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ABSTRACT. We study actions of locally compact groups on von Neumann fac-
tors and the associated crossed-product von Neumann algebras. In the setting
of totally disconnected groups we provide sufficient conditions on an action
G y Q ensuring that the inclusion Q ⊂ Q o G is irreducible and that every
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and Choda. We moreover show that one can not hope to use their strategy
for non-discrete groups.
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1. INTRODUCTION

In the theory of von Neumann algebras, the crossed-product construction as-
sociates to an action of a locally compact group G on a von Neumann algebra Q a
new von Neumann algebra, denoted by QoG, which encodes the action (to some
extent). This construction goes back to Murray and von Neumann [28] in the case
of state preserving actions of countable groups on abelian von Neumann alge-
bras, and was called the group measure-space construction. Thus crossed-product
algebras appear as one of the most basic examples of von Neumann algebras.
In the case of actions of discrete groups, elementary properties of these crossed-
product algebras are quite well understood. For instance:

(i) If Q is abelian, Q = L∞(X, µ), and if the corresponding non-singular G-
action on (X, µ) is essentially free then Q′ ∩ (Q o G) ⊂ Q, so that the crossed-
product Q o G is a factor if and only if the action is ergodic.

(ii) If Q is a factor, then Q′ ∩ (Q o G) = C if and only if the action is properly
outer, meaning that for all g ∈ G, the corresponding automorphism of Q is not
inner.
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Moreover, in both settings one can completely describe all the intermediate
subalgebras between Q and Q o G. Hybrid cases combining aspects of cases (i)
and (ii) above have been considered recently in [10].

In the case of non-discrete groups the picture is not as nice. The main dif-
ference is that there is no “Fourier decomposition” of elements Q o G. Namely,
not every element of x ∈ Qo G can be represented as an L2-element x ∈ L2(Q)⊗
L2(G).

Nevertheless, in the setting (i) above of actions on abelian algebras there are
some satisfying results. Sauvageot showed in Section 2 of [32] that the equiva-
lence between Q′ ∩ (Q o G) ⊂ Q and the action G y (X, µ) being essentially
free still holds. Moreover, in the case of state preserving actions of unimodular
groups, a powerful tool is available: the so-called crossed-section equivalence re-
lation. It relies on the observation that appropriate II1 corners of Q o G can be
described by an explicit equivalence relation. We refer to [25] for details and ref-
erences.

In this article we will be interested in the setting (ii) of actions on factors. An
action G y Q of a locally compact group G on a factor Q is called strictly outer if
Q′ ∩ (QoG) = C. It is known in this case that properly outer actions need not be
strictly outer. As we will see, assuming that the action is strictly outer allows to
deduce more conclusions. For instance we will see that it implies that the normal-
izer of Q inside Q o G is the semi-direct product U (Q)o G, see Corollary 3.11.
In particular we will derive as in the discrete case that for strictly outer actions
the pairs Q ⊂ Q o G completely characterize the actions up to cocycle conjugacy.
We refer to Theorem 5.1 of [38] for examples of strictly outer actions. We will also
give a new criterion providing more examples in Proposition 4.5.

Our main goal is to prove an intermediate subfactor theorem (a Galois cor-
respondence). Namely we will provide examples of strictly outer actions of non-
discrete groups that satisfy the following property.

DEFINITION 1.1. We will say that a strictly outer action G y Q of a locally
compact group on a factor Q satisfies the intermediate subfactor property if any sub-
factor of Q o G, containing Q is of the form Q o H for some closed subgroup
H < G.

In the case of outer actions of discrete groups, Choda [11] proved such an
intermediate subfactor property under the extra assumption that the intermedi-
ate subfactor is the range of a normal conditional expectation on Q o G. Then
Izumi–Longo–Popa [22] were able to show that the existence of such a condi-
tional expectation is automatic for crossed-products by discrete groups. So the
property is known to hold for actions of discrete groups. Unfortunately, as we
discuss below, there is no hope to adapt this strategy for general locally com-
pact groups. In fact, the general situation is analytically much harder to handle
precisely because conditional expectations need not exist in general.
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The proof of our main result relies on a very different approach inspired
from II1-factor techniques. We will restrict our attention to actions of totally dis-
connected groups. This will allow us to use Fourier decomposition arguments.
Here is the statement.

THEOREM 1.2. Consider an action σ : G y Q of a totally disconnected locally
compact group G on a semi-finite factor Q. Assume that σ is properly outer relative to a
compact open subgroup K0 < G whose action is minimal.

Then σ satisfies the intermediate subfactor property.

We refer to Subsection 2.5 for the definition of a minimal action and to Defi-
nition 4.6 for the notion of relatively properly outer action. Theorem 1.2 applies to
Bernoulli shifts G y (

⊗
G/K Q0) where Q0 is an arbitrary II1-factor, and K is any

compact open subgroup of G, see Subsection 4.4. For instance if G is a closed sub-
group of automorphisms of a locally finite tree T, and if G acts transitively on T,
then the Bernoulli shift action G y (

⊗
T Q0) satisfies the intermediate subfactor

property. We refer to Subsection 4.4 for more examples.
As we mentioned above this result is not a simple generalization of the

discrete case, even if Q is tracial, because in general an intermediate subalge-
bra Q ⊂ N ⊂ Q o G does not behave well from the Hilbert theory perspective.
Nevertheless we still manage to use Hilbert techniques to perform the proof.

Our approach relies on two ingredients. The first one is an averaging ar-
gument. This is where the semi-finiteness assumption on Q will be used. As we
will see in Remark 4.14, this technique also allows to deal with some actions on
type III factors Q, but we need to make an assumption that there is a G-invariant
state on Q that has a large centralizer.

Our second ingredient is an extension of the notion of support defined by
Eymard [14]. In the language of quantum groups, the support of an element
of Q o G is the spectrum of the dual action. In the setting of totally disconnected
groups, this notion is particularly well suited, see for instance the proof of Propo-
sition 4.5. The key fact that we will use in the proof of Theorem 1.2 is that an
element whose support is contained in some closed subgroup H < G actually be-
longs to the subalgebra Qo H ⊂ Qo G. This result is certainly known to experts
in quantum groups, but as we were not able to find an explicit reference, we will
provide a self contained proof in Section 3.

In view of Theorem 1.2 and Remark 4.14 we make the following general
conjecture.

CONJECTURE 1.3. Any strictly outer action G y Q on a factor (of any type)
satisfies the intermediate subfactor property.

REMARK 1.4. The conjecture holds in full generality for compact groups.
Indeed, if K is a compact group and K y Q is a strictly outer action on an arbi-
trary von Neumann algebra, then the pair Q ⊂ Q o K can be identified with the
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basic construction of the inclusion QK ⊂ Q. This result was showed more gener-
ally for integrable (strictly outer) actions of locally compact groups by Vaes ([37],
Theorem 5.3). Moreover, by Theorem 3.15 of [22], every intermediate subfactor
of the inclusion QK ⊂ Q is of the form QL form some closed subgroup L < K.
Combining these two facts indeed yields that K y Q satisfies the intermediate
subfactor property.

Going back to general (not necessarily compact) groups, can one prove the
conjecture even when Q is tracial and G is an arbitrary locally compact group?
As we mentioned, Remark 4.14 allows to produce actions on type III factors. But
the condition on large centralizers that we need is never fulfilled in the case of
actions on factors of type III0. This raises the following question.

QUESTION 1.5. Can one provide an explicit example of a strictly outer ac-
tion (of a non-discrete group) on a type III0-factor that satisfies the intermediate
subfactor property?

We discuss in Section 5 the (im)possibility to solve the above conjecture by
generalizing the work of Izumi–Longo–Popa. Namely, we completely character-
ize in the case of arbitrary strictly outer actions G y Q, the existence of normal
conditional expectation and operator valued weight for an inclusion Q o H ⊂
Q o G, where H is a closed subgroup of G.

THEOREM 1.6. Consider a strictly outer action G y Q on an arbitrary factor Q
and take a closed subgroup H < G. Then we have the following characterizations:

(i) There exists a normal faithful semi-finite operator valued weight T ∈ P(Q o
G, Q o H) if and only if the modular functions δG and δH coincide on H.

(ii) The inclusion Qo H⊂QoG is with expectation if and only if H is open inside G.

For both parts in the above theorem, the only if parts follow easily from
modular theory. Namely both conditions are easily seen to imply the existence of
an operator valued weight and conditional expectation, respectively. Our main
contribution is to show that they are actually necessary.

Statement (ii) above is in sharp contrast with the case of group algebras,
since there can exist conditional expectations from LG onto LH although H is not
open inside G. For instance, consider a product G = G1 × G2, with the trivial
action G y C. Assume that G2 is second countable and not discrete. Then G1 is
not open inside G but any faithful normal state on LG2 gives rise to a conditional
expectation from LG ' LG1⊗LG2 onto LG1. In particular, the strictly outer as-
sumption may not be removed. On the other hand we do not know whether (i)
holds for arbitrary actions (not necessarily strictly outer).

Next, we will show that nevertheless the strategy of Izumi–Longo–Popa
and Choda can be applied to some intermediate subfactors, yielding the follow-
ing result. We will also mention applications to crossed-products by Hecke pairs
of groups, see Corollary 5.7.
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THEOREM 1.7. Consider an arbitrary strictly outer action G y Q on a factor
with a separable predual and a compact open subgroup K < G. Then any subfactor
of Q o G containing Q o K is of the form Q o H for some intermediate subgroup H;
K < H < G.

Going back to the conjecture, let us finally mention another partial result. It
is about intermediate subfactors that are globally invariant under the dual action
∆Q : Q o G → (Q o G)⊗LG. Namely if Q is a factor and if N is an intermediate
subfactor such that ∆Q(N) ⊂ N⊗LG, then N is of the form Qo H for some closed
subgroup H < G, see for instance Chapter VII.2 of [29].

QUESTION 1.8. Consider a strictly outer action α of a locally compact quan-
tum group (M, ∆) on a factor N. Can one show that any von Neumann subalge-
bra Q ⊂ M nα N containing N is globally invariant under the dual action? We
refer to [38] for definitions.

We mention that Remark 1.4 also applies in the quantum setting. Namely,
Vaes’ result ([37], Theorem 5.3) is valid in the general quantum setting, while the
correspondence result of Izumi–Longo–Popa ([22], Theorem 3.15) was general-
ized by Tomatsu to the quantum setting in [35].

2. PRELIMINARIES

2.1. GENERAL NOTATIONS. In all the article, the letter G refers to a locally com-
pact group; mG denotes a left Haar measure on G, and δG the modular function of
G. Note that we follow the French convention according to which the locally com-
pact assumption also contains the Hausdorff axiom. When we consider L2-spaces
it is always meant with respect to the measure mG. When integrating functions
on G, we will sometimes use the notation ds instead of dmG(s), s ∈ G. The left
regular representation of G on L2(G) is denoted by λG.

The letter Q refers to an arbitrary von Neumann algebra on which G acts.
The action will be denoted by G y Q, and called generically σ. By an action, we
mean an ultraweakly continuous homomorphism from G into the automorphism
group of Q.

Given a von Neumann algebra M represented on a Hilbert space H, M′

denotes its commutant, (M)1 its unit ball in the operator norm, U (M) its unitary
group and Aut(M) its automorphism group. We denote by S(M) and P(M)
the set of normal faithful states on M and the set of normal faithful semi-finite
weights (nfs weights for short), respectively. For any weight Φ ∈ P(Q), consider
the left ideal nΦ(M) = {x ∈ M : Φ(x∗x) < ∞}, on which x 7→

√
Φ(x∗x) defines

a norm ‖ · ‖Φ. We denote by L2(M, Φ) the Hilbert space completion of nΦ(M)
and we write ΛΦ for the inclusion map ΛΦ : nΦ(M)→ L2(M, Φ).
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2.2. GROUP ACTIONS AND CROSSED-PRODUCT VON NEUMANN ALGEBRAS. Let
us give the precise definition of our main object of study. We refer to Chapter X
of [34] and [16], [17] for details about the facts below.

DEFINITION 2.1. Fix an action G y Q and represent Q on a Hilbert spaceH.
The crossed-product von Neumann algebra, denoted by Q o G, is the von Neumann
algebra on L2(G,H) generated by the operators {π(x) : x ∈ Q} and {us : s ∈ G}
defined by the formulae:

(π(x)ξ)(t) = σ−1
t (x)ξ(t) and (usξ)(t) = ξ(s−1t),

for all ξ ∈ L2(G,H).

For notational simplicity we will often omit the π and identify π(Q) with Q
in the above definition.

Throughout the article we will always assume that Q is standardly repre-
sented on H, with conjugation operator J and positive cone P . In this case, we
abuse with notations and denote again by σ : g ∈ G → σg ∈ U (H) the canonical
implementation of the action G y Q, see [15]. Then for all g ∈ G the operator
ρG(g) on L2(G,H) defined as follows lies in the commutant of Q o G:

(2.1) ρG(g)( f )(s) = δG(g)1/2σg( f (sg)), for all s ∈ G, f ∈ L2(G,H).

Denote by K(G, Q) the ∗-algebra of compactly supported, ∗-ultrastrongly
continuous functions, endowed with product and involution given by the for-
mulae

(F1 · F2)(t) =
∫
G

σs(F1(ts))F2(s−1)ds and F∗1 (t) = δG(t)−1σt−1(F1(t−1)∗),

for all F1, F2 ∈ K(G, Q), t ∈ G. The algebraK(G, Q) is also a two sided Q-module
with actions

(F · x)(t) = F(t)x and (x · F)(t) = σ−1
t (x)F(t),

for all F ∈ K(G, Q), x ∈ Q, t ∈ G. The map F 7→
∫
G

usF(s)ds defines a Q-

bimodular embedding of K(G, Q) into the crossed-product Q o G. In this way
K(G, Q) is viewed as an ultraweakly dense ∗-subalgebra of Q o G.

2.3. CROSSED-PRODUCTS BY SUBGROUPS. Given a subgroup H of G, one can re-
strict any action G y Q to an action H y Q. In the case where H < G is closed
inside G, then the von Neumann subalgebra of Q o G generated by Q and by the
unitaries uh, h ∈ H, is isomorphic to Q o H. This can be seen using induced rep-
resentations, see Chapter X.4 of [34]. With the same tools one can also compute
the commutant of Q o H inside B(L2(G,H)).

THEOREM 2.2 ([29], Theorem VII.1.1). The commutant of Q o H inside
B(L2(G,H)) is the von Neumann algebra generated by the commutant of QoG and the
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subalgebra L∞(H\G) ⊂ L∞(G) consisting of left-H-invariant functions on G. Equiv-
alently,

Q o H = (Q o G) ∩ L∞(H\G)′.

REMARK 2.3. Using the J-map, the above theorem also allows to compute
the basic construction 〈Q o G, Q o H〉 of the inclusion Q o H ⊂ Q o G. In fact
this description gives the isomorphism

〈Q o G, Q o H〉 ' (L∞(G/H)⊗Q)o G,

where G acts diagonally.

2.4. MODULAR THEORY AND OPERATOR VALUED WEIGHTS. Given a von Neu-
mann algebra M, the modular flow of a weight Φ ∈ P(M) is denoted by σΦ

t ∈
Aut(M), t ∈ R. The centralizer of Φ in M is the subalgebra of elements fixed by
the flow (σΦ

t )t, it is denoted by QΦ. If ψ ∈ P(M) is another weight, (Dψ : DΦ)t,
t ∈ R, denotes the Connes–Radon–Nikodym derivate as defined in Subsection
1.2 of [13]. We will need the following simple lemma.

LEMMA 2.4. Consider a von Neumann algebra M, two weights Φ, Ψ ∈ P(M),
and an automorphism θ ∈ Aut(M). Then (DΨ ◦ θ : DΦ ◦ θ)t = θ−1((DΨ : DΦ)t),
for all t ∈ R.

Proof. Denote by (ei,j)16i,j62 the canonical basis of M2(C). Put M̃ := M⊗
M2(C), and define ϕ ∈ P(M̃) by the formula

ϕ
( 2

∑
i,j=1

xi,j ⊗ ei,j

)
= Φ(x1,1) + Ψ(x2,2), for all xi,j ∈ M.

Note that the weight on M̃ associated in a similar manner to Φ ◦ θ and Ψ ◦ θ
is ϕ ◦ (θ ⊗ id). By the definition of Connes–Radon–Nikodym derivative ([13],
Lemme 1.2.2), we have for all t ∈ R,

(DΨ : DΦ)t⊗ e2,1 = σ
ϕ
t (1⊗ e2,1) and (DΨ ◦ θ : DΦ ◦ θ)t = σ

ϕ◦(θ⊗id)
t (1⊗ e2,1).

The KMS condition, see Chapter VIII.1 of [34], implies σ
ϕ◦(θ⊗id)
t = (θ ⊗ id)−1 ◦

σ
ϕ
t ◦ (θ ⊗ id) for all t ∈ R. The lemma easily follows.

The notions of modular group and Connes–Radon–Nikodym derivative
have been defined for normal faithful conditional expectations in [12]. We will
need the extended definition for operator valued weights defined by Haagerup
[19]. Let us fix some notations and recall known facts about operator valued
weights. We refer to [18], [19] for precise definitions and proofs.

If N ⊂ M is an inclusion of von Neumann algebras, then we denote by
P(M, N) the set of nfs operator valued weights from M to N. If T is in P(M, N),
then we set nT(M) := {x ∈ M : T(x∗x) ∈ N}. One can define the compo-
sition Φ ◦ T of a weight T ∈ P(M, N), with an nfs weight Φ ∈ P(N); the
resulting weight Φ ◦ T is again normal faithful semi-finite. More generally, it
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makes sense to compose operator valued weights: if M1 ⊂ M2 ⊂ M3 are von
Neumann algebras and S ∈ P(M3, M2), T ∈ P(M2, M1) then one can natu-
rally define T ◦ S ∈ P(M3, M1) in such a way that for all Φ ∈ P(M1), we have
Φ ◦ (T ◦ S) = (Φ ◦ T) ◦ S.

If T ∈ P(M, N) and Φ ∈ P(N), then for all t ∈ R, the modular automor-
phism σΦ◦T

t associated to the weight Φ ◦ T leaves the von Neumann subalgebra
Nc := N′ ∩ M globally invariant, and its restriction to Nc does not depend on
the choice of Φ. This restriction is called the modular flow of T, denoted by σT

t .
Moreover, if S ∈ P(M, N) is another operator valued weight then for all t ∈ R,
the Connes–Radon–Nikodym derivative (D(Φ ◦ S) : D(Φ ◦ T))t is an element of
Nc that does not depend on Φ. It is then denoted by (DS : DT)t and called the
Connes–Radon–Nikodym derivative at time t.

If P(M, N) is non-empty then P(N′, M′) is non-empty. In particular in this
case P(M1, M) is non-empty as well, where M1 denotes the Jones basic construc-
tion of the inclusion N ⊂ M, see [23]. Better, if N ⊂ M is with expectation E there
exists Ê ∈ P(M1, M) such that Ê(e) = 1, where e is the Jones projection associated
with E, see Lemma 3.1 of [24]. Ê is called the dual operator valued weight.

Finally, consider an action G y Q. By Theorem 3.1 of [17], there exists a
unique operator valued weight TQ ∈ P(Q o G, Q) such that for all F ∈ K(G, Q),
g ∈ G and x ∈ Q o G+,

(2.2) TQ(F∗F) = (F∗F)(e) and TQ(ugxu∗g) = δG(g)ugTQ(x)u∗g.

We call it the Plancherel operator valued weight. For any weight Φ ∈ P(Q), one
defines the dual weight Φ ◦ TQ ∈ P(Q o G). See [16] for a different construction.

2.5. OUTER ACTIONS ON VON NEUMANN ALGEBRAS.

DEFINITION 2.5. We say that a group action G y Q on a von Neumann
factor is

(i) properly outer if no non-trivial element of G acts on Q by inner automor-
phism;

(ii) strictly outer if the relative commutant Q′ ∩Q o G is trivial;
(iii) minimal if it is faithful and the fixed point subalgebra QG is an irreducible

subfactor of Q: (QG)′ ∩Q = C.

As observed in [37], [38], a strictly outer action has to be properly outer, but
the converse is not true in general.

LEMMA 2.6 ([37], Proposition 6.2). An action of a compact group is strictly outer
if and only if it is minimal.

Let us record a basic example for later use.

EXAMPLE 2.7. Consider a diffuse factor Q0. For any faithful action of a

group H on a finite set X, the corresponding Bernoulli action H y Q
⊗

X
0 is strictly

outer, hence minimal.
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In the setting of totally disconnected groups the following lemma will be
useful. Its proof is very much inspired from that of Proposition 6.2 in [37], with
another input, the Galois correspondence theorem ([22], Theorem 3.15).

LEMMA 2.8. Consider a minimal action K0 y Q of a compact group K0. For any
open subgroup K < K0, we have (QK)′ ∩ (Q o K0) = LK ⊂ Q o K.

Proof. Recall that Q is represented on the Hilbert space H and that Q o K0
is the subalgebra of B(L2(K0))⊗Q generated by LK0 ⊗ 1 and by the operators
π(a) ∈ L∞(K0)⊗Q, a ∈ Q, defined by π(a)(g) = σ−1

g (a), g ∈ G. In this picture,
we have π(QK0) = 1⊗QK0 .

Take x ∈ (QK)′ ∩QoK0. Since x commutes with QK0 and K0 acts minimally,
we deduce that x ∈ B(L2(K0))⊗ 1. Note also that (Q o K0) ∩ B(L2(K0))⊗ 1 =
LK0 ⊗ 1, so we can write x = z⊗ 1 for some z ∈ LK0.

For all a ∈ QK and all linear functional µ ∈ Q∗, we have

z(id⊗ µ)(π(a)) = (id⊗ µ)(π(a))z.

Note that the functions (id⊗µ)(π(a)) ∈ L∞(K0) are left K-invariant. Let us prove
that these functions generate `∞(K\K0) as a von Neumann algebra as a ∈ QK and
µ ∈ Q∗. To see that it is sufficient to check that they separate points of K\K0. Take
g, h ∈ K0 such that gh−1 /∈ K. Then by Theorem 3.15 of [22], there exists a ∈ QK

such that σgh−1(a) 6= a. In particular π(a)(g) = σ−1
g (a) and π(a)(h) = σ−1

h (a) are
distinct elements of Q. So we can find a linear functional µ ∈ Q∗ that separates
them.

So we arrived at the conclusion that z commutes with `∞(K\K0), and in
particular with P(K), the orthogonal projection onto L2(K). This means that z
leaves L2(K) invariant : z ∈ LK.

2.6. FOURIER ALGEBRA, DUAL ACTION, MULTIPLIERS. Given a locally compact
group G, we denote by A(G) its Fourier algebra as introduced by Eymard [14].
By definition A(G) is the set of functions on G of the form ξ ∗ η̃, ξ, η ∈ L2(G),
where ∗ denotes the convolution product and η̃ is the function g 7→ η(g−1). All
functions of A(G) are continuous and note that given g ∈ G, we have the equality
(ξ ∗ η̃)(g) = 〈λ(g)ξ, η〉. This set is an algebra under the pointwise multiplication.

The norm of φ ∈ A(G) is defined to be the minimal value of ‖ξ‖‖η‖ as
the functions ξ, η ∈ L2(G) satisfy φ = ξ ∗ η̃. With this norm, A(G) is a Banach
algebra. The linear span of positive definite, compactly supported functions on
G is contained (densely) in A(G). We record in the following lemma some facts
we will use in the sequel.

LEMMA 2.9. Fix an open set U ⊂ G and a compact subset K ⊂ U.
(i) There exists φ ∈ A(G) such that φ|K = 1 and φ|Uc = 0.

(ii) Given a function ψ ∈ A(G) that does not vanish on K, the closed ideal I(ψ) in
A(G) generated by ψ contains a function φ as above.
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Proof. The first part is Lemme 3.2 of [14]. The second item follows from
abstract harmonic analysis considerations. First, Théorème 3.34 of [14] shows
that the spectrum of A(G) is homeomorphic to G and that the Gelfand transform
is the identity map. In combination with Lemme 3.2 of [14], it follows that A(G)
is regular in the sense of Section 25 in [27]. Denote by F ⊂ G the closed subset
consisting of zeroes of ψ. Then the hull of I(ψ) is contained in F, so the statement
follows from Lemma 25C of [27].

As a Banach space, A(G) is isometric to the predual (LG)∗ of LG. The dual-
ity pairing is given by the well defined formula 〈x, φ〉 := 〈xξ, η〉, for all x ∈ LG,
and φ = ξ ∗ η̃ ∈ A(G). We will abuse with notations and write φ(x) for x ∈ LG
to mean 〈x, φ〉. This notation is somewhat consistent with the fact that φ is a
function on G, namely we have φ(ug) = φ(g) for all g ∈ G.

Using the product on A(G) we can define multipliers on LG. More precisely,
any φ ∈ A(G) gives rise to a normal completely bounded map mφ : LG → LG,
defined by the formula

〈mφ(x), ψ〉 := 〈x, ψφ〉 for all x ∈ LG, ψ ∈ A(G).

More generally, for any action G y Q, from an element φ ∈ A(G) one can
construct a multiplier mφ on M := Q o G in the following way. Consider the
unitary operator W on L2(G × G,H) such that (Wξ)(g, h) = ξ(g, gh) for all ξ ∈
L2(G×G,H), g, h ∈ G. Denote by ∆ := Ad(W∗) the associated automorphism of
B(L2(G×G,H)). We can identify L2(G×G,H) with L2(G,H)⊗ L2(G) in such a
way that

∆(M⊗ 1) ⊂ M⊗LG, and the restriction ∆|L∞(G)⊗1 = id.

DEFINITION 2.10. With the above notations, the Fourier multiplier associated
with an element φ ∈ A(G) is the normal completely bounded map mφ : QoG →
Q o G defined by the formula

mφ(x) = (id⊗ φ) ◦∆(x⊗ 1), x ∈ Q o G.

In practice, the multiplier mφ is characterized by the formula mφ(aug) =
φ(g)aug for all a ∈ Q, g ∈ G. In this way, one easily checks that in the case where
Q = C, the two constructions of multipliers coincide.

3. SUPPORT AND APPLICATIONS

In this section we give generalities about the spectrum of the dual action,
defined for instance in Chapter IV.1 of [29]. We adopt the point of view of Eymard
[14], and rather talk about “support” because we believe it is more transparent
for the reader who is familiar with actions of discrete groups, and not so much
with the quantum group language. Our goal is to prove Theorem 3.7, regarding
elements whose support is contained in a subgroup. This is certainly known to
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experts but we were not able to find an explicit reference, although it is used
in Theorem VII.2.1 of [29]. For convenience we tried to keep this section self-
contained.

3.1. DEFINITION AND FIRST PROPERTIES. Let us fix an arbitrary action G y Q
on a von Neumann algebra.

DEFINITION 3.1. The support of an element x ∈ QoG, denoted by supp(x),
is the set of elements g ∈ G such that for all φ ∈ A(G) satisfying φ(g) 6= 0, we
have mφ(x) 6= 0.

We also describe the support explicitly in terms of interactions between Qo
G and the copy of L∞(G) inside B(L2(G,H)). If Ω ⊂ G is a measurable subset,
we write P(Ω) ∈ L∞(G)⊗ 1H for the orthogonal projection from L2(G,H) onto
L2(Ω,H).

PROPOSITION 3.2. Take x ∈ Q o G and g ∈ G. The following are equivalent:
(i) g ∈ supp(x);

(ii) for any non-empty open set Ω ⊂ G we have P(gΩ)xP(Ω) 6= 0.

Proof. (i)⇒ (ii) Consider a non-empty open set Ω ⊂ G. Take a non-empty
open subset Ω0 ⊂ Ω and an open neighborhood V of g in G such that VΩ0 ⊂ gΩ.
Fix a function φ ∈ A(G) supported on V such that φ(g) 6= 0. Then for all y ∈
Q o G, we have mφ(y)P(Ω0) = P(gΩ)mφ(y)P(Ω0). Indeed the formula is clear
for all y of the form auh, a ∈ Q, h ∈ G, and follows for arbitrary y by linearity and
density.

Note that (Q o G)′L2(Ω0,H) spans a dense subset of L2(G,H). Indeed, for
all g ∈ G, we see that ρG(g)L2(Ω0,H) = L2(Ω0g,H), where ρG(g) is defined in
(2.1). If follows that mφ(x)P(Ω0) 6= 0.

Extend arbitrarily φ ∈ A(G) = (LG)∗ to a linear functional φ̃ on B(L2(G)).
With the notations from Section 2.6, since W commutes with L∞(G)⊗ 1, we have

A := (id⊗ φ̃) ◦Ad(W∗)(P(gΩ)xP(Ω0)⊗ 1)

= P(gΩ)(id⊗ φ) ◦Ad(W∗)(x⊗ 1)P(Ω0)

= P(gΩ)mφ(x)P(Ω0) = mφ(x)P(Ω0) 6= 0.

We deduce that P(gΩ)xP(Ω0) 6= 0, and in particular P(gΩ)xP(Ω) 6= 0.
(ii)⇒ (i) Fix φ ∈ A(G) such that φ(g) 6= 0. We want to show that mφ(x) 6= 0.

For this it is sufficient to find φ′ ∈ I(φ) such that mφ′(x) 6= 0 (recall that I(φ)
denotes the closed ideal in A(G) generated by φ). By Lemma 2.9, there exists
φ′ ∈ I(φ) which is equal to 1 on a neighborhood V of g.

Pick a non-empty open set Ω ⊂ G such that gΩ ·Ω−1 ⊂ V. We claim that
for all y ∈ Q o G

P(gΩ)mφ′(y)P(Ω) = P(gΩ)yP(Ω).
By linearity and density, it suffices to check this formula for all y of the form auh,
a ∈ Q, h ∈ G. If h ∈ V, then mφ′(auh) = auh for all a ∈ Q, so the formula is
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obvious. If h /∈ V, and y = auh for some a ∈ Q, then both sides of the formula
are equal to 0. Indeed, since mφ′ is a multiplier, the two terms are scalar multiple
of each other, and it suffices to check vanishing of the right-hand side. Since
gΩ ·Ω−1 ⊂ V and h /∈ V, we deduce that gΩ ∩ hΩ = ∅. This leads to

P(gΩ)auhP(Ω) = P(gΩ)P(hΩ)auh = 0,

as wanted. This proves the claimed equality and hence mφ′(x) 6= 0.

In the sequel it will sometimes appear that one of the above two descriptions
will be better suited to work with than the other. We will freely switch between
these two points of view to reach the simplest arguments.

Let us record a few properties of the support.

LEMMA 3.3. Take x ∈ Q o G. The following assertions are true:
(i) the support of x is a closed subset of G;

(ii) if x belongs to K(G, Q), then supp(x) coincides with its support as a function
on G;

(iii) if x = ug for some g ∈ G, then supp(x) = {g}.

Proof. (i) Consider a net (gi)i of elements in supp(x) that converges to some
g ∈ G, and take φ ∈ A(G) such that φ(g) 6= 0. Since φ is continuous, for i large
enough we also have φ(gi) 6= 0. Hence mφ(x) 6= 0, as desired.

(ii) If x is a continuous function in K(G, Q) and ψ ∈ A(G) observe that
mψ(x) is the function in K(G, Q) defined by g 7→ ψ(g)x(g). The statement easily
follows.

(iii) If x = ug, for all φ ∈ A(G) we have mφ(x) = φ(g)x. The result is then
obvious.

LEMMA 3.4. Consider x ∈ Q o G and some open subsets Ω1, Ω2 ⊂ G satisfying
the relation Ω1 ·Ω−1

2 ∩ supp(x) = ∅. Then

P(Ω1)xP(Ω2) = 0.

In particular, for any open set Ω ⊂ G, we have xP(Ω) = P(supp(x)Ω)xP(Ω).

Proof. We first treat the special case where Ω1 ·Ω
−1
2 ∩ supp(x) = ∅ and Ω2

is compact.
For any (g, h) ∈ Ω1 ×Ω2, there exists a non-empty open set Vg,h such that

P(gh−1Vg,h)xP(Vg,h) = 0. Conjugating this equation with ρG(k) for some k ∈ G
we can assume that Vg,h is an open neighborhood of h. Here, recall that ρG is the
right action defined in (2.1), which satisfies ρG(k)P(Vg,h)ρG(k−1) = P(Vg,h · k−1).

By compactness, for a fixed g ∈ G there exists n > 1, h1, . . . , hn ∈ Ω2 such
that {Vg,hi

}n
i=1 is a finite open cover of Ω2. We can then define an open neighbor-

hood Wg of e ∈ G:

Wg :=
n⋂

i=1

h−1
i Vg,hi

.
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We get that P(gWg)xP(Vg,hi
)= 0 for any 16 i6n, g∈Ω1. Since P(Ω2) is smaller

than the supremum of the projections
n∨

i=1
P(Vg,hi

), we obtain that P(gWg)xP(Ω2)

= 0 for any g ∈ Ω1. We deduce that P(Ω1)xP(Ω2) = 0 since
∨

g∈Ω1

P(gWg) >

P(Ω1).
Suppose now that Ω2 is open and non-necessarily relatively compact. For

any g ∈ Ω2, there exists a compact neighborhood Kg of g such that Ω1 · K−1
g ∩

supp(x) = ∅. We have that P(Ω1)xP(Kg) = 0 for any g ∈ G, by the proof of
above. This proves the desired equality P(Ω1)xP(Ω2) = 0 because P(Ω2) 6∨
g∈Ω2

P(Kg).

The second part of the statement follows from taking Ω2 = Ω, Ω1 = G \
supp(x)Ω.

Before mentioning interesting consequences of this lemma, let us give an
essentially equivalent form involving the multipliers.

LEMMA 3.5. Consider x ∈ Q o G with compact support, and take a function
φ ∈ A(G) which is equal to 1 on a neighborhood of supp(x). Then x = mφ(x).

Proof. Take a non-empty open set Ω ⊂ G such that φ is equal to 1 on
supp(x)Ω ·Ω−1. Proceeding as in the proof of Proposition 3.2, (ii) ⇒ (i), one
checks that

P(supp(x)Ω)xP(Ω) = P(supp(x)Ω)mφ(x)P(Ω).

Since supp(mφ(x)) ⊂ supp(x), Lemma 3.4 and the above equality imply that

xP(Ω) = mφ(x)P(Ω).

Moreover, for all g ∈ G, the set Ωg satisfies the same condition as Ω. So the same
equality holds with Ωg in the place of Ω, for all g ∈ G: xP(Ωg) = xP(Ωg). Since
Ω is open inside G, we get that 1 =

∨
g

P(Ωg). The equality x = mφ(x) follows.

COROLLARY 3.6. Consider x, y ∈ Q o G. The following assertions are true:
(i) adjoint: supp(x∗) = supp(x)−1;

(ii) sum: supp(x + y) ⊂ supp(x) ∪ supp(y);
(iii) product: supp(xy) ⊂ supp(x) · supp(y).
(iv) vanishing criterion: if supp(x) = ∅, then x = 0.

Proof. (i) This results from the fact that for all φ ∈ A(G) we have that
(mφ(x))∗ = mφ∗(x∗), where φ∗ ∈ A(G) is defined by φ∗(g) = φ(g−1), g ∈ G.

(ii) Consider g in the complementary of supp(x) ∪ supp(y). Then there ex-
ists φ1 and φ2 such that φi(g) 6= 0, i = 1, 2, while mφ1(x) = 0 and mφ2(y) = 0.
In particular the product φ := φ1φ2 satisfies φ(g) 6= 0, while mφ(x) = mφ2 ◦
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mφ1(x) = 0 and mφ(y) = mφ1 ◦ mφ2(y) = 0. In summary mφ(x + y) = 0 and
hence g /∈ supp(x + y).

(iii) Consider an element g ∈ G which is not in supp(x) · supp(y) and take
open neighborhoods of the identity e ∈ G, Ω and V, such that supp(x) · supp(y)∩
gΩVΩ−1 = ∅. In particular, for all h ∈ supp(x)−1gΩ and k ∈ supp(y)Ω we
have h−1k /∈ V. Further, the closures X := supp(x∗)gΩ and Y := supp(y)Ω do
not intersect. Besides, Lemma 3.4 implies that:

(•) yP(Ω) = P(Y)yP(Ω);
(•) x∗P(gΩ) = P(X)x∗P(gΩ).

Altogether, the following equality shows that g /∈ supp(xy):

P(gΩ)xyP(Ω) = P(gΩ)xP(X)P(Y)yP(Ω) = P(gΩ)xP(X ∩Y)yP(Ω) = 0.

(iv) If supp(x) = ∅, then Lemma 3.4 implies that x = P(G)xP(G) = 0.

THEOREM 3.7. Consider an action of a locally compact group G y Q on an
arbitrary von Neumann algebra and take a closed subgroup H < G.

Then an element x ∈ Q o G belongs to the subalgebra Q o H if and only if its
support is contained in H.

Proof. First, assume that x ∈ Q o H. For all g ∈ G \ H we can find a non-
empty open set Ω ⊂ G such that gΩ ·Ω−1 ∩ H = ∅. By Lemma 3.4, we deduce
that P(gΩ)xP(Ω) = 0, so that g /∈ supp(x). Hence supp(x) ⊂ H.

Conversely assume that x ∈ Q o G is an element with support contained
in H. In order to show that x ∈ Q o H, we will use Theorem 2.2. This re-
duces our task to check that x commutes inside B(L2(G,H)) with the subalgebra
L∞(H\G) ⊂ L∞(G) consisting of left H-invariant functions on G.

Given a left H-invariant open set Ω whose boundary has measure 0, we
have equality of the projections P(Ω) = P(HΩ). By Lemma 3.4, we get xP(Ω) =
P(Ω)xP(Ω). Since x∗ is supported in H we have x∗P(Ω) = P(Ω)x∗P(Ω). This
shows that x commutes with P(Ω) ∈ L∞(H\G).

Claim. The set of functions P(Ω) with Ω as above generates L∞(H\G).
Denote by q : G → H\G the canonical projection and by µ a quasi-invariant

measure on the coset space H\G. The map f ∈ L∞(H\G, µ) 7→ f ◦ q ∈ L∞(H\G)
is a normal isomorphism. With this identification, the indicator function 1U of
a set U ⊂ H\G is identified with the indicator function 1q−1(U) = P(q−1(U)) ∈
L∞(H\G).

Moreover, for all open subset U ⊂ H\G such that µ(∂U) = 0, the set Ω :=
q−1(U) ⊂ G is open, H-invariant and its boundary has Haar measure 0. So we are
left to check that the span of functions 1U for U ⊂ H\G such that µ(∂U) = 0, is
ultraweakly dense in L∞(H\G, µ). This is a classical fact about Borel measures on
locally compact spaces (see e.g. Proof of (3.33) in [14] and the references therein).

We deduce from the claim that x commutes with L∞(H\G). So as wanted,
we can use Theorem 2.2 to deduce that x ∈ Q o H.
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In the special case where H is the trivial subgroup of G, the above theo-
rem yields Beurling’s theorem ([14], Théorème 4.9). In particular we stress the
following corollary that we will use several times.

COROLLARY 3.8. Given an element x in a crossed product von Neumann algebra
Q o G, if the support of x is a singleton {g}, then there exists a ∈ Q such that x = aug.

Proof. If supp(x) = {g}, then supp(u∗gx) = {e}. In particular u∗gx ∈ Q, by
Theorem 3.7.

3.2. APPLICATIONS. Before moving on to the proof of our main theorems, let us
mention a few classical results that follow easily from the above properties of the
support.

Our first application concerns a generalization of the so-called Eymard–
Stinespring–Tatsuuma’s theorem ([34], Theorem VII.3.9). We start with analyzing
how the support behaves under the co-product map.

Given an action σ : G y Q, put M = QoG and consider the notations W ∈
B(L2(G× G,H)) and ∆ = Ad(W∗) : M⊗ 1 → M⊗LG introduced in Section 2.6.
We will view the algebra M⊗LG as the crossed-product von Neumann algebra
associated with the action σ× id : G× G y Q:

M⊗LG ' Q o (G× G).

In this way it makes sense to talk about the support of an element inside M⊗LG.

LEMMA 3.9. With the above notations, the following facts hold:
(i) for all x ∈ M, the support ∆(x⊗ 1) is equal to {(g, g) : g ∈ supp(x)};

(ii) for all a ∈ M and b ∈ LG, supp(a⊗ b) = supp(a)× supp(b).

Proof. (i) For all φ, ψ ∈ A(G) the function φ×ψ : (g, h) 7→ φ(g)ψ(h) belongs
to the Fourier algebra A(G× G) and one easily checks the formula

(3.1) mφ×ψ(∆(x⊗ 1)) = ∆(mφ·ψ(x)⊗ 1).

In particular if g 6= h ∈ G, we can find φ, ψ ∈ A(G) such that (φ × ψ)(g, h) =
φ(g)ψ(h) 6= 0, but such that φ · ψ = 0 (just take functions with disjoint supports).
By (3.1), we get mφ×ψ(∆(x ⊗ 1)) = 0 and hence (g, h) does not belong to the
support of ∆(x ⊗ 1). We thus deduce that the support of ∆(x ⊗ 1) is contained
in the diagonal of G× G. Further, (3.1) easily implies that if (g, g) belongs to the
support of ∆(x⊗ 1), then g ∈ supp(x).

Conversely, take g ∈ supp(x), and ρ ∈ A(G × G) such that ρ(g, g) 6= 0.
We show that mρ(∆(x ⊗ 1)) 6= 0. Denote by I(ρ) the closed ideal in A(G × G)
generated by ρ. By Lemma 2.9, there exists a function ρ′ in the closed ideal I(ρ)
generated by ρ which is equal to 1 on some neighborhood U ×U of (g, g). If we
prove that mρ′(∆(x⊗ 1)) 6= 0, then it will follow that mρ(∆(x⊗ 1)) 6= 0. Hence,
we may replace ρ with ρ′ and assume that ρ is equal to 1 on U ×U.
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Pick any function φ ∈ A(G) supported on U and such that φ(g) 6= 0. We
deduce from (3.1) that

mφ×φ(mρ(∆(x⊗ 1))) = m(φ×φ)·ρ(∆(x⊗ 1)) = mφ×φ(∆(x⊗ 1)) = ∆(mφ2(x)⊗ 1).

Since g ∈ supp(x) and φ2(g) 6= 0, the above term is non-zero and hence mρ(∆(x⊗
1)) 6= 0.

(ii) Take (g, h) ∈ supp(a ⊗ b), and φ, ψ ∈ A(G) such that φ(g), ψ(h) 6= 0.
Then (φ× ψ)(g, h) 6= 0, and we get

mφ(a)⊗mψ(b) = mφ×ψ(a⊗ b) 6= 0.

We deduce that g ∈ supp(a) and h ∈ supp(b).
Conversely, take g ∈ supp(a), h ∈ supp(b) and take a non-empty open set

Ω ⊂ G × G. We find non-empty open sets U, V ⊂ G such that U × V ⊂ Ω. By
assumption we know that P(gU)aP(U) 6= 0 and P(hV)bP(V) 6= 0, and hence
P(gU × hV)(a ⊗ b)P(U × V) 6= 0. It then clearly follows that P((g, h) ·Ω)(a ⊗
b)P(Ω) 6= 0. This proves that (g, h) ∈ supp(a⊗ b).

We can now prove the following well known generalization of
Theorem VII.3.9 in [34]. This theorem initially deals with the case of group al-
gebras LG, that is, with the case of trivial actions G y C. The proof given in [34]
is rather involved, while an elementary proof relying (implicitly) on the support
already appears in Théorème 3.34 of [14]. In the case of general actions G y Q,
the predual (Q o G)∗ is not identified with an algebra in general, and hence the
notion of character does not apply anymore. Nevertheless we can still provide an
easy proof relying on the notion of support.

COROLLARY 3.10. Given any action G y Q, put M = Q o G and denote by
∆ : M ⊗ 1 → M⊗LG the co-product map defined above. Assume that x ∈ M is an
element such that ∆(x⊗ 1) is of the form a⊗ b for some elements a ∈ M and b ∈ LG.

Then there exist g ∈ G and y ∈ Q such that x = yug.

Proof. We may assume that x 6= 0. By Lemma 3.9, the equality ∆(x ⊗ 1) =
a⊗ b implies that supp(a)× supp(b) is contained in the diagonal of G× G. The
only way this can happen is if supp(∆(x⊗ 1)) is a singleton {(g, g)}. In this case,
supp(x) = {g} and the result follows from Corollary 3.8.

As an immediate corollary, we deduce the following result.

COROLLARY 3.11. Given any strictly outer action G y Q, the normalizer of Q
inside the crossed-product M := Q o G is equal to {aug : g ∈ G, a ∈ U (Q)}.

In particular, two strictly outer actions αi : Gi y Qi, i = 1, 2 of locally compact
groups are cocycle conjugate if and only if the pairs Q1 ⊂ Q1 o G1 and Q2 ⊂ Q2 o G2
are isomorphic.

Proof. Take u ∈ NM(Q). Use the notation ∆ : M ⊗ 1 → M⊗LG as above.
We have that ∆ is the identity map on Q⊗ 1. Hence one easily checks that (u∗ ⊗
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1)∆(u⊗ 1) commutes with Q⊗ 1. In other words,

(u∗ ⊗ 1)∆(u⊗ 1) ∈ (Q′ ∩M)⊗LG = 1⊗ LG.

So there exists b ∈ LG such that ∆(u ⊗ 1) = u ⊗ b, and we conclude by Corol-
lary 3.10 that u = aug for some a ∈ U (Q) and g ∈ G.

The second part of the statement is routine. The only if part is always true,
even when the actions are not strictly outer, see Corollary 3.6 of [33]. The if part
follows from adapting Proposition 1.7 of [5] to the case of actions of general lo-
cally compact groups.

4. CROSSED-PRODUCTS BY ACTIONS OF TOTALLY DISCONNECTED GROUPS

4.1. NOTATIONS AND TOOLS. There are several advantages in working with to-
tally disconnected groups. Fix a locally compact group G and an action G y Q
on a von Neumann algebra and put M = Q o G.

Firstly, given a compact open subgroup K < G, one can define a projec-
tion pK := 1K/mG(K). Note that the net of projections (pK)K increases to 1 as
the compact open subgroups K decrease to {e}. Let us mention two elementary
properties of these projections.

LEMMA 4.1. Fix a weight Φ ∈ P(Q) and denote by Ψ ∈ P(M) the correspond-
ing dual weight. Consider a compact open subgroup K < G. Then for all a ∈ QK we
have ‖apK‖Ψ = ‖a‖Φ/

√
mG(K).

The proof is an immediate consequence of (2.2).

LEMMA 4.2. Given a compact open subgroup K < G, the map a ∈ QK 7→ apK ∈
pK(Q o K)pK is an onto isomorphism of von Neumann algebras.

Proof. This is a particular case of Proposition 5.6. We give a complete proof
of this simpler case for the convenience of the reader. Since pK commutes with
QK, it is clear that the map is a normal ∗-morphism. By the computations given
in Lemma 4.1 above, we see that it is moreover injective. To check that it is onto,
we only need to prove that it has dense image.

For all a ∈ Q and g ∈ K, we have pK(aug)pK = pKapK = E(a)pK, where
E : Q → QK is the conditional expectation. Hence pK(aug)pK belongs to the
range of our map, proving the lemma.

Secondly, for all open subgroup K < G and any action G y Q, there always
exists a faithful normal conditional expectation EK : Q o G → Q o K such that
EK(ug) = 1K(g) for all g ∈ G. In the case where K is compact open, one sees that
the multiplier mφ associated with the function φ := 1K ∈ A(G) gives the desired
expectation. In the general case of open subgroups φ does not necessarily belong
to A(G) but it is still positive definite and one can use Theorem 3.1.a of [17] to
construct the associated multiplier mφ.
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An alternative way to construct the expectation EK is by considering modu-
lar flows as in [21]. With this point of view, it becomes obvious that EK preserves
the Plancherel operator valued weight: TQ ◦ EK = TQ.

When G is totally disconnected, one checks that the support of an element
x ∈ M is described as follows:

(4.1) supp(x)={g∈G : EK(u∗gx) 6=0 for all compact open subgroups K<G}.

NOTATION 4.3. Given a compact open subgroup K of a group G and a set
S ⊂ G/K, we denote by lift(S) a set of representatives of S inside G. This means
that for all g ∈ lift(S) we have gK ∈ S and for all s ∈ S there exists a unique
element g ∈ lift(S) such that gK = s.

LEMMA 4.4. Consider a compact open subgroup K < G. Given an element x ∈ M
with compact support, the map g 7→ ugEK(u∗gx) is right K-invariant on G and compactly
supported. Moreover,

x = ∑
g∈lift(G/K)

ugEK(u∗gx).

Proof. Fix S ⊂ G/K a finite set such that the support of x is contained in
lift(S) · K. The function φ = 1lift(S)K ∈ A(G) is equal to 1 on a neighborhood of
the support of x, so by Lemma 3.5, we have that x = mφ(x). Moreover, φ can be
decomposed as φ = ∑

g∈lift(S)
1K(g−1 ·). One easily checks that the corresponding

multiplier satisfies

mφ = ∑
g∈lift(S)

ugEK(u∗g ·).

We leave the rest of the proof to the reader.

Although we will not use this fact, let us mention that for a general element
x ∈ M, a K-decomposition as above still makes sense. In this case the sum that
appears is infinite but it converges in the Bures topology associated with the in-
clusion Q o K ⊂ Q o G, with expectation EK. We refer to Section 2 of [10] or to
the original book [9] for the definition of the Bures topology.

4.2. STRICTLY OUTER ACTIONS. The following proposition is proved by combin-
ing the “Fourier coefficient approach” used in the setting of discrete groups with
Lemma 2.6 about actions of compact groups.

PROPOSITION 4.5. Consider a properly outer action of a totally disconnected lo-
cally compact group σ : G y Q. The action σ is strictly outer if and only if G admits a
compact open subgroup that acts minimally.

In that case any unitary u ∈ Q o G normalizing Q is of the form aug for some
a ∈ Q, g ∈ G.
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Proof. Assume that σ : G y Q is strictly outer. Then one easily checks
from the definitions that σ is properly outer. Moreover, the restriction of σ to any
compact subgroup is strictly outer and thus minimal by Proposition 6.2 of [37].

Conversely, assume that σ : G y Q is properly outer and admits a compact
open subgroup K0 that acts minimally. Note that any subgroup K < K0 acts
minimally as well, and hence in a strictly outer way.

Put M = QoG and take a non-zero element x ∈ Q′ ∩M. By Proposition 3.8
we only need to show that the support of x is the singleton {e}. The support of
x is non-empty by Corollary 3.6(iv). Take g ∈ supp(x). For all compact open
subgroups K < K0, put aK := EK(u∗gx) ∈ Q o K. Since g ∈ supp(x), these
elements aK are non-zero.

By minimality, for all K′ < K < K0, we have

(4.2) a∗K′ aK ∈ Q′ ∩ (Q o K) = C.

When K = K′ this relation tells us that aK is a (non-zero) multiple of a unitary
element. Then (4.2) further implies that all these unitaries are proportional to
each other. In particular, for all K < K0, aK0 is proportional to aK ∈ Q o K.

We conclude that aK0 is contained in QoK, for all K < K0. Hence its support
is equal to {e}, implying that aK0 ∈ Q. Moreover, aK0 satisfies

aK0 x = σg−1(x)aK0 , for all x ∈ Q.

Since the G-action is properly outer, this gives g = e, as desired. The statement on
the normalizer then follows from Corollary 3.11 (although this could be checked
directly by similar computations on the support).

4.3. INTERMEDIATE SUBFACTORS. We now turn to the question of determining
all intermediate subfactors Q ⊂ N ⊂ Q o G. In order to establish our main
result Theorem 1.2, we will need to be able to compute relative commutants of
the form (QK)′ ∩Q o G for small compact open subgroups K < G. This forces us
to strengthen our assumptions on the action.

DEFINITION 4.6. Given a subgroup K of G we will say that the action G y
Q is properly outer relative to K if the following holds: the only elements g ∈ G for
which there exists a non-zero a ∈ Q such that σg(x)a = ax for all x ∈ QK are the
elements of K: g ∈ K.

Note that an action is properly outer if and only if it is properly outer rel-
ative to the trivial subgroup. We will provide examples of relatively properly
outer actions in the next section.

LEMMA 4.7. Consider an action σ : G y Q of a totally disconnected group G
which is properly outer relative to a compact open subgroup K < G. Put M = Q o G.
We have

(QK)′ ∩M ⊂ Q o K.
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Proof. Take x ∈ (QK)′ ∩M. We show that supp(x) ⊂ K. Fix g ∈ supp(x),
so that EK(u∗gx) 6= 0. Since the net (pL)L converges strongly to 1 when L ↘ {e},
we can find a compact open subgroup L0 < G such that pL0 EK(u∗gx)pL0 6= 0.

Define L1 = L0 ∩ K ∩ gKg−1 and L :=
⋂

h∈K
hL1h−1. Since L1 is open, it

has finite index inside K, and hence the intersection defining L is in fact finite.
We conclude that L < K is an open subgroup which is moreover contained in
L0 ∩ K ∩ gKg−1. In particular pL > pL0 , so that pLEK(u∗gx)pL 6= 0. Since L is
normal inside K, the projection pL commutes with uh for all h ∈ K. By Lemma 4.4,
we have

pLEK(u∗gx)pL = ∑
h∈lift(K/L)

pLuhEL(u∗ghx)pL = ∑
h∈lift(K/L)

uh pLEL(u∗ghx)pL.

The non-vanishing of this sum implies that there exists h ∈ K such that X :=
pLEL(u∗ghx)pL is non-zero.

Since L < K ∩ gKg−1, we have that QK ⊂ QL and σg(QK) = QgKg−1 ⊂ QL.
Hence for all b ∈ QK, the two elements b and σg(b) commute with pL. It follows

Xb = pLEL(u∗ghxb)pL = pLEL(u∗ghbx)pL = pLσg(b)EL(u∗ghx)pL = σg(b)X.

By Lemma 4.2, pL(Q o L)pL = QL pL, so there exists a unique (non-zero)
a ∈ QL such that X = apL. By uniqueness, we see that a satisfies ab = σg(b)a for
all a ∈ QK. We conclude that g ∈ K, and hence supp(x) ⊂ K. By Theorem 3.7 we
have that x ∈ Q o K.

PROPOSITION 4.8. Consider an action σ : G y Q of a totally disconnected group
G which is properly outer relative to a compact open subgroup K0 < G whose action is
minimal. For all open subgroup K < K0, we have (QK)′ ∩M = LK ⊂ Q o K.

Proof. Fix x ∈ (QK)′ ∩ M. By Lemma 4.7 applied to K0, we see that x ∈
Q o K0. Since K0 acts minimally, the result follows from Lemma 2.8.

In order to prove Theorem 1.2, we will use a convex combination argument.
The following lemma will be needed.

LEMMA 4.9 ([20], Lemma 4.4). Consider a von Neumann algebraM, a weight
Θ ∈ P(M), and a σ-weakly closed convex subset C ofM.

If C is bounded both in the operator norm and the ‖ · ‖Θ-norm, then ΛΘ(C) is
‖ · ‖Θ-closed in L2(M, Θ).

Proof of Theorem 1.2. Fix an intermediate subfactor Q ⊂ N ⊂ M. Set H :=
{g ∈ G : ug ∈ N}, so that Q o H ⊂ N. Take x0 ∈ N. We will show that the
support of x0 is contained in H. This will conclude by Theorem 3.7.

Denote by Tr a normal faithful semi-finite trace on Q, and denote by Ψ ∈
P(M) the corresponding dual weight.
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Step 1. For all compact open subgroups K < K0, all g ∈ G and all finite
trace projection q ∈ QK, if there exists x ∈ N such that qpKEK(u∗gx)qpK 6= 0, then
ugqpK ∈ (N)1 pK.

Fix K < K0, q ∈ QK, x ∈ N and g ∈ G such that qpKEK(u∗gx)qpK 6= 0.
Put x′ := σg(q)xq ∈ N. We have pKEK(u∗gx′)pK = qpKEK(u∗gx)qpK 6= 0. By
Lemma 4.2, there exists a unique a ∈ QK such that pKEK(u∗gx′)pK = apK. Note
that a ∈ qQq. The element y := σg(a∗)x′ ∈ σ(q)Nq satisfies pKEK(u∗gy)pK =
a∗apK 6= 0. Lemma 4.1, implies that

Ψ(pKu∗gypK) = Ψ(pKEK(u∗gy)pK) =
1

mG(K)
‖a‖2

Tr 6= 0.

Denote by C ⊂ N the ultraweak closure of the convex hull

C0 := conv({σg(u)yu∗ : u ∈ U (qQKq)}).

We proceed as in the proof of Theorem 4.3 (5) ⇒ (6) in [20] to show that CpK
is bounded in ‖ · ‖Ψ-norm, except that we have slightly weaker assumptions.
Since Q is contained in the centralizer of Ψ, it is clear from the triangle inequal-
ity that ‖XpK‖Ψ 6 ‖ypK‖Ψ for all X ∈ C0. Now if X ∈ C is arbitrary, take a
net (Xj)j∈J ⊂ C0 that converges ultrastrongly to X. Then (X∗j Xj)j∈J converges
ultraweakly to X∗X, and since Ψ is lower ultraweakly semi-continuous (see The-
orem VII.1.11.(iii) of [34]) we get that

‖XpK‖2
Ψ = Ψ(pKX∗XpK) 6 lim inf

j
Ψ(pKX∗j Xj pK) 6 ‖ypK‖2

Ψ.

Note moreover that ‖ypK‖Ψ < +∞ since y = yq and qpK ∈ nΨ(M). Thus the
ultraweakly closed convex set CpK ⊂ M is bounded both in the operator norm
and in the ‖ · ‖Ψ-norm and we can apply Lemma 4.9 to it. In particular we can
find z ∈ C, such that zpK is the unique element of CpK with minimal ‖ · ‖Ψ-norm.
Note however that z itself needs not be unique.

Let us check that such an element z ∈ N satisfies zpK 6= 0. First, since
qpK ∈ nΨ(M), Ψ(qpK · pKq) is a bounded normal linear functional on M, which
is constant on u∗gC0. Hence it is constant on u∗gC. It follows:

Ψ(qpKu∗gzpKq) = Ψ(qpKu∗gypKq) = Ψ(pKu∗g(σg(q)yq)pK) = Ψ(pKu∗gypK) 6= 0.

So we indeed find that zpK 6= 0.
Note also that CpK is globally invariant under the affine action U (qQKq) y

σ(q)Mq given by u · X := σg(u)Xu∗. Since Ψ centralizes Q, this action is ‖ · ‖Ψ-
isometric, so it fixes zpK. Equivalently, we have u∗gzpK ∈ (qQKq)′ ∩M. Moreover
u∗gzpK belongs to qMq. By Proposition 4.8, we have that (qQKq)′ ∩ qMq ⊂ qLK,
so u∗gzpK ∈ qLKpK. Since the projection pK is both central and minimal inside LK,
there exists a non-zero scalar λ ∈ C such that

(4.3) u∗gzpK = λqpK.
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We obtain that ugqpK = (z/λ)pK ∈ NpK. Unfortunately we do not have, a priori,
any control on how small |λ| is, so z/λ could have a very large operator norm.
To get around this issue, we would like to identify polar parts, but we need extra
commutations properties. We apply the convex combination argument a second
time.

Arguing as above, one can find an element z1 ∈ C ′, where C ′ ⊂ C is the
ultraweak closure of conv({σg(u)zu∗ : u ∈ U (qQKq)}) ⊂ N, such that z∗1zpK is
the unique element in (C ′)∗zpK with minimal ‖ · ‖Ψ-norm. Note that (C ′)∗zpK is
nothing but the ultraweakly closed convex hull of {uz∗zpKu∗ : u ∈ U (qQKq)}.
Then z1 enjoys the following properties:

(i) z1 ∈ N and z1 pK = zpK, because for all u ∈ U (qQKq), σg(u)zu∗pK =
σg(u)zpKu∗ = zpK; in particular z1 pK 6= 0.

(ii) z∗1zpK ∈ (qQKq)′ ∩ qMq, by uniqueness of a ‖ · ‖Ψ-norm minimizer inside
C ′zpK. Hence Proposition 4.8 gives that z∗1zpK = λ′qpK for some non-zero scalar
λ′ ∈ C.

In particular the above facts give pKz∗1z1 pK = pKz∗1zpK = λ′qpK and λ′

follows positive. Hence the equality z∗1z1 pK = λ′qpK = (λ′qpK)
∗ = pKz∗1z1 shows

that z∗1z1 commutes with pK. Write the polar decomposition z1 = u|z1|, with
u ∈ N a partial isometry and |z1| = (z∗1z1)

1/2. Note that uqpK is a partial isometry
since qpK commutes with z∗1z1 (recall that z1 = z1q).

We have: z1 pK = u|z1|pK =
√

λ′uqpK. Combining this with (4.3), we get

λugqpK = zpK = z1 pK =
√

λ′uqpK.

Hence ugqpK and uqpK are proportional partial isometries; they have to coincide,

ugqpK = (uq)pK ∈ (N)1 pK.

This proves Step 1.
Step 2. For all compact open subgroups K < K0 and g ∈ G, if there exists

x ∈ N such that pKEK(u∗gx)pK 6= 0, then ug pK ∈ (N)1 pK.
Fix a subgroup K < K0, g ∈ G and x ∈ N such that pKEK(u∗gx)pK 6= 0.
Since K acts minimally on Q and QK is with expectation inside Q, Lemma 5.1

of [7] implies that the trace Tr is still semi-finite on QK. Denote by (qi)i∈I an in-
creasing net of projections in QK with finite trace that converges to 1. Then there
exists i0 ∈ I such that for all i > i0, we have that qi pKEK(u∗gx)pKqi 6= 0.

By Step 1, we deduce that for all i > i0, there exists yi ∈ (N)1 such that

(4.4) ugqi pK = yi pK.

Denote by y ∈ (N)1 an ultraweak limit of the net (yi)i∈I . Then taking the corre-
sponding limit in (4.4) gives ug pK = ypK, as desired.

Step 3. The support of x0 is contained in H.
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Take g ∈ supp(x0). Fix a compact open subgroup K < K0. Then EK(u∗gx0) 6=
0. As the net of projections (pL)L<G, converges strongly to the identity when L↘
{e}, we have pLEK(u∗gx0)pL 6= 0 for all small enough compact open subgroups L.

Take a normal open subgroup L < K, so that pL commutes with ug for all
g ∈ K. By Lemma 4.4, we can write

pLEK(u∗gx0)pL = ∑
h∈lift(K/L)

pLuhEL(u∗hEK(u∗gx0))pL

= ∑
h∈lift(K/L)

uh pLEL(u∗ghx0)pL.

For all small enough compact open subgroup L < G that is normal inside K,
since the above sum is non-zero, we can find hL ∈ K such that pLEL(u∗ghL

x0)pL 6=
0. Applying Step 2 to L, ghL and x0, we find an element zL ∈ (N)1 such that
ughL pL = zL pL.

Note that there exists a net (Li)i of compact open subgroups of G which are
all normal in K and form a neighborhood basis of e ∈ G. This comes from the fact
that any open subgroup L < K has finite index inside K, so that

⋂
h∈K

hLh−1 is an

open normal subgroup of K, contained in L. By compactness of K and (N)1 (for
the weak operator topology), there exist subnets of (hLi )i and (zLi )i that converge
to elements h ∈ K and z ∈ (N)1, respectively. Taking ultraweak limits, we get
that

ugh = lim
i

ughLi
pLi = lim

i
zLi pLi = z ∈ N,

because the net of projections (pL)L converges ultrastrongly to the identity. Hence
gh ∈ H, and we conclude that gK ∩ H 6= ∅.

As K can be arbitrarily small and H is closed, we conclude that g ∈ H. This
finishes the proof of Step 3. Now the theorem follows from Theorem 3.7.

4.4. EXAMPLES OF ACTIONS.

PROPOSITION 4.10. Let G be a totally disconnected group with a compact open
subgroup K < G such that

⋂
g∈G

gKg−1 = {e} (let us call such a subgroup K eventually

malnormal). Take a II1-factor Q0, with trace τ0. The following G-actions satisfy the as-
sumptions of Theorem 1.2, so they are strictly outer and satisfy the intermediate subfactor
property.

(i) The Bernoulli action G y (Q0, τ0)
⊗

G/K obtained by shifting indices.
(ii) The free Bernoulli action G y ∗G/K(Q0, τ0);

Proof. Let us first check separately the minimality condition on the K-action
for each case.

(i) Put Q = Q
⊗

G/K
0 . Since K is eventually malnormal inside G, it acts faith-

fully on G/K and hence on Q. Since K is compact open in G it is commensurated,
and hence it acts on G/K with finite orbits. Let us denote byOj, j ∈ J these orbits
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and by Qj := Q
⊗Oj
0 . Example 2.7 shows that for all j, the fixed point algebra

QK
j ⊂ Qj is an irreducible subfactor. Since QK contains

⊗
j∈J

QK
j , it is irreducible

inside Q =
⊗
j∈J

Qj. So K acts minimally.

(ii) Put Q = ∗G/KQ0. Again, since K is not normal inside G, it acts faithfully
on Q. Because of the free product situation, it is clear that the copy of Q0 located
at the label K ∈ G/K is irreducible inside Q. Moreover this algebra is contained
in QK, so K acts faithfully.

We now check the relatively properly outer condition simultaneously for
both situations. Take g ∈ G \ K and decompose Q as a product

Q ' Q(K)
0 ⊗Q(gK)

0 ⊗P (or Q ' Q(K)
0 ∗Q(gK)

0 ∗ P),

where Q(K)
0 and Q(gK)

0 are the copies of Q0 in position K ∈ G/K and gK ∈ G/K
and P is the tensor product (or free product) of all the remaining copies of Q0.

In both the tensor situation and the free situation, one easily checks that for
all nets (un)n ⊂ U (Q(K)

0 ) and (vn)n ⊂ U (Q(gK)
0 ) that converge weakly to 0, and

for all a, b ∈ Q, one has

lim
n

τ(unavnb) = 0, where τ is the trace of Q.

Assuming that there exists a ∈ Q1 such that σg(x)a = ax for all x ∈ QK
1 , we take

for (un)n ⊂ U (Q(K)
0 ) ⊂ U (QK) any net of unitaries that converges weakly to 0,

and we set vn = σg(un). We get

‖a‖2 = lim
n

τ(u∗na∗aun) = lim
n

τ(una∗vna) = 0.

Hence a = 0, as desired.

More generally, one can easily check the relative outerness condition in The-
orem 1.2 when the action has a large commutant thanks to the following fact.

LEMMA 4.11. Consider an action G y Q and a closed subgroup K < G whose
action is minimal. Assume that the centralizer Γ of G in Aut(Q) satisfies: for all x ∈
Q \C, there exists γ ∈ Γ such that γ(x) /∈ Cx.

Then the action is properly outer relative to K if and only if the only elements of G
acting trivially on QK are the elements of K.

Proof. The only if part is trivial. Conversely assume that K is precisely the
set of elements of G that act trivially on QK. Take g ∈ G such that there exists a
non-zero a ∈ Q satisfying σg(x)a = ax for all x ∈ QK. Since K acts minimally, we
can assume that a is a unitary. For all automorphism γ ∈ Γ, we have

σg(γ(x))γ(a) = γ(a)γ(x), for all x ∈ QK.
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Moreover, using again that γ commutes with the G-action, we see that γ(QK) =
QK, and the previous equation reads as

σg(x)γ(a) = γ(a)x, for all x ∈ QK.

In particular, we find that a∗γ(a) ∈ (QK)′ ∩Q = C. Hence for all γ ∈ Γ, we have
γ(a) ∈ Ca. By our assumption on Γ, this leads to a ∈ C, and hence g fixes QK

pointwise. Thus g ∈ K by assumption.

Note that the condition on the centralizer Γ in the above lemma is fulfilled
as soon as Γ admits a subgroup Γ0 that preserves a state on Q, and such that QΓ0 =
C. Moreover, if Q is a II1-factor the trace is invariant under any automorphism,
and hence only the second condition needs to be verified.

We deduce the following result in the spirit of Vaes’ examples ([38], Theo-
rem 5.1).

COROLLARY 4.12. Fix a totally disconnected group and a compact open subgroup
K < G. Consider any faithful action G y Q0 on a II1-factor such that

{g ∈ G : g|QK = id} = K.

Then the diagonal action G y (Q, τ) := (Q0, τ0)
⊗
N satisfies the assumptions of

Theorem 1.2.

Proof. The K-action on Q0 being faithful, Theorem 5.1 of [38] implies that it
is strictly outer, and hence minimal. Moreover the centralizer Γ of such a diagonal
action contains all shift automorphisms obtained by permuting indices. Hence
the condition on Γ appearing in Lemma 4.11 is satisfied (see the comment after
Lemma 4.11).

Thus the result follows from Lemma 4.11.

REMARK 4.13. Note that the Bernoulli shift action G y Q
⊗

G/K
0 as in Lem-

ma 4.10 is sometimes a special case of diagonal action as in Corollary 4.12. For
instance this happens if Q0 is the hyperfinite factor. However it is not clear why
this should be the case when Q0 is a prime factor. Hence even the strict outerness
for such actions does not follow from Theorem 5.1 of [38].

Before moving to the next section, let us briefly explain how to adapt our
argument to cover some actions on type III factors.

REMARK 4.14. Let G be a totally disconnected group and let K < G be an
eventually malnormal compact open subgroup, see Lemma 4.10. Let Q0 be an
arbitrary diffuse factor admitting a faithful normal state φ0 with large centralizer
(meaning that (Qφ0

0 )′ ∩ Q0 = C). Then the Bernoulli shift G y (Q0, φ0)
⊗

G/K

satisfies the intermediate subfactor property.
Let us briefly explain. Denote by (Q, φ) := (Q0, φ0)

⊗
G/K. Then the central-

izer Qφ of φ is irreducible inside Q, and it is invariant under the G-action. One
can show that for all compact open subgroup L < G which is a finite intersection
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of conjugates of K, the fixed point algebra QL := (Qφ)L satisfies Q′L ∩ (Q o G) ⊂
L(L). This is done by following the proof of Lemma 4.7, and by noting that the
action is properly outer relative to L.

Therefore one can use the averaging argument from the proof of Theo-
rem 1.2 but instead we average with elements in U ((Qφ)L) for small groups L
as above. Note moreover that in this case since φ is a state (and not a weight), one
does not need to bother with the projection q appearing in Step 1 of the proof of
Theorem 1.2.

In fact the above remark also applies for free Bernoulli actions with weaker
assumptions on (Q0, φ0), but we will not elaborate on this.

5. EXISTENCE OF CONDITIONAL EXPECTATIONS AND OPERATOR VALUED WEIGHTS

In this section we discuss various results about existence (or non-existence)
of conditional expectations and operator valued weights in connection with the
article of Izumi, Longo, and Popa [22].

Let us start our discussion by investigating the existence of conditional ex-
pectations/operator valued weights for pairs of the form Q o H ⊂ Q o G associ-
ated with closed subgroups H < G.

5.1. PROOF OF THEOREM 1.6. Let us start with two lemmas which rely on the
notion of support.

LEMMA 5.1. Consider two actions G y Q and G y P and the diagonal action of
G on Q⊗P. If the action G y Q is strictly outer, then

Q′ ∩ ((Q⊗P)o G) = P.

Proof. Embed G into G× G diagonally. Then M := (Q⊗P)o G is identified
with a subalgebra of M̃ := (Q⊗P)o (G× G). Note that

Q′ ∩ M̃ ' (Q′ ∩ (Q o G))⊗(P o G) = C⊗ (P o G).

In particular any element x ∈ Q′ ∩M, viewed as an element of M̃ has its support
contained in the diagonal subgroup of G × G (because x ∈ M) and in {e} × G
(because x ∈ Q′ ∩ M̃). So such an element x has its support contained in the
trivial group. By Corollary 3.8, we get x ∈ Q′ ∩ (Q⊗P) = P, as wanted.

LEMMA 5.2. Consider an action G y Q on an arbitrary von Neumann algebra
and put M = Q o G. Take a weight Φ ∈ P(Q) and denote by Ψ ∈ P(M) the corre-
sponding dual weight.

For any non-zero x ∈ nΨ(M), the support supp(x) has positive Haar measure
inside G.
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Proof. We will use the description of the dual weight relying on the Hilbert
algebra approach, [16]. According to this approach, given the weight Φ, there
exists a left Hilbert algebra AΦ satisfying the following properties:

(i) the Hilbert completion of AΦ is isomorphic to L2(G,H) and the left von
Neumann algebra L(AΦ) is identified with Q o G;

(ii) the dual weight Ψ corresponds to the canonical weight on L(AΦ) asso-
ciated with the Hilbert algebra AΦ;

(iii) for any Φ-right bounded vector η ∈ H and any f ∈ K(G), the function
f η ∈ K(G,H) defined by f η : g 7→ f (g)η is a right bounded vector for AΦ. The
corresponding operator πr( f η) is given by

(5.1) πr( f η)ξ(g) =
∫
G

(πr(η)σs(ξ(gs))) f (s−1)ds, for all ξ ∈ L2(G,H), g ∈ G,

where πr(η) denotes the operator on H = L2(Q, Φ) associated with the right
bounded vector η. Here we follow [17] and use the uniqueness of the standard
form to identify canonicallyH with L2(Q, Φ).

Now take a non-zero x ∈ nΨ(M). By the above facts and Chapter VII.2 of
[34], there exists a non-zero left bounded vector ξ ∈ L2(G,H) such that x = πl(ξ)
(that is, x is the operator extending the left multiplication by ξ). We claim that the
support of ξ as a function in L2(G,H) is contained in the support of x. In fact the
equality holds, but we clearly only need this inclusion to deduce the lemma.

Take g ∈ G in the function support of ξ. Take an open neighborhood Ω ⊂ G
of the identity element e. We have to show that P(gΩ)πl(ξ)P(Ω) is non-zero. For
all f ∈ K(Ω) and all Φ-right bounded vector η ∈ H, we have

P(gΩ)πl(ξ)P(Ω)( f η) = P(gΩ)πl(ξ)( f η) = P(gΩ)πr( f η)ξ.

We now check that for a suitable choice of f and η the above quantity is non-zero.
Since g is in the function support of ξ, there exists η0 ∈ H such that gΩ ∩

{h ∈ G : 〈ξ(h), η0〉 6= 0} has positive measure. Since the set {πr(η1)
∗η2 : η1, η2 ∈

H, Φ-right bounded} is dense inside H, we may find two Φ-right bounded vec-
tors η1, η2 ∈ H such that πr(η1)

∗η2 is sufficiently close to η0 so that the set
gΩ ∩ {h ∈ G : 〈ξ(h), πr(η1)

∗η2〉 6= 0} has positive Haar measure. In particu-
lar, the function ζ ∈ L2(G,H) defined by h 7→ πr(η1)ξ(h) satisfies P(gΩ)ζ 6= 0.
Put C := ‖P(gΩ)ζ‖2 > 0, D := ‖πr(η1)‖.

For f ∈ K(G), denote by f̌ the function h 7→ f (h−1). For all non-negative
function f ∈ K(G) such that

∫
G

f = 1 we have, by (5.1),

A : = ‖πr( f̌ η1)ξ − ζ‖2
2 =

∫
G

‖(πr( f̌ η1)ξ)(h)− ζ(h)‖2 dh

=
∫
G

∥∥∥ ∫
G

f (s)πr(η1)(σs(ξ(hs))− ξ(h))ds
∥∥∥2

dh
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6
∫
G

( ∫
G

f (s)‖πr(η1)‖‖σs(ξ(hs))− ξ(h)‖ds
)2

dh

= D2
∫

G×G×G

f (s) f (t)‖σs(ξ(hs))− ξ(h)‖‖σt(ξ(ht))− ξ(h)‖ds dt dh

6 D2
∫

G×G

f (s) f (t)‖δG(s)−1/2ρG(s)(ξ)− ξ‖‖δG(t)−1/2ρG(t)(ξ)− ξ‖ds dt

=
(

D
∫
G

f (s)‖δG(s)−1/2ρG(s)(ξ)− ξ‖ds
)2

,

where ρG is the representation defined in (2.1). Since ρG is a continuous repre-
sentation and δG is a continuous function on G, we get that if f is supported on
a small enough neighborhood of e, then ‖πr( f̌ η1)ξ − ζ‖2 < C/2. By definition of
C we get:

‖P(gΩ)πr( f̌ η1)ξ‖ > ‖P(gΩ)ζ‖ − ‖πr( f̌ η1)ξ − ζ‖ > C
2

.

So there indeed exists a Φ-right bounded vector η1 and a function f1 = f̌ which
is supported on Ω such that

P(gΩ)xP(Ω)( f1η1) = P(gΩ)πl(ξ)( f1η1) 6= 0.

Proof of Theorem 1.6. We prove the two facts separately.
(i) First assume that the modular functions δG and δH coincide on H. Then

by Theorem 3.2 of [16], for any weight Φ ∈ P(Q), the dual weight ΨG ∈ P(Q o
G) and ΨH ∈ P(Q o H) satisfy

σ
ΨG
t (x) = σΨH

t (x), for all x ∈ Q o H, t ∈ R.

Therefore there exists a nfs operator valued weight T ∈ P(Q o G, Q o H) by
Theorem 5.1 of [19].

Conversely, assume that P(Q o G, Q o H) is non-trivial. By Theorem 5.9
of [19], and Remark 2.3 we deduce that there exists an operator valued weight
T ∈ P(M̃, M), where M = Q o G and M̃ = (L∞(G/H)⊗Q)o G (because M̃ is
isomorphic to the basic construction of Q o H ⊂ M).

Our intermediate goal is to deduce that there exists a G-invariant nfs weight
on A := L∞(G/H). Unfortunately, we do not know a priori that T is semi-finite
on A. To get around this issue we will exploit the fact that the action is strictly
outer and use modular theory.

Let us consider the following operator valued weights in P(M̃, Q):

(•) T1 := TG ◦ T, where TG ∈ P(Q o G, Q) is the Plancherel operator valued
weight;

(•) Tφ := (φ ⊗ id) ◦ T̃G, where T̃G ∈ P(M̃, A⊗Q) is the Plancherel operator
valued weight and φ ⊗ id ∈ P(A⊗Q, Q) is the tensor product operator valued
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weight associated to some weight φ ∈ P(A) and the identity map on Q (see
Theorem 5.5 of [19]).

Fix φ ∈ P(A). By Lemma 5.1, we have that Q′ ∩ M̃ = A, hence the Connes–
Radon–Nikodym cocycle (DT1 : DTφ)t in the sense of Definition 6.2 in [19] takes

values into A, and it is a 1-cocycle for the flow σ
Tφ

t . By construction, for any
weight ψ ∈ P(Q), the weight ψ ◦ Tφ is simply the dual weight associated to

φ ⊗ ψ ∈ P(A⊗Q). Hence (σ
Tφ

t )|A = σ
φ
t = id, since A is abelian. We conclude

that (vt)t := (DT1 : DTφ)t is a one parameter subgroup of unitaries of A.
By Théorème 1.2.4 of [13], there exists a nfs weight φ′ ∈ P(A) such that

(Dφ′ : Dφ)t = vt for all t ∈ R.

Claim 1. The weight φ′ is G-invariant.

We will denote generically by the letter σ all the G actions. We fix g ∈ G and
show that the Connes–Radon–Nikodym derivative (Dφ′ ◦ σg : Dφ′)t is equal to 1
for all t ∈ R. We have

(5.2) (Dφ′ ◦ σg : Dφ′)t = (Dφ′ ◦ σg : Dφ ◦ σg)t(Dφ ◦ σg : Dφ)t(Dφ : Dφ′)t.

By Lemma 2.4, we have that (Dφ′ ◦ σg : Dφ ◦ σg)t = σ−1
g ((Dφ′ : Dφ)t) = σ−1

g (vt).
Hence (5.2) becomes

(5.3) (Dφ′ ◦ σg : Dφ′)t = σ−1
g (vt)(Dφ ◦ σg : Dφ)tv∗t .

We will show that the right hand side above is equal to 1 by computing all
the terms in the equality

(5.4) (DTg
1 : DT1)t = (DTg

1 : DTg
φ)t(DTg

φ : DTφ)t(DTφ : DT1)t.

Here we denoted by Tg
1 (respectively Tg

φ ) the operator valued weight σ−1
g ◦ T1 ◦

Ad(ug) ∈ P(M̃, Q) (respectively σ−1
g ◦ Tφ ◦Ad(ug)).

Take a weight ψ ∈ P(Q). By definition of the Connes–Radon–Nikodym
derivative for operator valued weights, we have

(DTg
1 : DTg

φ)t = (D(ψ ◦ Tg
1 ) : D(ψ ◦ Tg

φ))t

= (D(ψ ◦ σ−1
g ◦ T1) ◦Ad(ug) : D(ψ ◦ σ−1

g ◦ Tφ) ◦Ad(ug))t

= σ−1
g ((D(ψ ◦ σ−1

g ◦ T1) : D(ψ ◦ σ−1
g ◦ Tφ))t) = σ−1

g ((DT1 : DTφ)t),

where the third equality follows from Lemma 2.4. Hence (5.4) becomes

(5.5) (DTg
1 : DT1)t = σ−1

g (vt)(DTg
φ : DTφ)tv∗t .

Now ([17], Theorem 3.1) is easily seen to imply that Tg
1 = δG(g)T1 while Tg

φ =

δG(g)Tφ◦σg . So (DTg
1 : DT1)t = δG(g)it and

(DTg
φ : DTφ)t = δG(g)it(DTφ◦σg : DTφ)t = δG(g)it(Dφ ◦ σg : Dφ)t.
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Altogether, (5.5) can be rewritten

(5.6) δG(g)it = σ−1
g (vt)δG(g)it(Dφ ◦ σg : Dφ)tv∗t .

And we see that the right hand side of (5.3) is equal to 1, proving Claim 1.
Recall that A = L∞(G/H) is the subalgebra of right H-invariant functions

inside L∞(G). Denote by q : G → G/H the quotient map. The formula B ⊂
G/H 7→ φ′(1q−1(B)) defines a measure ν on the Borel σ-algebra of G/H. This
measure is G-invariant and non-zero (because φ′ is faithful).

Claim 2. The G-invariant measure ν is finite on every compact set of G/H.
Since φ′ is semi-finite (and faithful), there exists a Borel set B ⊂ G/H such

that 0 < ν(B) < ∞. Take a compactly supported non-negative function on G,
f ∈ K(G), f 6= 0. Then the function f ∗ 1B defined as follows is continuous:

( f ∗ 1B)(xH) :=
∫
G

f (g)1B(g−1xH)dmG(g), xH ∈ G/H.

By Fubini–Tonelli’s theorem, we have the key equation∫
G/H

( f ∗ 1B)dν =
∫

G/H

∫
G

f (g)1B(g−1xH)dmG(g)dν(xH)

=
∫
G

f (g)ν(gB)dmG(g) = ν(B)
∫
G

f dmG.

This key equation tells us first that the continuous non-negative function f ∗ 1B is
non-zero. So there exists an open set U ⊂ G/H and α > 0 such that 1U 6 α( f ∗
1B). The key equation also tells us that f ∗ 1B is ν-integrable, and in particular,
ν(U) < ∞. Since any compact set K ⊂ G/H can be covered by finitely many
translates of U, Claim 2 follows.

By Corollary B.1.7 of [4] we deduce from the existence of ν that the modular
functions δG and δH must coincide on H. This proves (i).

(ii) As mentioned earlier in the paper, if H is open inside G, then the indi-
cator function 1H is continuous and positive definite on G. Then the associated
multiplier (see Theorem 3.1.a of [17]) gives the desired conditional expectation
from Q o G onto Q o H.

Conversely, assume that H is not open inside G. If the modular functions
δG and δH do not coincide on H, then part (i) ensures that there is no nfs op-
erator valued weight from Q o G onto Q o H, and in particular, no conditional
expectation.

Assume now that the modular functions do coincide. Fix a nfs weight Φ ∈
P(Q), and denote by ΨH ∈ P(Q o H) and ΨG ∈ P(Q o G) the associated dual
weights. As we saw in the proof of (i), Theorem 5.1 of [19] implies that there exists
an operator valued weight T ∈ P(Q o G, Q o H) such that ΨH ◦ T = ΨG. As the
inclusion Q o H ⊂ Q o G is irreducible, it suffices to show that T is unbounded,
by Theorem 6.6 of [19].
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Fix an element f ∈ K(H, Q). Note that since H is not open inside G it
has measure 0 inside G. Indeed for any positive measure Borel set A inside G,
the product A−1 A contains a neighborhood of the identity. In particular, since
supp( f ) ⊂ H, Lemma 5.2 implies that f /∈ nΨG (Q o G). In contrast, f ∈ nΨH (Q o
H), and hence the expression ψ f := ΨH( f ∗ · f ) defines a normal positive linear
functional on Q o H. We have

T(1)(ψ f ) = ψ f ◦ T(1) = ΨH ◦ T( f ∗ f ) = ΨG( f ∗ f ) = +∞.

Hence T(1) ∈ Q̂ o H+ \ Q o H, and so T is not bounded. The proof is com-
plete.

5.2. WHEN CONDITIONAL EXPECTATIONS DO EXIST. APPLICATIONS TO HECKE

PAIRS. Before proving Theorem 1.7, let us mention that the argument of Choda
applies beyond the setting of discrete groups.

THEOREM 5.3 ([11], Theorem 3). Consider a strictly outer action G y Q of a
locally compact group and take a von Neumann subalgebra N ⊂ Q o G that contains Q
and that is the range of a faithful normal conditional expectation EN : Q o G → N.

Then N is of the form Q o H for some open subgroup H of G.

Proof. As usual, consider the closed subgroup H of G defined by H = {g ∈
G : ug ∈ N}, so that Q o H ⊂ N. Let us show that the converse inclusion also
holds.

Since N contains Q, we have u∗gEN(ug) ∈ Q′ ∩ (QoG), for all g ∈ G. As the
action is strictly outer, we deduce that for any g ∈ G, EN(ug) is a scalar multiple
of ug. If this scalar multiple is non-zero, this means that ug ∈ N, and hence the
scalar in question must be 1. So we obtain the following computation:

EN(aug) = 1{g∈H}aug ∈ Q o H, for all a ∈ Q and g ∈ G.

Since EN is normal we deduce by linearity and density that EN(Qo G) ⊂ Qo H.
Thus N ⊂ Q o H, and we have equality. The fact that H is open follows from
Theorem 1.6.

We now mention a lemma that provides existence of conditional expecta-
tions. It follows from the main technical result of [22]. Note that we need a sepa-
rability assumption.

LEMMA 5.4. Consider a compact open subgroup K < G in a locally compact
group. Let σ : G y Q be a strictly outer action on a factor with a separable predual
and put M := Q o G, N := Q o K. Then any intermediate von Neumann algebra
N ⊂ L ⊂ M is the range of a normal faithful conditional expectation EL : M→ L.

Proof. We show that N ⊂ M satisfy the assumptions of Corollary 3.11 in
[22]. Observe that the inclusion N ⊂ M is irreducible since the action of G is
strictly outer. As mentioned earlier in the paper, since K is open inside G, there
exists a conditional expectation E = EK from M = Q o G onto N = Q o K.
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By Remark 2.3, the basic construction M1 of the N ⊂ M is isomorphic to
(Q⊗`∞(G/K))o G, where G acts diagonally. The embedding M ⊂ M1 is given
by aug 7→ (a⊗ 1)ug for all a ∈ Q, g ∈ G. Note that G/K is discrete since K is open.
By Lemma 5.1, we have Q′ ∩ M1 = `∞(G/K). Hence, the relative commutant
Nc := N′ ∩M1 is isomorphic to the von Neumann algebra of K-bi-invariant maps
`∞(K\G/K).

We represent faithfully M1 onH⊗ `2(G/K)⊗ L2(G) in the obvious way. In
this picture, the Jones projection eN is the orthogonal projection onto H⊗CδK ⊗
L2(G) where δK is the Dirac mass of the coset K ∈ G/K. Consider the dual oper-
ator valued weight Ê ∈ P(M1, M) of E. We have that Ê(eN) = 1 by Lemma 3.1
of [24]. This implies that Ê(1KgK) = [K : K ∩ gKg−1], where 1KgK is the charac-
teristic function of KgK, g ∈ G. Since K < G is a compact open subgroup, the
index [K : K ∩ gKg−1] is finite for any g ∈ G and thus the operator valued weight
T := E ◦ Ê is semi-finite on Nc. Given any weight θ ∈ P(N), Theorem 6.6 of [19]
states that the restriction σθ◦T |Nc of the modular flow associated to θ ◦ T to Nc is
equal to the modular flow of the restriction of θ ◦ T to Nc. Therefore, σT

t (x) = x
for any t ∈ R, x ∈ Nc since Nc is commutative. Hence, the pair N ⊂ M indeed
satisfies the assumptions of Corollary 3.11 in [22], which implies the lemma.

Proof of Theorem 1.7. This follows immediately by combining Theorem 5.3
and Lemma 5.4.

Let us now derive applications to the setting of crossed-products by Hecke
pairs of groups. By definition, a Hecke pair is a pair of groups (G, H) such that H
is a subgroup of G which is commensurated (or almost normal) in G, in the sense
that Hg := H ∩ gHg−1 has finite index in H and gHg−1 for all g ∈ G. We refer
to [2] and [8], [30] for more details on facts below. See also [3] in the context of
equivalence relations.

A typical example of a Hecke pair (G, H) arises when G is a subgroup of
the automorphism group of a locally finite connected graph Γ and H is the sub-
group of elements of G that stabilize a given vertex of Γ. In fact, this example is
somewhat generic, see Theorem 2.15 of [1].

A Hecke pair (G, H) admits a Schlichting completion (G̃, H̃) that is a new
Hecke pair, for which G̃ is a totally disconnected group and H̃ is a compact open
subgroup of G̃. The precise construction goes as follows: view G as a subgroup of
SG/H , the permutation group of G/H. Endow SG/H with the topology of point-
wise converge (where G/H is viewed as a discrete space), and define G̃ (respec-
tively H̃) to be the closure of G (respectively H) inside SG/H . The idea of using
the Schlichting completion to study operator algebras of Hecke pairs goes back
to Tzanev [36]. The key observation is Proposition 5.6 below.

We will say that an action G y Q is an action of the Hecke pair (G, H) if it
extends continuously to an action of the Schlichting completion G̃. The action
is strictly outer if its extension to the Schlichting completion is strictly outer. Let
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us define the crossed-product von Neumann algebra associated with such an ac-
tion. The construction generalizes that of C∗-algebras associated with Hecke pairs
(which correspond to the trivial action G y C), which originate in [6]. We also
refer to [2] for a general treatment. Crossed-product C∗-algebras for actions of
Hecke pairs were then defined in [30] and the von Neumann algebraic version in
Section 4 of [8].

Let C[Q; G, H] be the space of continuous functions f : G → Q such that
f (hgk) = σh( f (g)) for any g ∈ G, h, k ∈ H, and such that the induced functions
f : G/H → Q is finitely supported. Note that if f ∈ C[Q; G, H] and g ∈ G, then
f (g) is fixed by σ(H ∩ gHg−1). We define a multiplication and an involution ∗
on C[Q; G, H] as follows:

f1 f2(g) = ∑
s∈lift(G/H)

f1(s)σs( f2(s−1g)), for any f1, f2 ∈ C[Q; G, H] and g ∈ G,

where lift(G/H) is a system of representatives of G/H,

f ∗(g) = σg( f (g−1)∗), for any f ∈ C[Q; G, H] and g ∈ G.

The space C[Q; G, H] endowed with those operations is a unital ∗-algebra. It con-
tains a copy of the fixed point von Neumann algebra QH via the map j(a)(g) =
χH(g)a, a ∈ QH , g ∈ G, where χH is the characteristic function of H.

Assume that Q is standardly represented on a Hilbert space H and denote
again by σ : G → U (H) the canonical implementation of the action, see [15]. Let
L2(G/H,H) be the Hilbert space of L2-functions from G/H to H, where G/H is
viewed as a discrete space (and endowed with the counting measure). Consider
the subspace

K := {ξ ∈ L2(G/H,H) : ξ(hgH) = σh(ξ(gH)), ∀h ∈ H, gH ∈ G/H}.

A similar proof to that of Proposition 5.1 in [8] gives us the following lemma.

LEMMA 5.5. The map π : C[Q; G, H]→ B(K) defined by

π( f )ξ(gH) = ∑
s∈lift(G/H)

f (s)σs(ξ(s−1gH)), f ∈ C[Q; G, H], ξ ∈ K, gH ∈ G/H,

is a bounded representation of the ∗-algebra C[Q; G, H]. We call it the standard repre-
sentation of the Hecke algebra.

Denote by vN[Q; G, H] the bicommutant of π(C[Q; G, H]). We call it the
crossed-product von Neumann algebra of Q by (G, H).

The next proposition relates crossed-products by Hecke pairs to the group
crossed-product by the Schlichting completion, it generalizes Lemma 4.2. As
mentioned above, this idea goes back to Tzanev [36].

PROPOSITION 5.6. Consider an action of a Hecke pair (G, H) on a von Neumann
algebra Q. Denote by (G̃, H̃) the Schlichting completion of (G, H). Then the pairs

(QH ⊂ vN[Q; G, H]) and (pH̃(Q o H̃)pH̃ ⊂ pH̃(Q o G̃)pH̃)
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are isomorphic. Here pH̃ is the averaging projection associated with the compact open
subgroup H̃ < G̃ as defined above.

Proof. Note that the coset spaces G/H and G̃/H̃ are naturally isomorphic.
Since the action G y Q extends continuously to an action of G̃, the pairs

(QH ⊂ vN[Q; G, H]) and (QH̃ ⊂ vN[Q; G̃, H̃])

are isomorphic. Moreover, the Schlichting completion of (G̃, H̃) is equal to itself.
Replacing (G, H) with (G̃, H̃) if necessary, we may assume that H is compact
open inside G, and G̃ = G, H̃ = H.

Consider the isometry u : K → L2(G,H) given by the formula

uξ(g) =
1

mG(H)1/2 σ−1
g (ξ(gH)), g ∈ G.

Put M := Q o G. Observe that the map x ∈ pH MpH 7→ u∗xu ∈ B(K) is a
representation that is equivalent to pH MpH acting on pH JpH JL2(G,H), where
J is the conjugation operator on the standard representation L2(G,H) of M. In
particular, x ∈ pH MpH 7→ u∗xu ∈ B(K) is a faithful representation.

Consider the map φ : C[Q; G, H]→ K(G, Q) defined by the formula

φ( f )(g) =
1

mG(H)
σ−1

g ( f (g)), for any f ∈ C[Q; G, H], g ∈ G.

Observe that the range of φ is the space of functions F ∈ K(G, Q) such that
F(kgl) = σ−1

l (F(g)) for any g ∈ G, k, l ∈ H. This range is precisely the corner
pHK(G, Q)pH and we have that

(5.7) u∗φ( f )u = f for any f ∈ C[Q; G, H].

Therefore, x ∈ pH MpH 7→ u∗xu ∈ B(K) is an isomorphism of von Neumann
algebras onto vN[Q; G, H]. By Lemma 4.2, we have that pH(Q o H)pH = QH pH
and one easily checks that u∗(QH pH)u = QH .

Observe that if H < L < G is an intermediate closed group, then there is a
natural identification of C[Q; L, H] as a subalgebra of C[Q; G, H] of all functions
that are supported on L. This identification extends to the respective crossed-
product von Neumann algebras. To see this with little effort we can use the
above proposition as follows. By definition of the Schlichting completion we
have that L̃ is isomorphic to the closure of L inside G̃, where L̃ and G̃ are the
Schlichting completions of L and G with respect to the subgroup H. As men-
tioned in Section 2.3, the crossed-product Q o L̃ is isomorphic to the weak clo-
sure of the algebraic crossed-product Q oalg L̃ inside Q o G̃. Proposition 5.6 and
this later fact imply that there exists an injective morphism of von Neumann
algebras φ : vN[Q; L, H] → vN[Q; G, H] that sends QH to itself and such that
φ(vN[Q; L, H]) is the weak closure of C[Q; L, H] inside vN[Q; G, H].
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Theorem 1.7 together with Proposition 5.6 implies the following result for
crossed-products by Hecke pairs.

COROLLARY 5.7. Consider a strictly outer action of a Hecke pair (G, H) on a von
Neumann algebra Q that has a separable predual. If QH ⊂ L ⊂ vN[Q; G, H] is an
intermediate von Neumann algebra, then there exists an intermediate group H < H′ <
G such that L is isomorphic to the crossed-product vN[Q; H′, H], which we identified as
a subalgebra of vN[Q; G, H].

Recently, it has been shown that Hecke pairs appear in subfactor theory.
Consider a finite index subfactor N ⊂ M and its symmetric enveloping inclusion
T ⊂ S, see [31] (or [26] in the type III finite depth setting). Then in some cases,
there exists a Hecke pair (G, K) and actions G y M⊗Mop, K × K y M⊗Mop

such that T ⊂ S is isomorphic with (M⊗Mop)K×K ⊂ vN[M⊗Mop; G, K], see
Theorem 5.5 of [8]. Hence, our last corollary gives us information about the lattice
of intermediate subfactors in the symmetric enveloping inclusion of N ⊂ M.
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