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INTRODUCTION

In [13] Hirshberg defined a C∗-algebra associated with endomorphisms of
groups with finite cokernel. A natural continuation of that paper is to construct
the same C∗-algebra for endomorphisms with infinite cokernel. So in this paper
we define and study a universal C∗-algebra constructed from an injective endo-
morphism ϕ with infinite cokernel of a discrete countable group. In other words,
the main difference between our work and Hirshberg’s ([13]) is that we allow∣∣∣ G

ϕ(G)

∣∣∣ = ∞.

In order to generalize the constructions, we also associate the C∗-algebra
to a family B of subgroups of G and call it U[ϕ, B]. Their rôle is to naturally
implement the multiplication rule inside U[ϕ, B], because here we do not have
finitely many projections summing up to one. The relations defining U[ϕ, B] are
dictated by the natural representations of ϕ, B and G on the Hilbert space l2(G).
The group elements are represented by unitaries, the elements of B are associated
with projections and an isometry represents ϕ. All these operators generate a
concrete C∗-subalgebra of L(l2(G)). We prove that, in some cases, this concrete
C∗-subalgebra is isomorphic to the C∗-algebra U[ϕ, B].
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Constructions like the one presented in Hirshberg’s paper [13] have been
studied before by various authors [3], [8], [10], [11], [17] and [18]. In particu-
lar, somewhat similar C∗-algebras have been associated with endomorphisms of
abelian groups and also with semigroups. Also the ring C∗-algebras studied in
[8], [10] arise in a similar way. Constructions along the same lines are considered
in [23].

The group elements give rise to unitary operators {Ug}g∈G acting on l2(G)
by left multiplication, and the endomorphism induces an isometry S acting on
l2(G) through ϕ. Denoting by {ξh : h ∈ G} the canonical orthonormal basis of
l2(G), S is defined by S(ξh) := ξϕ(h). For every element H of B, consider the
projection E[H] so that

E[H](ξg) =

{
ξg if g ∈ H,
0 otherwise.

The C∗-subalgebra of L(l2(G)) generated by the above operators is denoted
by C∗r [ϕ, B] (Definition 1.1). We note that E[H] satisfy some natural relations, and
we use these relations to define the universal C∗-algebra U[ϕ, B], associated with
ϕ. Particularly, the sum condition which appears in [11] does not hold in our
setting (we would have an inequality of the form < ∞). However, the projections
associated with the subgroups of G in U[ϕ, B] play a key role to prove our main
results.

Our most important contribution is given in Theorem 5.9. We prove that
U[ϕ, B] is a Kirchberg algebra under the assumptions that G is amenable, that the
intersection of the elements of B contains some image of G through ϕ and that
ϕ is pure, the latter meaning that

⋂
n∈N

ϕn(G) = {e}, the unit of G. In particular,

this implies that in this case U[ϕ, B] and C∗r [ϕ, B] are isomorphic. This result also
extends the ones obtained by Hirshberg in [13] and by Cuntz and Vershik in [11].

In order to prove the statement above, it is crucial to use a semigroup crossed
product description of U[ϕ, B]. Here we consider the definition of a semigroup
crossed product presented by Li in Appendix A of [17] using covariant represen-
tations. The semigroup implementing the crossed product can be the semidirect
product S := G oϕ N or the semigroup of natural numbers N. Such a description
allows us to use the six term exact sequence presented by Khoshkam and Skan-
dalis [14] to calculate the K-theory of our C∗-algebra, in a similar way as in [11].

The above semigroup crossed product description implies the existence of a
(full corner) group crossed product description of U[ϕ, B] ([6], [7] and [16]), using
the group of integers Z. It allows one to use the classical Pimsner–Voiculescu
exact sequence [20] to calculate their K-groups.

We will see that if we start with B containing any subsets (instead of sub-
groups) of the type gϕn(G), g ∈ G, it leads to the same C∗-algebra. In particular,
we can choose B = {G}. It gives interesting examples, and we then denote the
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corresponding C∗-algebra by U[ϕ]. In this case, the isomorphism above is not
the only way to represent it as a crossed product: analogously to the work of
G. Boava and R. Exel in [1] one can show that U[ϕ] has a partial group crossed
product description, which can also be related to an inverse semigroup crossed
product by [12]. Apart from giving U[ϕ] another description by an established
structure, this result also provides another way to prove the simplicity of U[ϕ] in
some cases.

It can be noted that a particular semigroup is very important in our con-
structions, namely the semigroup S = G oϕ N. We prove that when the group G
is amenable and ϕ is pure, the three semigroup C∗-algebras defined by Li in [18]
— namely C∗(S), C∗s (S) and C∗r (S) — associated with the semigroup S are iso-
morphic to U[ϕ]. We also prove that they are nuclear, simple and purely infinite
(Theorem 6.4), answering partially to one open question in [18].

To finish, using the semigroup crossed product description of U[ϕ], we
study its K-theory. Using a natural split exact sequence and the six term exact
sequence provided by Khoshkam and Skandalis [14] we easily conclude that the
K-groups of U[ϕ] are the same as the ones of C∗(G). This implies that, imposing
some extra conditions, U[ϕ] is a Kirchberg algebra which satisfies UCT.

A weaker version of the result concerning the K-theory of U[ϕ] can be ob-
tained independently using some recent results by Cuntz, Echterhoff and Li in [9].

1. DEFINITIONS AND BASIC RESULTS

Throughout the paper, G will be a discrete countable group with unit e
and ϕ an injective endomorphism (monomorphism) of G with infinite cokernel.
When necessary, we require the amenability of G or ϕ to be pure. We want to
construct a C∗-algebra associated with ϕ. To generalize Hirshberg’s construc-
tions even more, we also want to associate the C∗-algebra with some set B of
subgroups of G which contains G. We consider it to have a natural behavior of
the multiplication rule inside the C∗-algebra.

We now define C(B) as the smallest set of subsets of G containing B and
closed under finite unions, finite intersections, complements and under images
of ϕ. These conditions will be called regularity conditions. Thus we have the follo-
wing concrete C∗-algebra.

DEFINITION 1.1. Consider B a family of subgroups of G (containing G) de-
fined as above. Let C∗r [ϕ, B] denote the reduced C∗-algebra generated by the pro-
jections {E[X] : X ∈ C(B)}, the unitaries {Ug : g ∈ G} and the isometry S.

By studying the properties of the operators above, it is natural to define the
universal version of that C∗-algebra.

DEFINITION 1.2. As above choose a set B of subgroups of G (containing G)
and construct the family C(B). Then U[ϕ, B] is the universal C∗-algebra generated



6 FELIPE VIEIRA

by the projections {e[X] : X ∈ C(B)}, the unitaries {ug : g ∈ G} and one isometry
s satisfying:

(i) ugsnuhsm = ugϕn(h)sn+m;
(ii) ugsne[X]s∗

nug−1 = e[gϕn(X)];
(iii) e[G] = 1;
(iv) e[X]e[Y] = e[X∩Y] and
(v) e[X] + e[Y] = e[X∪Y] + e[X∩Y].

Since ugsns∗nug−1 = e[gϕn(G)], the projections ugsns∗nug−1 commute and
considering n > m, we have:

ugsns∗nug−1 uhsms∗muh−1 = e[gϕn(G)]e[hϕm(G)] = e[gϕn(G)∩hϕm(G)]

=

{
e[gϕn(G)] if h ∈ gϕm(G),
0 otherwise,

=

{
ugsns∗nug−1 if h ∈ gϕm(G),

0 otherwise.

REMARK 1.3. If we consider any set C of subsets of G closed under the reg-
ularity conditions, the construction above also can be done.

First of all we will see that only the initial set B is important to generate the
C∗-algebras above, and the fact that in C(B) some elements are not subgroups of
G is not a problem. Note that some elements of C(B) are given by

g
m⋂

i=1

ϕni (Hi)

with g ∈ G, ni ∈ N and Hi ∈ B. In fact, we can use these elements to describe the
∗-algebra span({e[X] : X ∈ C(B)}).

LEMMA 1.4. Define

B′ :=
{ m⋂

i=1

ϕni (Hi) : Hi ∈ B, ni ∈ N
}

.

Then span({e[X] : X ∈ C(B)}) ∼= span({e[gH′ ] : g ∈ G, H′ ∈ B′}) =: D′.

Proof. ⊇ Obvious.
⊆ Let us call K′ := {X ⊆ G : e[X] ∈ D′}. It is obvious that B ⊆ K′. Moreover

K′ is closed under:

(•)
n⋂

i=1

: By definition, for X1, X2 ∈ K′ it holds that

e[X1∩X2]
= e[X1]

e[X2]
.

(•) Complements: For X ∈ K′:

e[Xc ] = 1− e[X] = e[G] − e[X] ∈ D′.
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(•)
n⋃

i=1

: Note that X ∪Y = [Xc ∩Yc]c ∈ K′, ∀X, Y ∈ K′.

(•) And if X ∈ K′, g ∈ G and n ∈ N, the injectivity of ϕ implies gϕn(X) ∈ K′.
Therefore K′ satisfies the regularity conditions, and C(B) ⊆ K′, because C(B) is
the smallest set containing B satisfying it. Then span({e[X] : X ∈ C(B)})⊆ D′.

This result leads to an important and simpler way to describe U[ϕ, B].

PROPOSITION 1.5. The universal C∗-algebra U[ϕ, B] is generated by

{e[H], ug, s : H ∈ B, g ∈ G}.
Proof. Due to last lemma we only have to prove that

span({e[gH′ ] : g ∈ G, H′ ∈ B′}) ⊆ span{e[H], ug, s : H ∈ B, g ∈ G}.

But e[gH′ ] = uge[H′ ]ug−1 and for H′ =
n⋂

i=1

ϕni (Hi) ∈ B′ with ni ∈ N and

Hi ∈ B ∪ {G} we have

e[H′ ] =
n

∏
i=1

e[ϕni (Hi)]
=

n

∏
i=1

sni e[Hi ]
s∗ni .

Therefore, e[gH′ ] ∈ C∗({e[H], ug, s : H ∈ B, g ∈ G}).

REMARK 1.6. Note that the lemma and the proposition above hold for any
choice of B (i.e, even if it does not consist of subgroups).

Another interesting basic result is the following.

PROPOSITION 1.7. Consider B containing only sets of the form gi ϕ
n(Hi), with

gi ∈ G and Hi subsets of G. Then

U[ϕ, B] ∼= U[ϕ, B]

where B contains only the subsets Hi.

Proof. By Proposition 1.5 (and the remark above),

U[ϕ, B] = C∗({e[gi Hi ]
, ug, s : gi Hi ∈ B, g ∈ G}),

U[ϕ, B] = C∗({e[Hi ]
, ug, s : Hi ∈ B, g ∈ G}).

But since
e[gi ϕn(Hi)]

= ugi s
ne[Hi ]

s∗nug−1
i

,

both C∗-algebras are isomorphic.

REMARK 1.8. If we choose B = {G} then U[ϕ, B] is generated only by the
unitary elements {ug : g ∈ G} and the isometry s. Furthermore, it can be viewed
as a natural generalization of the constructions in [13] and [11]. This case will be
studied in Section 5.
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2. CROSSED PRODUCT DESCRIPTIONS

Define

D[ϕ, B] := C∗({ugsne[H]s
∗nug−1 : g ∈ G, n ∈ N, H ∈ B})

and note that it is a commutative C∗-subalgebra of U[ϕ, B] because we have
ugsne[H]s∗

nug−1 = e[gϕn(H)]. We can define an action of the semigroup S = Goϕ N
on D[ϕ, B] via

α : S→ End(D[ϕ, B])

(g, n) 7→ ugsn(·)s∗nug−1 .

PROPOSITION 2.1. The C∗-algebra U[ϕ, B] is isomorphic to D[ϕ, B]oα S.

Proof. In this proof we use the universality of both C∗-algebras to find the
desired isomorphism. Recall from [17], that D[ϕ, B]oα S together with

ιD : D[ϕ, B]→ D[ϕ, B]oα S

x 7→ ιD(x)

and
ιS : S→ Isom(D[ϕ, B]oα S)

(g, n) 7→ ιS(g, n)

satisfying
ιD(ugsnxs∗nug−1) = ιS(g, n)ιD(x)ιS(g, n)∗

is the semigroup crossed product of the dynamic system (D[ϕ, B], S, α). But note
that U[ϕ, B] together with

π : D[ϕ, B]→ U[ϕ, B]

x 7→ x

and
ρ : S→ Isom(U[ϕ, B])

(g, n) 7→ ugsn

is a covariant representation of (D[ϕ, B], S, α), since

ρ(g, n)π(x)ρ(g, n)∗ = ugsnxs∗nug−1 = π(α(g,n)(x)).

So we conclude that there exists a ∗-homomorphism

(2.1) Φ : D[ϕ, B]oα S→ U[ϕ, B]

such that Φ ◦ ιD = π and Φ ◦ ιS = ρ.
On the other hand, it is well known that the crossed product D[ϕ, B]oα S

is generated as a C∗-algebra by elements of the form ιS(g, n) and ιD(e[H]) with
H ∈ B. Identifying ιS(g, n) with ugsn and ιD(e[H]) with e[H], it is easy to check
that they satisfy conditions (i)–(v) of Definition 1.2 which generate U[ϕ, B].
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Therefore, we have a ∗-homomorphism

∆ : U[ϕ, B]→ D[ϕ, B]oα S

ugsn 7→ ιS(g, n)

e[H] 7→ ιD(e[H]).

(2.2)

We now show that (2.1) and (2.2) are inverses of each other:

Φ ◦∆(ug) = Φ(ιS(g, 0)) = ρ(g, 0) = ug,

Φ ◦∆(s) = Φ(ιS(0, 1)) = ρ(0, 1) = s,

Φ ◦∆(e[H]) = Φ(ιD(e[H])) = π(e[H]) = e[H],

and on the other side

∆ ◦Φ(ιS(g, n)) = ∆(ρ(g, n)) = ∆(ugsn) = ιS(g, n),

∆ ◦Φ(ιD(e[H])) = ∆(π(e[H])) = ∆(ιD(e[H])) = ιD(e[H]).

Thus, U[ϕ, B] and D[ϕ, B]oα S are isomorphic.

REMARK 2.2. Note that U[ϕ, B] is also isomorphic to (D[ϕ, B]oω G)oτ N:

ω : G → Aut(D[ϕ, B])

g 7→ ug(·)ug−1 ,

τ : N→ End(D[ϕ, B]oω G)

n 7→ sn(·)s∗n

where for agδg of D[ϕ, B]oω G, τn(agδg) = snags∗nδϕn(g).

Using the minimal automorphic dilation presented by Laca in [16] it is pos-
sible to see the C∗-algebra U[ϕ, B] as a corner of a group crossed product. For
this, we need to prove the following proposition.

PROPOSITION 2.3. The semidirect product S = G oϕ N is an Ore semigroup, i.e,
it is cancellative and right-reversible.

Proof. Consider (gi, ni) ∈ S for i ∈ {1, 2, 3}. S is cancellative:

(g1, n1)(g3, n3) = (g2, n2)(g3, n3)⇒ (g1 ϕn1(g3), n1 + n3) = (g2 ϕn2(g3), n2 + n3)

⇒ n1 = n2 and

g1 ϕn1(g3) = g2 ϕn1(g3)⇒ g1 = g2;

(g1, n1)(g2, n2) = (g1, n1)(g3, n3)⇒ (g1 ϕn1(g2), n1 + n2) = (g1 ϕn1(g3), n1 + n3)

⇒ n2 = n3 and

ϕn1(g2) = ϕn1(g3)⇒ g2 = g3 as ϕ is injective.

Also any two principal left ideals of S intersect:

(ϕn2(g−1
1 ), n2)(g1, n1) = (e, n2 + n1)

= (ϕn1(g−1
2 ), n1)(g2, n2) ∈ S(g1, n1) ∩ S(g2, n2).
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It follows that the semigroup S can be embedded in a group, called the en-
veloping group of S. We will denote it as env(S), such that S−1S = env(S) ([16],
Theorem 1.1.2). It also implies that S is a directed set by the relation defined by
(g, n) < (h, m) if (h, m) ∈ S(g, n). Let us define a candidate for env(S). Consider

G := lim
→
{Gn : ϕn}

(with Gn = G for all n ∈ N) and with the extended automorphism ϕ of G con-
struct the group

S := Goϕ Z.

PROPOSITION 2.4. S ∼= env(S).

Proof. For this we need to show that S is a subsemigroup of S and S ⊂
S−1S [5].

First, it is obvious that S is a subsemigroup of the group S considering the
inclusion (g, n) 7→ (g0, n), where g0 = g ∈ G = G0 ↪→ G.

Without loss of generality take (gi, j) ∈ S with i > |j|. Then

(gi, j) = (gi,−i)(e, j + i) = (g0, i)−1(e, j + i) ∈ S−1S.

Now consider the inductive system given by

D[ϕ, B] := lim
→
{D[ϕ, B](h,m) : α

(gϕn(h),n+m)
(h,m)

}

where
D[ϕ, B](h,m) := D[ϕ, B]

and

α
(gϕn(h),n+m)
(h,m)

: D[ϕ, B](h,m) → D[ϕ, B](g,n)(h,m) = D[ϕ, B](gϕn(h),n+m),

with α
(gϕn(h),n+m)
(h,m)

:= α(g,n) ∀ (h, m), (g, n) ∈ S, where the latter was defined be-

fore Proposition 2.1. Then the C∗-dynamical system (D[ϕ, B], S, α) is called the
minimal automorphic dilation of (D[ϕ, B], S, α) where

α(g,n) ◦ ι = ι ◦ α(g,n), ∀(g, n) ∈ G oN

with ι : D[ϕ, B] ↪→ D[ϕ, B](e,0) → D[ϕ, B], and⋃
(g,n)∈S

α−1
(g,n)(ι(D[ϕ, B])) = D[ϕ, B].

Then, by Theorem 2.2.1 in [16], we have the following lemma.

LEMMA 2.5. There exists an isomorphism

Φ : U[ϕ, B] ∼= D[ϕ, B]oα S ∼= ι(1)(D[ϕ, B]oα S)ι(1).

Thus, D[ϕ, B]oα S is Morita equivalent to D[ϕ, B]oα S, Φ|D[ϕ,B] = ι and also
Φ(ugsn) = ι(1)U(g,n)ι(1), where U : S→ UM(D[ϕ, B]oα S) (unitary multipliers).
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3. SEPARABILITY, NUCLEARITY AND UCT

From Proposition 1.5 we obtain the following proposition.

PROPOSITION 3.1. If B contains countably many subsets of G, then U[ϕ, B] is
separable.

Proof. With the condition satisfied we have countably many projections in
U[ϕ, B] and therefore it is generated by countably many elements.

And the group crossed product description obtained in last section implies
two properties.

PROPOSITION 3.2. If G is amenable, U[ϕ, B] is nuclear.

Proof. G being amenable implies that S is amenable as well (amenability is
closed under direct limits by [25] and also closed under semidirect products). But
we know that D[ϕ, B] is nuclear because it is commutative, therefore D[ϕ, B]oα S
is nuclear by Proposition 2.1.2 in [21]. Since hereditary C∗-subalgebras of nuclear
C∗-algebras are nuclear by Corollary 3.3 (4) in [4], we conclude that

U[ϕ, B] ∼= D[ϕ, B]oα S ∼= ι(1)(D[ϕ, B]oα S)ι(1)

is nuclear.

PROPOSITION 3.3. If G is amenable, U[ϕ, B] satisfies the UCT property.

Proof. Since D[ϕ, B] is commutative, D[ϕ, B] oα S is isomorphic to a
groupoid C∗-algebra. When the group G is amenable then S also is, and the re-
spective groupoid is also amenable. Therefore, using a result by Tu ([24], Proposi-
tion 10.7), the crossed product satisfies UCT. By Morita equivalence, U[ϕ, B] also
satisfies it.

4. PURELY INFINITE AND SIMPLE

To prove that under certain conditions our algebra is purely infinite and
simple, we use Proposition 4.1 below, which is proven in Proposition 7 of [17].
The definition of a conditional expectation can be found in Definition 1.5.9 of [2].

PROPOSITION 4.1. Let Ã be a dense ∗-subalgebra of a unital C∗-algebra A. As-
sume that ε is a faithful conditional expectation on A such that, for every 0 6= x ∈ Ã+,
there exist finitely many projections fi ∈ A with:

(i) fi⊥ f j, ∀i 6= j;
(ii) ∃si isometries such that sis∗i = fi, ∀i;

(iii)
∥∥∥∑

i
fiε(x) fi

∥∥∥ = ‖ε(x)‖;

(iv) fix fi = fiε(x) fi ∈ C fi, ∀i.
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Then A is purely infinite and simple.

So we need to present a dense subalgebra and a conditional expectation of
U[ϕ, B]. To find the conditional expectation, it is necessary to suppose in this sec-
tion that the group G is amenable. And to prove the main theorem, we suppose
that ϕ is pure, i.e: ⋂

n∈N
ϕn(G) = {e}.

The next lemma states that

S[ϕ, B] := span({s∗nug−1 e[H]ug′ s
m : H ∈ B′, g, g′ ∈ G, n, m ∈ N})

is dense in U[ϕ, B].

LEMMA 4.2. The ∗-subalgebra of U[ϕ, B] generated by

{e[H], ug, s : H ∈ B, g ∈ G}

coincides with S[ϕ, B].

Proof. Note that

{e[H], ug, s : H ∈ B, g ∈ G} ⊆ S[ϕ, B] ⊆ span{e[H], ug, s : H ∈ B, g ∈ G}

and S[ϕ, B] is closed under multiplication:

s∗nug−1 e[H]ug′ s
n′ s∗muh−1 e[K]uh′ s

m′

= s∗nug−1g′(ug′−1 e[H]ug′)s
n′ s∗n′ s∗msn′(uh−1 e[K]uh)uh−1h′ s

m′

= s∗nug−1g′ s
∗m(sme[g′−1 H]s

∗m)smsn′ s∗n′ s∗m(sn′ e[h−1K]s
∗n′)sn′uh−1h′ s

m′

= s∗n+muϕm(g−1g′)e[ϕm(g′−1 H)]e[ϕm+n′ (G)]e[ϕn′ (h−1K)]uϕn′ (h−1h′)s
n′+m′

= s∗n+muϕm(g−1g′)e[ϕm(g′−1 H)∩ϕm+n′ (G)∩ϕn′ (h−1K)]uϕn′ (h−1h′)s
n′+m′

= s∗n+muϕm(g−1g′)e[ϕm(g′−1)ϕm(H)∩ϕm+n′ (G)∩ϕn′ (h−1K)]uϕn′ (h−1h′)s
n′+m′

= 0 ∈ S[ϕ, B] or

= s∗n+muϕm(g−1g′)e[g̃(ϕm(H)∩ϕm+n′ (G)∩ϕn′ (K))]uϕn′ (h−1h′)s
n′+m′

= s∗n+muϕm(g−1g′)g̃ e[ϕm(H)∩ϕm+n′ (G)∩ϕn′ (K)]ug̃−1 ϕn′ (h−1h′)s
n′+m′ ∈ S[ϕ, B].

The result follows.

Now we just have to define a conditional expectation to use in Proposi-
tion 4.1 with the subalgebra defined above. For this, we use the amenability of
G. Therefore, S is amenable, which implies that both the reduced and the full
crossed products by S are isomorphic.

Using the isomorphism

Φ : U[ϕ, B] ∼= D[ϕ, B]oα S→ ι(1)(D[ϕ, B]oα S)ι(1)
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obtained in Lemma 2.5 we have the easy-to-prove result below.

LEMMA 4.3. There exists a faithful conditional expectation

θ : U[ϕ, B]→ Φ−1(i(1)D[ϕ, B]i(1))

s∗nug−1 e[H]ug′ s
n′ 7→

{
s∗nug−1 e[H]ugsn if n = n′ and g = g′,

0 otherwise,

for all H ∈ B′, g, g′ ∈ G and n, n′ ∈ N.

Now we can prepare to prove that U[ϕ, B] is simple and purely infinite. For
this aim we follow and adapt the proof of Li ([17], Section 5.2) and use the next
lemmas.

LEMMA 4.4. Let H and Gi be distinct subgroups of G with #
[

H
H∩Gi

]
= ∞ for all

1 6 i 6 n. Then, for all h, gi ∈ G, we have hH *
n⋃

i=1

gi(H ∩ Gi).

Proof. By induction, for n = 1 we have:

hH ⊆ g1(H ∩ G1)⇒ H ⊆ h−1g1(H ∩ G1)⇒ #
[ H

H ∩ G1

]
6= ∞.

Assume that the result holds for n − 1. Let us prove that it holds for n.
Suppose that

hH ⊆
n⋃

i=1

gi(H ∩ Gi),

for some h, gi ∈ G, with 1 6 i 6 n. We can consider two possible cases.
Case 1. There exists 1 < j 6 n with

#
[ H ∩ G1

(H ∩ G1) ∩ (H ∩ Gj)

]
< ∞.

As
(H ∩ G1)(H ∩ Gj)

H ∩ Gj
∼=

H ∩ G1

(H ∩ G1) ∩ (H ∩ Gj)
,

it follows that the first one also has cardinality < ∞. But the exact sequence

(H ∩ G1)(H ∩ Gj)

H ∩ Gj
↪→ H

H ∩ Gj
�

H
(H ∩ G1)(H ∩ Gj)

with #
[
(H∩G1)(H∩Gj)

H∩Gj

]
< ∞ and #

[
H

H∩Gj

]
= ∞ implies that

#
[ H
(H ∩ G1)(H ∩ Gj)

]
= ∞.
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Define

G̃i :=

{
H ∩ Gi if Gi 6= G1 and Gi 6= Gj,
(H ∩ G1)(H ∩ Gj) if Gi ∈ {G1, Gj}.

Note that

#
[ H

H ∩ G̃i

]
= ∞ and hH ⊆

n⋃
i=1

gi(H ∩ Gi) ⊆
n⋃

i=1

gi(H ∩ G̃i),

but the latter one contradicts our hypothesis, as #{G̃i} 6 n− 1.
Case 2. Now suppose that ∀1 < j 6 n,

#
[ H ∩ G1

(H ∩ G1)(H ∩ Gj)

]
= ∞.

As #[ H
H∩G1

] = ∞, we have that ∃g ∈ H such that g(H ∩ G1) 6= gi(H ∩ Gi)

∀1 6 i 6 n. Then we have

g(H ∩ G1) = g(H ∩ G1) ∩ H ⊆ g(H ∩ G1) ∩
n⋃

i=1

gi(H ∩ Gi)

=
⋃

g(H∩G1)∩gi(H∩Gi) 6=∅

g(H ∩ G1) ∩ gi(H ∩ Gi)

=
⋃

g(H∩G1)∩gi(H∩Gi) 6=∅

g̃i((H ∩ G1) ∩ (H ∩ Gi))

and we can conclude that

H ∩ G1 ⊆
⋃

g(H∩G1)∩gi(H∩Gi) 6=∅

g−1 g̃i((H ∩ G1) ∩ (H ∩ Gi)).

But note that, by construction, g(H ∩ G1) ∩ gi(H ∩ G1) = ∅. So the union
has been taken over less than n elements and we have a contradiction.

Let us show that U[ϕ, B] together with the dense ∗-subalgebra S[ϕ, B] (Lem-
ma 4.2) and the faithful conditional expectation θ defined in Lemma 4.3 satisfy
the criteria of Proposition 4.1.

Take 0 6= x ∈ S[ϕ, B]+. As θ(x) 6= 0, one has that

θ(x) =
finite

∑
(n′ ,X)

β(n′ ,X)s
∗n′ e[X]s

n′ ,

where (n′, X) ∈ N× C(B) and β(n′ ,X) ∈ C. Define n to be the sum of all n′ with

β(n′ ,X)s
∗n′ e[X]s

n′ 6= 0.

Then

θ(x) = s∗n
( finite

∑
(n′ ,X)

β(n′ ,X)e[ϕn−n′ (X)]

)
sn.
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Moreover, using Lemma 1.4, it is possible to write

(4.1) θ(x) = s∗n
( finite

∑
(g,H)

β(g,H)e[gH]

)
sn,

where the sum is over finitely many (g, H) ∈ G× B′ and β(g,H) ∈ C. Recall from

Lemma 1.4 that B′ =
{ m⋂

i=1

ϕni (Hi) : Hi ∈ B ∪ {G}, ni ∈ N
}

.

Note that

s∗ne[gH] = s∗nsns∗ne[gH] = s∗ne[ϕn(G)]e[gH] = s∗ne[ϕn(G)∩gH],

so we can assume that gH ⊆ ϕn(G), for each (g, H) ∈ G× B′.

LEMMA 4.5. There exist finitely many pairwise orthogonal (nontrivial) projec-
tions pi in Z-span(D[ϕ, B]) such that C∗({e[gH] : β(g,H) 6= 0}) = C∗({pi}).

For the proof, just orthogonalize the e[g′H′ ] and rearrange the coefficients to
be in Z. Thus, take some p ∈ {pi} among the pi’s obtained above. Then

(4.2) p = ∑
j

nje[gj Hj ]
−∑

j′
ñj′ e[g̃j′ H̃j′ ]

with finitely many nj, ñj′ ∈ Z>0 and (gj, Hj), (g̃j′ , H̃j′) ∈ G× B′.

LEMMA 4.6. We can express p as in (4.2) so that ∀K, K̃ ∈ {Hj, H̃j} the cardinality
of K

K∩K̃
is 1 or ∞.

Proof. By induction, enumerate {Hj, H̃j} by {Ki}. Of course the lemma
holds if there is just K1.

Suppose that it holds for {K1, . . . , Kh}. Define K(0)
h+1 := Kh+1 and for j =

1, . . . , h

(4.3) K(j)
h+1 :=

{
K(j−1)

h+1 if #[K(j−1)
h+1 /(K(j−1)

h+1 ∩ Kj)] ∈ {1, ∞},
K(j−1)

h+1 ∩ Kj otherwise.

We want to change Kh+1 successively to K(0)
h+1, K(1)

h+1, . . ., until K(h)
h+1.

Suppose that K(j)
h+1 = K(j−1)

h+1 ∩ Kj as described above in (4.3). Therefore we

have 1 < #[K(j−1)
h+1 /(K(j−1)

h+1 ∩ Kj)] = M < ∞, and then K(j−1)
h+1 =

M⋃
i=1

gi(K
(j−1)
h+1 ∩Kj).

So we can replace Kh+1 by K′h+1 := K(h)
h+1, because the projections will still be

written using the initial {Ki}.
Now note that

#
[ K′h+1

K′h+1 ∩ K

]
∈ {1, ∞}, ∀K ∈ {K1, . . . , Kh}.
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Let us prove by induction on j that #
[ K(j)

h+1

K(j)
h+1∩K

]
∈ {1, ∞}, for every K ∈

{K1, . . . , Kj}. By construction it holds for j = 1. Suppose it holds for j− 1, that is

#
[ K(j−1)

h+1

K(j−1)
h+1 ∩ K

]
∈ {1, ∞}, ∀K ∈ {K1, . . . , Kj−1},

and let us prove the assertion for j. Also by construction #
[ K(j)

h+1

K(j)
h+1∩Kj

]
belongs to

{1, ∞}. Then, we need to show that

#
[ K(j)

h+1

K(j)
h+1 ∩ K

]
∈ {1, ∞}, ∀K ∈ {K1, . . . , Kj−1},

which holds by the induction hypothesis if K(j)
h+1 = K(j−1)

h+1 .

But, if K(j)
h+1 = K(j−1)

h+1 ∩ Kj, then K(j)
h+1 ⊂ K(j−1)

h+1 and therefore it follows that

1 < #
[ K(j−1)

h+1

K(j−1)
h+1 ∩ Kj

]
< ∞.

Now, by our induction hypothesis, we have two possibilities for each K ∈
{K1, . . . , Kj−1}.

Case #
[ K(j−1)

h+1

K(j−1)
h+1 ∩K

]
= 1. In this case, as K(j)

h+1 ⊂ K(j−1)
h+1 ⊂ K, it follows that

#
[ K(j)

h+1

K(j)
h+1∩K

]
= 1.

Case #
[ K(j−1)

h+1

K(j−1)
h+1 ∩K

]
= ∞. Consider the exact sequence

K(j)
h+1

K(j)
h+1 ∩ K

↪→
K(j−1)

h+1

K(j)
h+1 ∩ K

�
K(j−1)

h+1

K(j)
h+1

.

The inclusion
K(j−1)

h+1

K(j−1)
h+1 ∩K

⊂ K(j−1)
h+1

K(j)
h+1∩K

implies that the second term has size ∞. The

third term has cardinality < ∞ because it is equal to
K(j−1)

h+1

K(j−1)
h+1 ∩Kj

. As that sequence is

exact, we must have #
[ K(j)

h+1

K(j)
h+1∩K

]
= ∞. Thus we conclude that #

[ K(j)
h+1

K(j)
h+1∩K

]
∈ {1, ∞},

∀K ∈ {K1, . . . , Kj}.
Set

(4.4) K′j :=

Kj ∩ K′h+1 if 1 < #
[ Kj

Kj∩K′h+1

]
< ∞,

Kj otherwise,
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for j = 1, . . . , h. This gives a new sequence {K′1, . . . , K′h+1}. And then it only
remains to prove that

#
[ K′j

K′j ∩ K′
j̃

]
∈ {1, ∞}.

Note that, if j or j̃ is equal to h + 1, this holds by the claim above. So, suppose
that j and j̃ are in {1, . . . , h}. Then, by our induction hypothesis, we have two
possibilities.

Case #
[ Kj

Kj∩K j̃

]
= 1; then Kj ⊆ K j̃. If K′j = Kj ∩ K′h+1, then K′j ⊆ K′

j̃
, and (4.4)

holds. Otherwise, K′j = Kj 6= Kj ∩ K′h+1, and therefore #
[ Kj

Kj∩K′h+1

]
= ∞. Then (as

Kj ⊆ K j̃) we have the inclusion

Kj

Kj ∩ K′h+1
⊆

K j̃

K j̃ ∩ K′h+1
,

which implies
[ K j̃

K j̃∩K′h+1

]
= ∞. So K′

j̃
= K j̃ and our claim holds.

Case #
[ Kj

Kj∩K j̃

]
= ∞. As

Kj
Kj∩K j̃

⊆ Kj
Kj∩K′

j̃
, if K′j = Kj the claim holds. Now, if

K′j = Kj ∩ K′h+1 6= Kj, then we have the exact sequence

K′j
K′j ∩ K j̃

↪→
Kj

K′j ∩ K j̃
�

Kj

K′j
.

The set
Kj

Kj∩K j̃
has size ∞ and is contained in the second term, so it has size ∞ too.

The third term has size < ∞ as Kj ∩ K′h+1 6= Kj implies that #
[ Kj

Kj∩K′h+1

]
< ∞.

Hence, we conclude that
[ K′j

K′j∩K j̃

]
= ∞, proving the lemma.

LEMMA 4.7. There exist finitely many pairwise orthogonal projections pi∈U[ϕ, B]
such that

C∗({pi}) ∼= C∗({e[gH] : β(g,H) 6= 0}),

where the (g, H)’s come from equation (4.1). Moreover, if there exists m ∈ N such that
ϕm(G) ⊆ ⋂

H∈B
H, then for all i, there exists hi ∈ G and mi ∈ N so that

e[hi ϕmi (G)] 6 pi.

Proof. We have

θ(x) = s∗n
( finite

∑
(g,H)

β(g,H)e[gH]

)
sn, with (g, H) ∈ G× B′,
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where we recall that

B′ =
{ m⋂

i=1

ϕni (Hi) : Hi ∈ B ∪ {G}, ni ∈ N
}

.

We can assume that gH ⊂ ϕn(G) and, by Lemma 4.5, we have finitely many
pairwise orthogonal projections pi in Z-span(D[ϕ, B]) with

C∗({e[gH] : β(g,H) 6= 0}) = C∗({pi}).

Choose some p ∈ {pi} and write it as

p = ∑
j

nje[gj Hj ]
−∑

j′
ñj′ e[g̃j′ H̃j′ ]

with finitely many nj, ñj′ ∈ Z>0. We can write p such that each projection e[g,H]

appears at most once and #
[

K
K∩K̃

]
∈ {1, ∞} ∀K, K̃ ∈ {Hj, H̃j′} by Lemma 4.6.

Choose some maximal H ∈ {Hj, H̃j′}. Take g ∈ G and n ∈ Z>0 so that
ne[gH] appears in p. Multiplying p with e[gH] gives us

e[gH]p = ne[gH] + ∑
k

nke[ck(H∩Hk)]
−∑

l
ñle[c̃l(H∩H̃l)]

,

for (finitely many) ck, c̃l ∈ G and nk, ñl ∈ Z> 0.

Note that we must have #
[

H
H∩Hk

]
= ∞ because if #

[
H

H∩Hk

]
= 1 then Hk = H

would imply e[gj Hj ]
= e[g̃j′ H̃j′ ]

for some j and j ′. Then, by Lemma 4.4,

gH *
[⋃

k

ck(H ∩ Hk)
]
∪
[⋃

l

c̃l(H ∩ H̃l)
]
,

which allows us to find r ∈ gH\
[⋃

k

ck(H ∩ Hk)
]
∪
[⋃

l

c̃l(H ∩ H̃l)
]
. One can

conclude that:
e[r(⋂k(H∩Hk)∩

⋂
l(H∩H̃l))]

6 e[gH],

e[r(⋂k(H∩Hk)∩
⋂

l(H∩H̃l))]
⊥ e[ck(H∩Hk)]

, ∀k, and

e[r(⋂k(H∩Hk)∩
⋂

l(H∩H̃l))]
⊥ e[c̃l(H∩H̃l)]

, ∀l.

Multiplying the equation above by e[r(⋂k(H∩Hk)∩
⋂

l(H∩H̃l))]
leads to

e[r(⋂k(H∩Hk)∩
⋂

l(H∩H̃l))]
p = ne[r(⋂k(H∩Hk)∩

⋂
l(H∩H̃l))]

.

As the first term is a projection (because it is the product of two commuting pro-
jections) we must have n = 1. So, e[r(⋂k(H∩Hk)∩

⋂
l(H∩H̃l))]

6 p. If our additional
hypothesis is satisfied, we have m̃ ∈ N such that

ϕm(G) ⊆
⋂

H∈B
H ⇒ ϕm̃(G) ⊆

⋂
Hi∈B′ , 06i6n

Hi
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for some m̃ bigger than m. Then

e[rϕm̃(G)] 6 e[r(⋂k(H∩Hk)∩
⋂

l(H∩H̃l))]
6 p.

Therefore we just need to denote hi = r and mi = m̃. The conclusion holds if this
is done for every element of {pi}.

REMARK 4.8. Note that for every i in the last lemma we can choose mi as
big as we want, because ϕm+1(G) ⊂ ϕm(G).

THEOREM 4.9. Let G be an amenable group, B some family of subgroups in G
containing G and ϕ a pure injective endomorphism of G. Also suppose that ∃k ∈ N such
that ϕk(G) ⊆ ⋂

H∈B
H. Then, the C∗-algebra U[ϕ, B] is purely infinite and simple.

Proof. We already have the candidates to use with Proposition 4.1, namely

θ : U[ϕ, B]→ Φ−1(ι(1)D[ϕ, B]ι(1)), and

S[G, B] = span({s∗nug−1 e[I]ug′ s
m : I ∈ B, g, g′ ∈ G, n, m ∈ N}).

Take 0 6= x ∈ S[G, B]sa. Then

x = ∑
(g,g′ ,l,l′ ,J)

η(g,g′ ,l,l′ ,J)s
∗ lug−1 e[J]ug′ s

l′

where η(g,g′ ,l,l′ ,J) ∈ C for each multiindex (g, g′, l, l′, J). As in the previous Lem-
ma 4.7,

θ(x) = s∗n
( finite

∑
(g,H)

β(g,H)e[gH]

)
sn,

for some n ∈ N and (g, H) ∈ G× B′ with β(g,H) 6= 0, where gH ⊂ ϕn(G).
By Lemma 4.7 we find finitely many pairwise orthogonal (nontrivial) pro-

jections {pi} with C∗({e[gH] : β(g,H) 6= 0}) = C∗({pi}). Furthermore, there exist
mi ∈ N and hi ∈ G such that e[hi ϕmi (G)] 6 pi 6 e[ϕn(G)] ∀i. Using Remark 4.8,
we can suppose that mi > n ∀i. Also note that hi ∈ ϕn(G). Thus the projections
Fi := s∗ne[hi ϕmi (G)]sn satisfy Fi 6 s∗n pisn and

C∗({s∗ne[gH]s
n : β(g,H) 6= 0}) = C∗({s∗n pisn})→ C∗({Fi})

y 7→∑
i

FiyFi
(4.5)

is an isomorphism that maps s∗n pisn to Fi. These projections Fi satisfy only (i)
and (ii) of the conditions in Proposition 4.1.

Call (g, g′, l, l′, J) critical if η(g,g′ ,l,l′ ,J)s∗
lug−1 e[J]ug′ sl′ 6= 0 and δg,g′δl,l′ = 0.

Note that
x− θ(x) = ∑

(g,g′ ,l,l′ ,J) critical

sl∗ug−1 e[J]ug′ s
l′ .

But for each i, it is possible to take some ai ∈ ϕ−n(hi)ϕmi−n(G) satisfying

ϕl′(a−1
i )g′−1gϕl(ai) 6= e
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for all critical (g, g′, l, l′, J). Otherwise, we would have r1 6= r2 ∈ ϕmi−n(G) such
that

ϕl′(r−1
1 )g′−1gϕl(r1) = e = ϕl′(r−1

2 )g′−1gϕl(r2).

If l = l′ we have g 6= g′ (as δg,g′δl,l′ = 0) and then

ϕl(r−1
1 )g′−1gϕl(r1) = e⇒ g′−1g = e

which contradicts g 6= g′.
Suppose now that l 6= l′. As r1 = r2r−1

2 r1 we get

e = ϕl′((r2r−1
2 r1)

−1)g′−1gϕl(r2r−1
2 r1) = ϕl′(r−1

1 r2)ϕl(r−1
2 r1),

which implies that r1 = r2 (because ϕ is pure). This contradicts our assumptions.
Now as our endomorphism ϕ is pure, for all critical (g, g′, l, l′, J) and for all

i there exists n(g,g′ ,l,l′ ,J,i) ∈ N (as big as we need) such that ϕl′(a−1
i )g′−1gϕl(ai) /∈

ϕ
n(g,g′ ,l,l′ ,J,i)(G). Let us call

bi := (mi − n) ∏
(g,g′ ,l,l′ ,J) critical

n(g,g′ ,l,l′ ,J,i).

Note that

(4.6) ϕl′(a−1
i )g′−1gϕl(ai) /∈ ϕbi (G).

Define fi := e
[ai ϕbi (G)]

. We want to prove that these projections satisfy the
conditions of Proposition 4.1, which are:

(i) fi⊥ f j,∀i 6= j,
(ii) fi ∼zi 1, via isometries zi ∈ A,∀i,

(iii)
∥∥∥∑

i
fiθ(x) fi

∥∥∥ = ‖θ(x)‖, and

(iv) fix fi = fiθ(x) fi ∈ C fi, ∀i.

As bi > mi − n and ϕn(ai) ∈ hi ϕ
mi (G) it follows that sne

[ai ϕbi (G)]
s∗n 6

e[hi ϕmi (G)] and then

fi = s∗nsne
[ai ϕbi (G)]

s∗nsn 6 s∗ne[hi ϕmi (G)]s
n = Fi.

This implies that fi ⊥ f j ∀i 6= j and (i) is satisfied. Item (ii) is also easily satisfied,
because

fi = e
[ai ϕbi (G)]

= (uai s
bi )(uai s

bi )∗ ∼ (uai s
bi )∗(uai s

bi ) = 1.

Since (4.5) is an isomorphism and fi 6 Fi, the map

C∗({s∗ne[gH]s
n : β(g,H) 6= 0})→ C∗({ fi})

y 7→∑
i

fiy fi
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is an isomorphism as well. Therefore it is isometric and (iii) is satisfied. And
finally, for the last condition, let us expand fi(x− θ(x)) fi:

fi(x− θ(x)) fi

= fi

(
∑

(g,g′ ,l,l′ ,J) critical

η(g,g′ ,l,l′ ,J)s
∗ lug−1 e[J]ug′ s

l′
)

fi

= ∑
(g,g′ ,l,l′ ,J) critical

η(g,g′ ,l,l′ ,J)s
∗ lug−1(ugsl f s∗ lug−1)e[J](ug′ s

l′ f s∗ l′ug′−1)ug′ s
l′

= ∑
(g,g′ ,l,l′ ,J) critical

η(g,g′ ,l,l′ ,J)s
∗ lug−1 e

[gϕl(ai)ϕl+bi (G)]
e
[g′ϕl′ (ai)ϕl′+bi (G)]

e[J]ug′ s
l′ .

Now, note that

[gϕl(ai)ϕl+bi (G)] ∩ [g′ϕl′(ai)ϕl′+bi (G)] 6= ∅⇒ ϕl′(a−1
i )g′−1gϕl(ai) ∈ ϕbi (G),

which contradicts our choice of bi by (4.6). So the intersection above must be
empty and then fix fi = fiθ(x) fi ∈ C fi, ∀i. Therefore, by Proposition 4.1, our
C∗-algebra is simple and purely infinite.

COROLLARY 4.10. When the conditions of Theorem 4.9 are satisfied, the concrete
C∗-algebra C∗r [ϕ, B] is isomorphic to the universal one U[ϕ, B], as defined in Defini-
tions 1.1 and 1.2 respectively.

THEOREM 4.11. If the conditions of Theorem 4.9 are satisfied, the universal C∗-
algebra U[ϕ, B] is a Kirchberg algebra satisfying the UCT property (Propositions 3.1, 3.2
and 3.3).

EXAMPLE 4.12. Take G to be the free group F2 with generators {a, b} and
define the injective endomorphism

ϕ : F2 → F2

a 7→ a

b 7→ b2, linearly extended.

Note that a 6= ab 6= abab 6= ababab 6= · · · in G
ϕ(G)

and thus we need to work

with a family of subgroups of F2. So denote H1 := ϕ(G) = 〈a, b2〉 and choose
B = {G, H1}.

Since G is not amenable, we can only say that U[ϕ, B] is separable. Also by
the previous results,

U[ϕ, B] ∼= D[ϕ, B]oω F2 oτ N
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with D[ϕ, B] = C∗({e[g〈a,b2n 〉] : g ∈ G, n ∈ N}) and

ω : F2 → Aut(D[ϕ, B])

g 7→ ug(·)ug−1 ;

τ : N→ End(D[ϕ, B]oω F2)

n 7→ sn(·)s∗n.

Note that D[ϕ, B] can be viewed as the direct limit of

Dn := C∗({e
[g〈a,b2i 〉] : with 0 6 i 6 n}),

with the canonical inclusions im,n : Dn → Dm for n < m.
Define

An :=
.⋃

06i6n

G
〈a, b2i 〉

.

For g ∈ An there exists some 0 6 ig 6 n such that g ∈ G
〈a,b2ig 〉

⊆ An. Denote

Hg := 〈a, b2ig 〉 and define the following partial order on An: g 6 h if Hg ⊆ Hh
and gHh = hHh. The topology of An is such that a sequence (xm) converges to x
if and only if x is the only minimal element of the set

{x′ ∈ An : xm 6 x′ for all but finitely many m}.

It is easy to see that D̂n is homeomorphic to An. Take g ∈ An and define
e[g] := e[gHg ]. For some χ ∈ D̂n, define gχ ∈ An by (for h ∈ An):

χ(e[h]) =

{
1 if h > gχ,
0 otherwise.

It is easy to see that this correspondence is a bijection. So ∀g ∈ An, we have one
and only one correspondent element χg ∈ D̂n.

Now, χgm converges to χg if and only if lim
m→∞

χgm(eg′) = χg(eg′). But this

corresponds to saying that g′ > gm for almost all m if and only if g′ > g, that is,
that g is the only minimal element of {g′ ∈ An : gm 6 g′ for almost all m}. So the
topologies are equivalent. Then

D̂[ϕ, B] ∼= lim
←

(An, pn,m) =: A

and note that
A =

{
(gm)m ∈ ∏

m∈N
Am : pn,m(gm) = gn

}
with

pn,m : Am → An

g〈a, b2i 〉 7→ g〈a, b2min{i,n}〉,
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for m > n. With this we can also conclude that

U[ϕ, B] ∼= C0(A)oω F2 oτ N

where for f ∈ C0(A) and x ∈ A,

ωg( f )(x) = f (gxg−1)

using the pointwise product gxg−1 and

τn( f δh) = f δϕn

with f (x) = f (ϕ(x)), where we consider ϕ(x) pointwise.
In Example 5.4 we calculate the K-groups of U[ϕ, B].

5. THE CASE B = {G}

In this section we study the particular case when B contains, instead of sub-
groups, only subsets of the form gϕk(G) for k ∈ N and g ∈ G. By Proposition 1.7,
the C∗-algebra U[ϕ, B] is isomorphic to the one obtained when B = {G}. There-
fore, for the sake of simplicity, we omit B and use the notation U[ϕ].

Its K-theory will be calculated using a similar idea as presented in [11], i.e,
using the continuity of the functors K0 and K1 and also the Khoshkam–Skandalis
sequence [14]. We conclude that K∗(U[ϕ]) ∼= K∗(C∗(G)). We also conclude that,
when G is amenable, we can use Kirchberg’s classification theorem to U[ϕ].

Finally, we use the recently-introduced semigroup C∗-algebras from [19]
and [18] and show that U[ϕ] is isomorphic to the full semigroup C∗-algebra of
the semigroup S = G oϕ N. This implies that when the group G is amenable and
the endomorphism ϕ is pure, the three semigroup C∗-algebras defined by Li are
isomorphic to U[ϕ]. Furthermore we can apply Kirchberg’s classification theorem
to them.

PROPOSITION 5.1. When B contains only subsets of the form gϕk(G), for some
fixed ϕ, k ∈ N and g ∈ G, the C∗-algebra U[ϕ, B] is isomorphic to U[ϕ], and can be
redefined as the universal C∗-algebra generated by unitaries {ug : g ∈ G} and one
isometry {s} satisfying:

(i) ugsnuhsm = ugϕn(h)sn+m;
(ii) we have

ugsns∗nug−1 uhsms∗muh−1 = uhsms∗muh−1 ugsns∗nug−1

=

{
ugsns∗nug−1 if h ∈ gϕm(G),

0 otherwise,

for n > m.

A simple use of Propositions 3.1, 3.2 and 3.3, and Theorem 4.9 yields the
following proposition.
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PROPOSITION 5.2. The C∗-algebra U[ϕ] is separable. When the group G is ame-
nable, it is also nuclear and satisfies the UCT. Furthermore, if ϕ is pure, then U[ϕ] is also
simple and purely infinite, therefore a Kirchberg algebra satisfying the UCT.

To calculate the K-theory of U[ϕ], using Remark 2.2 we know that

U[ϕ] ∼= (D[ϕ]oω G)oτ N

with
ω : G → Aut(D[ϕ])

g 7→ ug(·)ug−1 ,

τ : N→ End(D[ϕ]oω G)

n 7→ sn(·)s∗n

where for agδg ∈ D[ϕ]oω G, τn(agδg) = snags∗nδϕn(g). But note that

D[ϕ] ∼= lim→
n

Dn

for n ∈ N with

Dn := C∗
({

ugsks∗kug−1 : 0 6 k 6 n, g ∈ G
ϕk(G)

})
and the inclusion being the identity. Therefore

D[ϕ]oω G ∼= lim→
n

(Dn oω G),

where
Dn oω G ∼= C∗({ugsks∗kuh−1 : 0 6 k 6 n, g, h ∈ G}).

Moreover, for k ∈ N, Ak := C∗({ugsks∗kuh−1 : g, h ∈ G}) is an ideal of Dk oω G,
because for m 6 k,

uhsks∗kuh−1 ugsms∗mug−1 =

{
uhsks∗kuh−1 if g ∈ hϕm(G),
0 otherwise.

But note that every element ugsks∗kuh−1 in Ak can be uniquely written as
ugi s

ks∗kugj
−1 uϕk(t), for gi, gj ∈ G

ϕk(G)
and t ∈ G. So, if one defines the correspon-

dence
ugsks∗kuh−1 = ugi s

ks∗kugj
−1 uϕk(t) 7→ Ei,j ⊗ uϕk(t),

where {Ei,j} is the family of unit matrices which give rise to the set K of compact
operators, it follows that

Ak
∼= K⊗ C∗(ϕk(G)) ∼= K⊗ C∗(G).

Hence, starting with the case n = 1, we can build the exact sequence

0→ A1
ι−→ D1 oω G

ρ−→ C∗(G)→ 0
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where ι and ρ are the canonical inclusion and projection maps, respectively. But
the sequence above splits if we also consider the canonical inclusion

γ : C∗(G)→ D1 oω G.

This implies that the corresponding exact sequence of K-groups also splits, which
means that (using the Künneth formula [22])

K∗(D1 oω G) ∼= K∗(C∗(G))⊕ K∗(K⊗ C∗(ϕ(G))) ∼= K∗(C∗(G))⊕ K∗(C∗(G)).

Repeating the argument, it is easy to conclude that

K∗(Dn oω G) =
n⊕

i=0

K∗(C∗(G))

and consequently

(5.1) K∗(D[ϕ]oω G) = lim→
n

n⊕
i=0

K∗(C∗(G)) =
⊕
N

K∗(C∗(G))

where the k-th group K∗(C∗(G)) of the direct sum above represents the K-group
of Ak.

Applying the Khoshkam–Skandalis sequence for N-crossed products [14],
we have the sequence⊕

N
K0(C∗(G))

1−K0(τ)−−−−→ ⊕
N

K0(C∗(G)) → K0(U[ϕ])

↑ ↓
K1(U[ϕ]) ← ⊕

N
K1(C∗(G))

1−K1(τ)←−−−− ⊕
N

K1(C∗(G))

where τn(ug) = snugs∗n. Since K0(K) is described only by matrices of the type
Ei,i, consider some ugi s

ns∗nug−1
i

uϕn(t) ∈ D[ϕ]oω G. Then

K∗(τ)[ugi s
ns∗nug−1

i
uϕn(t)]∗ = [uϕ(gi)

sn+1s∗n+1u
ϕ(g−1

i )uϕn+1(t)]∗

which implies that K∗(τ) corresponds to a shift in
⊕
N

K∗(C∗(G)). So denote by σ

the shift operator, to see that the six-term sequence above turns into⊕
N

K0(C∗(G))
1−σ−−→ ⊕

N
K0(C∗(G)) → K0(U[ϕ])

↑ ↓
K1(U[ϕ]) ← ⊕

N
K1(C∗(G))

1−σ←−− ⊕
N

K1(C∗(G)).

But the application 1 − σ has null kernel and Im(1 − σ) only contains vectors
(x0, x1, . . . , xn, 0, 0, . . .) whose sum of coordinates equals zero. This together with
the direct limit description (5.1) implies that⊕

N K∗(C∗(G))

Im (1− σ)
∼= K∗(C∗(G))
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via

(x0, x1, . . . , xn, 0, 0, . . .) 7→
n

∑
i=0

xi.

Solving the six-term sequence we get

K∗(U[ϕ]) ∼= K∗(C∗(G)).

Therefore, we have the following theorem.

THEOREM 5.3. Consider ϕ an injective endomorphism with infinite cokernel of
some discrete countable group G, and construct the C∗-algebra U[ϕ] as in Proposi-
tion 5.1. Then K∗(U[ϕ]) ∼= K∗(C∗(G)).

EXAMPLE 5.4. Let us recall Example 4.12. The group G is the free group F2
with generators {a, b},

ϕ : F2 → F2

a 7→ a

b 7→ b2, linearly extended

and B = {G, H1} where H1 = ϕ(G) = 〈a, b2〉. By Proposition 5.1 we have
U[ϕ, B] = U[ϕ].

Using Theorem 5.3, we conclude that

K0(U[ϕ]) ∼= K0(C∗(F2)) = Z

with generator [1]0 and

K1(U[ϕ]) ∼= K1(C∗(F2)) = Z2

with generators [ua]1 and [ub]1.

THEOREM 5.5. Consider ϕ a pure injective endomorphism with infinite coker-
nel of some discrete countable amenable group G. Construct the C∗-algebra U[ϕ] as in
Proposition 5.1. Then it is classifiable by Kirchberg’s classification theorem.

Consider two diferent pure injective endomorphisms of some discrete count-
able amenable group G. Then, both C∗-algebras will be classifiable by Kirchberg’s
theorem and, in both objects, K0(U[ϕ]) 3 [1]0 7→ [1]0 ∈ K0(C∗(G)). Thus, the re-
spective C∗-algebras are isomorphic.

COROLLARY 5.6. Assuming that the above conditions are satisfied, for a fixed
group G, any choice of endomorphism ϕ generates the same C∗-algebra U[ϕ].

6. SEMIGROUP C∗-ALGEBRA DESCRIPTION OF U[ϕ]

In [18] and [19] Li introduced and developed the concept of a C∗-algebra
associated with a semigroup. We prove that when the semigroup is S = G oϕ N,
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i.e, a semidirect product of a group G with N implemented by an injective en-
domorphism, the C∗-algebra of this semigroup can be viewed as the C∗-algebra
associated with the endomorphism ϕ. This isomorphism together with extra re-
strictions on our initial data will allow us to conclude similar results concerning
the K-theory of U[ϕ] as the one obtained in Theorem 5.3.

We compare the set of projections used in both definitions and, for this pur-
pose, we study the sets which index these projections, namely B′ in our case
(Lemma 1.4) and the set J of constructible right ideals in Li’s case (before Defini-
tion 2.2 in [18]). Note that both are defined as a certain set of subsets of the given
structure, and they are closed with respect to some set operations.

The problem is that here B′ is a set of subsets of a group and Li defines J
containing subsets of a semigroup. However the following holds.

PROPOSITION 6.1. J = {(g, n)S : (g, n) ∈ S}.
Proof. Use the fact that sets of the type

(g, n)S ∩ (h, m)S and (g, n)−1(h, m)S

are both of the form (k, l)S or ∅. This result is also proved in Lemma 6.3.3
of [9].

The result above will allow us to establish the isomorphism between the
algebra U[ϕ] defined in this section and the full semigroup C∗-algebra C∗(S) de-
fined by Li in Definition 2.2 in [18].

Consider an endomorphism ϕ of a group G with B containing only sub-
groups of the form ϕk(G). By Proposition 5.1, U[ϕ] is the universal C∗-algebra
generated by unitaries {ug : g ∈ G} and one isometry s satisfying

(i) ugsnuhsm = ugϕn(h)sn+m.

PROPOSITION 6.2. We have

U[ϕ] ∼= C∗(S),

with the latter defined as in [18].

Proof. The C∗-algebra C∗(S) is generated by isometries {v(g,n) : (g, n) ∈ S}
and projections {eX : X ∈ J }with J = {(g, n)S : (g, n) ∈ S} (by the proposition
above).

To prove that the isomorphism holds, first note that the unitaries v(g,0) and
the isometries v(e,n) satisfy the relation generating U[ϕ] ((i) above). Therefore,
there exists a ∗-homomorphism

Φ : U[ϕ]→ C∗(S)

ug 7→ v(g,0), and

sn 7→ v(e,n).
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For the inverse map, consider the set of isometries {ugsn : (g, n) ∈ S} and
the set of projections

{uhsms∗muh−1 : associated with (h, m)S ∈ J }.

Some calculations show that these two sets satisfy the five conditions gen-
erating C∗(S) ([18]). By the universality of this C∗-algebra we have a ∗-homo-
morphism

Ψ : C∗s (S)→ U[ϕ]
v(g,n) 7→ ugsn, and

e[(h,m)S] 7→ uhsms∗muh−1 .

It is easy to see that Φ and Ψ are inverses of each other.

COROLLARY 6.3. Consider ϕ an injective endomorphism with infinite cokernel
of some discrete countable group G. Construct the semidirect product semigroup S =
G oϕ N. Then

K∗(C∗(S)) ∼= K∗(C∗(G)),

with C∗(S) as defined in [18].

There are two more C∗-algebras associated with a semigroup S. The first
one is the concrete representation of S called the reduced semigroup C∗-algebra
of S, denoted by C∗r (S) and defined in Definition 2.1 in [18]. It is easy to check
that there exists a surjective ∗-homomorphism

λ : C∗(S)→ C∗r (S).

For the second one, note that the semigroup S can be viewed as a subsemi-
group of the group S (defined previously), and this allows us to define another
C∗-algebra associated with S, namely C∗s (S) ([18], Definition 3.2). It has the same
generators as C∗(S) with minor additional relations, so that there is a surjective
∗-homomorphism

πs : C∗(S)→ C∗s (S).

But remember that if ϕ is pure and G is amenable the C∗-algebra U[ϕ] is
simple (and purely infinite) by Theorem 4.9, and thus so is C∗(S). Therefore we
have the following theorem.

THEOREM 6.4. Consider G an amenable discrete countable group and ϕ a pure in-
jective endomorphism of G. Construct the semigroup S = Goϕ N. Then the C∗-algebras
C∗(S), C∗s (S) and C∗r (S) defined in [18] are isomorphic to U[ϕ]. By Theorem 5.3, we
also conclude that

K∗(C∗(S)) ∼= K∗(C∗(G)).

Moreover, by Theorem 5.5, they are classifiable by Kirchberg’s classification theorem [15].
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EXAMPLE 6.5. Consider the shift endomorphism of
⊕
N
Z, i.e

ϕ :
⊕
N

Z→
⊕
N

Z

(x1, x2, x3, . . .) 7→ (0, x1, x2, . . .).

Denote by G the group
⊕
N
Z and let us choose B = {G} to apply the theorem

above. It is well-known that

C∗
(⊕

N
Z
)
∼=
⊗
N

C∗(Z) ∼=
⊗
N

C(S1)

which together with the Künneth formula ([22]) implies

K0(U[ϕ]) = K1(U[ϕ]) =
⊕
N

Z.

Consider ϕ the shift (to the right) on G. With S = Goϕ N the theorem above
implies that

U[ϕ] ∼= C∗(S) ∼= C∗s (S) ∼= C∗r (S)

(as defined in [18]) and this C∗-algebra is nuclear, simple and purely infinite.

The theorem above provides another powerful tool to calculate the K-theory
of U[ϕ], which agrees with Theorem 5.3, just using Theorem 6.3.4 in [9]. For this,
note that G being amenable implies that S also is (in [9] this group is called the
enveloping group of S). Therefore it satisfies the Baum–Connes conjecture with
coefficients, and the following result applies.

THEOREM 6.6. For an amenable group G and a pure injective endomorphism with
infinite cokernel ϕ of G consider the semigroup S = G oϕ N. Choose B = {ϕk(G)} for
some k ∈ N. Then

K∗(U[ϕ]) ∼= K∗(C∗(G)).
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