

w for each (v, w) ∈ RE, then the
resulting cocycle ϕ′ will be cohomologous to ϕ if and only if v ϕ′w is cohomologous
to v ϕw for each (v, w) ∈ RE.

To illustrate this procedure, set G = Z and let E be a directed graph such
that the number A(v, w) of edges in vE1

w is finite for all v, w ∈ E0. Note that this
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hypothesis is much weaker than requiring that E be locally finite in the sense that
each vertex only receives and emits finitely many edges. Let B : E0 × E0 → Z be
a map. For each (v, w) ∈ E0 × E0 such that A(v, w) > 1, i.e., for each (v, w) ∈ RE,
we may choose a bijection from ZA(v,w) onto vE1

w and use it to transfer the EPK-
system associated with the pair A(v, w), B(v, w) into an action of Z on vE1

w and a
cocycle for this action. Using these choices in the construction outlined above, we
obtain an action of Z on E fixing all vertices and a cocycle ϕB for this action. Let
BE : RE → Z denote the restriction of B to RE. Note that if C : E0× E0 → Z is any
other map such that BE 6= CE, then it follows from our previous analysis of EPK-
systems that the systems (E,Z, ϕB) and (E,Z, ϕC) are not cohomology conjugate.
Note also that if E is a countable row-finite graph with no sources, then we just
get the class of C∗-algebras OA,B introduced by Katsura in [13], as presented in
Example 3.4 of [7] when E is finite with no sources.

As a concrete example, let a ∈ N and consider the graph E given by E0 = Z,
E1 = Za × Z, r(t, j) = j − 1, and s(t, j) = j for (t, j) ∈ E1, so that A(i, j) = a
when i = j− 1 and is zero otherwise. Only the coefficients B(j− 1, j) along the
first subdiagonal of B will then matter. In this example, E is row-finite with no
sources, so it will give one of Katsura’s OA,B. But it can easily be changed so
that E is not row-finite with no sources (for example by adding one edge ej (or
more) going from 0 to j for each j ∈ Z), but still satisfies the requirement that
|A(i, j)| < ∞ for all i, j ∈ Z = E0).

6.5. Consider again a triple (S, G, ϕ) where a discrete group G acts on a set S
and ϕ is a cocycle for this action. Pick any symbol ω 6∈ S. Let then F = FS be the
directed graph where F0 = S ∪ {ω}, F1 = S, and r, s : F1 → F0 are given by

r(x) = x, s(x) = ω for x ∈ F1 = S.

Obviously, F has exactly one source, namely ω. (If S is finite, F may be thought
of as a bouquet of |S| disjoint strings (that are not loops) emanating from ω.) The
action of G on S induces a natural action of G on F in an obvious way: we just
set gω = ω for all g ∈ G, and let G act on F0 \ {ω} = S and on F1 = S via its
given action on S. The cocycle ϕ is then a cocycle for the action of G on F: the first
condition is automatically satisfied (since F1 = S); because

ϕ(g, x)s(x) = ϕ(g, x)ω = ω = gω = gs(x)

for all g ∈ G and x ∈ F1 = S, the second condition is trivially satisfied.

SPECIAL CASE. Set S = G and let G act on itself by left translation. As the map
id : F1 = G → G trivially satisfies condition (ii) in Proposition 3.10 (and the
assumption in this proposition is fulfilled), we get that the cocycle (g, e)→ g is a
coboundary, i.e., it is cohomologous to the cocycle (g, e)→ 1. Hence we conclude
that the correspondences associated to these cocycles are isomorphic. For the first
of these cocycles, it follows from Remark 4.6 that we have

OYϕ = OXFoG ' C∗(F)o G,
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which is frequently not isomorphic to C∗(F). As an explicit example, consider
the cocycle ϕ(g, d) = g for the action Z2 y Z2 by translation. Since any action of
Z2 on C∗(F) = M3 is inner, we get

OYϕ ' C∗(F)oZ2 ' M3 oZ2 ' M3 ⊗C2 ' M3 ⊕M3 6' M3,

and we obtain the same C∗-algebra for the cocycle ϕ = 1.
This is in contrast to the situation in Example 3.6 of [7], where the graph E

is finite and has no sources, and the action fixes the vertices; Exel and Pardo then
show that for the cocycle ϕ = 1 we have OYϕ ' C∗(E), because the unitaries ug

for g ∈ G can be expressed in terms of the partial isometries se for e ∈ E1. Note
that Exel and Pardo’s observation does not apply to the graph F above simply
because F has a source, namely ω.

6.6. A more general construction in the same vein as the one in Subsection 6.5 is
as follows. Let (S, G, ϕ) be as in 6.5. Assume that we are also given an action of
G on a nonempty set I and a G-equivariant map ρ : S → I. Pick a symbol ω 6∈ I
and let F be the directed graph where F0 = I ∪ {ω}, F1 = S and r, s : F1 → F0 are
given by

r(x) = ρ(x), s(x) = ω for x ∈ F1 = S.

The two actions of G induce a natural action of G on F by setting gω = ω for all
g ∈ G and letting G act on F0 \ {ω} = I and on F1 = S via the given actions of G
on I and S, respectively. The cocycle ϕ is then again a cocycle for the action of G
on F.

In this example, all edges of F have the same source ω, which is a source
for F, and all vertices different from ω are sinks for F, undoubtedly a somewhat
special situation. Next we define a similar class of examples, but without sinks.

Assume that G also acts on a nonempty set T and pick a symbol ω 6∈ S ∪ T.
Let then K = (K0, K1, r, s) be the directed graph where

K0 = S ∪ {ω}, K1 = S× (T ∪ {ω})

and r, s : K1 → K0 are given by

r(x, ω) = x, s(x, ω) = ω, r(x, y) = x = s(x, y),

for x ∈ S and y ∈ T. Define an action of G on K as follows:

(•) G acts on K0 \ {ω} = S via the given action of G on S,
(•) gω = ω,
(•) g(x, ω) = (gx, ω),
(•) g(x, y) = (gx, gy),

for g ∈ G, x ∈ S, and y ∈ T. Moreover, define ϕ̃ : G× K1 → G by

ϕ̃(g, (x, ω)) = ϕ(g, x), ϕ̃(g, (x, y)) = g,
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for g ∈ G, x ∈ S, and y ∈ T. Then ϕ̃ is a cocycle for G y K that is not coho-
mologous to the trivial cocycle if ϕ is not cohomologous to the trivial cocycle for
G y S.

This graph still has one source, namely ω. To obtain a system with a graph
having no sources, one can for example add one loop (or more) at ω, let G act on
this loop (or these loops) by fixing it (or them), and set ϕ(g, e) = g for all g when
e is this loop (or any of these loops).

6.7. In Example 2 of [11], Katsura constructs a topological graph from a locally
compact Hausdorff space S and a homeomorphism σ : S → S. The associated
topological graph Eσ has E0

σ = E1
σ = S, s = idS, and r = σ. The main point of this

class of examples of topological graphs is the natural isomorphism

C∗(Eσ) ' C0(S)oα Z,

where α is the associated action of Z on C0(S).
Actions of Z on the topological graph Eσ are in 1-1 correspondence with

homeomorphisms τ : S → S that commute with σ, via n · x = τn(x) for n ∈
Z, x ∈ S. We can regard a cocycle ϕ for such an action as a continuous map
ϕ : Z× S → Z, and the generating function of ϕ as a continuous map ξ : S → Z
satisfying

ξ(x)− 1 ∈ Sx := {k ∈ Z : τk(x) = x},
so that ξ(x) is congruent to 1 modulo the period of the orbit Z · x (where by
convention the period is defined to be 0 if the orbit is free, in which case ϕ(n, x) =
n for all n ∈ Z).

6.8. Assume that H is a discrete group acting by homeomorphisms on a locally
compact space Hausdorff space E0. Set E1 = H × E0 and define r, s : E1 → E0 by

r(h, x) = h · x, s(h, x) = x,

for all (h, x) ∈ E1. This gives a topological graph E. Note that C∗(E) is in general
not isomorphic to C0(E0)o H. (For example, if H is finite and abelian, E0 is finite
and the action of H on E0 is trivial, then C0(E0)o H ' C(E0)⊗ C∗(H) is abelian,
while C∗(E) is the direct sum of |E0| copies of the Cuntz algebra O|H|).

Now, assume that a discrete group G also acts on E0 by homeomorphisms
and that this action commutes with the action of H. We may then define an action
of G on E1 by

g · (h, x) = (h, g · x).
One easily verifies that this gives an action of G on E.

Let φ : G× E0 → G be a cocycle for G y E0 satisfying

φ(g, x) · x = g · x

for all (g, x) ∈ G× E0. Then the map ϕ : G× E1 → G defined by

ϕ(g, (h, x)) = φ(g, h · x)
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is a cocycle for the action of G on E. Indeed, since the actions of G and H on E0

commute, we have

ϕ(g1g2, (h, x)) = φ(g1g2, h · x) = φ(g1, g2 · (h · x))φ(g2, h · x)
= φ(g1, h · (g2 · x))φ(g2, h · x) = ϕ(g1, (h, g2 · x))ϕ(g2, (h, x))

= ϕ(g1, g2 · (h, x))ϕ(g2, (h, x))

for all g1, g2 ∈ G, (h, x) ∈ E1, and

ϕ(g, (h, x)) · s(h, x) = φ(g, h · x) · x = h−1 · (φ(g, h · x) · (h · x)) = h−1 · (g · (h · x))
= g · x = g · s(h, x)

for all g ∈ G, (h, x) ∈ E1.
Note that if the action of G on E0 is free, then φ has to be the trivial cocycle

(g, x) → g for the action G y E0, so ϕ can only be the trivial cocycle for G y E.
A simple example where the action G y E0 is not free is as follows. Set E0 = T,
G = H = Z, pick λ, µ ∈ T such that λ has period p, and k ∈ Z. Let G y E0

(respectively H y E0) be given by (m, z) → λmz (respectively (n, z) → µnz) and
define φ : G × E0 → G by φ(m, z) = (1 + kp)m. Then G y E0 is not free and
all the required conditions are easily verified. Note that the cocycle ϕ we get for
the action of G on E is simply given by ϕ(m, (n, z)) = (1 + kp)m. It would be
interesting to know whether more exotic examples can be produced.

6.9. Assume that a discrete group G acts on a nonempty set S and that ϕ is a
G-valued cocycle for G y S. We recall from Subsection 6.1 that G y S extends
to an action of G on S∗, where S∗ denotes the set of words on the alphabet S, and
that ϕ extends to a cocycle for G y S∗, also denoted by ϕ.

As Nekrashevych [20] points out in the case of a self-similar group, see also
Section 2 of [14], S∗ may be used to build a directed rooted tree T (sometimes
called an arborescence), with the empty word ∅ as the root, and with vertex set
T0 = S∗ and edge set

T1 = {(w, wx) : w ∈ S∗, x ∈ S}.
In view of our conventions (which in this respect conform to those of [7]), namely
that paths in a directed graph should go from right to left, we dictate that an edge
(w, wx) has source wx and range w. Since G acts on S∗ = T0, we clearly get an
action of G on T when we define G y T1 by setting

g · (w, wx) = (g · w, g · (wx))

for g ∈ G, w ∈ S∗ and x ∈ S. We can also define a map ϕ : G× T1 → G by

ϕ(g, (w, wx)) = ϕ(g, wx)

for g ∈ G, w ∈ S∗ and x ∈ S. It is then straightforward to check that ϕ is a cocycle
for G y T1. To become a graph cocycle for G y T, ϕ must satisfy

(6.3) ϕ(g, (w, wx)) · (wx) = g · (wx) for all g ∈ G, w ∈ S∗, x ∈ S,
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that is,

(6.4) ϕ(g, wx) · (wx) = g · (wx) for all g ∈ G, w ∈ S∗, x ∈ S.

In particular, ϕ must then satisfy

(6.5) ϕ(g, x) · x = g · x for all g ∈ G and x ∈ S.

If G y S is free, then (6.5) only holds when ϕ is the trivial cocycle (g, x) 7→ g for
G y S, hence the trivial cocycle is the only possible one for G y T. Interestingly,
this is also the case if we assume that the action G y S∗ is faithful and, instead of
(6.3), we impose the stronger Exel–Pardo vertex condition ϕ(g, e) · v = g · v for all
g ∈ G, e ∈ T1, and v ∈ T0. It is not difficult to construct examples where G y S
is not free and there exist cocycles ϕ for G y S that satisfy (6.5) and are different
from the trivial cocycle. Conceivably, there might exist cases where such cocycles
satisfy (6.4), that is, give cocycles for G y T, but we do not know of any concrete
example.
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