
J. OPERATOR THEORY
79:2(2018), 269–285

doi: 10.7900/jot.2015dec14.2180

© Copyright by THETA, 2018

SIMILARITY DEGREE OF TYPE II1 VON NEUMANN
ALGEBRAS WITH PROPERTY Γ

DON HADWIN, WENHUA QIAN, and JUNHAO SHEN

Communicated by Hari Bercovici

ABSTRACT. In this paper, we discuss some equivalent definitions of Prop-
erty Γ for a type II1 von Neumann algebra. Using these equivalent definitions,
we prove that the Pisier’s similarity degree of a type II1 von Neumann algebra
with Property Γ is equal to 3.
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1. INTRODUCTION

Kadison’s similarity problem for a C∗-algebra is a longstanding open prob-
lem, which asks whether every bounded representation ρ of a C∗-algebra A on a
Hilbert space H is similar to a ∗-representation, i.e. whether there exists an invert-
ible operator T in B(H), such that Tρ(·)T−1 is a ∗-representation ofA. Significant
progress toward this famous open problem was obtained in [1] and [3]. We will
refer to Pisier’s book [9] for a wonderful introduction to the problem and many
of its recent developments.

Similarity degree for a unital C∗-algebra A, denoted by d(A), was defined
by Pisier in [7]. Since its introduction, this new concept has greatly influenced the
study of Kadison’s similarity problem for C∗-algebras. In fact, it was shown in
[7] that Kadison’s similarity problem for a unital C∗-algebra A has an affirmative
answer if and only if d(A) < ∞. One of the most surprising results on similarity
degree was also obtained by Pisier in [11] where he proved that, for an infinite
dimensional unital C∗-algebra A, the similarity degree of A is equal to 2 if and
only if A is a nuclear C∗-algebra.

Several results on similarity degree for a unital C∗-algebra have now been
known. For example, if A = B(H) for some infinite dimensional Hilbert space
H, then d(A) = 3 ([3], [8]). The similarity degree of a type II1 factor M with
Property Γ is less than or equal to 5 ([8]). This result was later improved in [2] to
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that the similarity degree of suchM is equal to 3. When A is a minimal tensor
product of two C∗-algebras, one of which is nuclear and contains matrices of any
order, it was proved in [12] that d(A) 6 5. Recently, it was shown in [4] that, if
A is Z-stable, then d(A) 6 5. We will recall Property c∗-Γ for C∗-algebras in the
beginning of Section 4. In [14], it was shown that, if a separable C∗-algebra A has
Property c∗-Γ, then d(A) = 3.

The definition of Property Γ for type II1 von Neumann algebras was given
in [13] and we will recall it in Section 3. In this paper, we will discuss properties
of type II1 von Neumann algebras with Property Γ and compute the similarity
degree for this class of von Neumann algebras. The first result we obtained in the
paper is Theorem 3.11, which gives many useful equivalences of Property Γ.

Combining Theorem 3.11 with the results in [14], we are able to calculate
the exact value of the similarity degree for a type II1 von Neumann algebra with
Property Γ and obtain the next result (Theorem 4.3) as a generalization of Chris-
tensen’s result in [2]: ifM is a type II1 von Neumann algebra with Property Γ, then
the similarity degree d(M) = 3.

Suppose A is a unital C∗-algebra. Let I be some index set and

l∞(I ,A) =
{
(xi)i∈I : for each i ∈ I , xi ∈ A and sup

i∈I
‖xi‖ < ∞

}
.

We apply Theorem 4.3 to calculate values of similarity degrees for two
classes of C∗-algebras, which were also considered by Pisier in [8]: first we obtain
that, ifM is a type II1 factor with Property Γ, then d(l∞(I ,M)) = 3 for any index set
I . On the other hand, let C = M2(C)⊗M2(C)⊗ · · · (infinite C∗-tensor product of
2× 2 matrix algebras). Then, for any infinite index set I , d(l∞(I , C)) = 3.

The organization of this paper is as follows. In Section 2, we give some
preliminaries on direct integrals of separable Hilbert spaces and von Neumann
algebras acting on separable Hilbert spaces. In Section 3, we give a characteriza-
tion of type II1 von Neumann algebras with Property Γ and obtain some equiv-
alent definitions. In Section 4, by showing that every finite subset F of a type
II1 von Neumann algebraM with Property Γ is contained in a separable unital
C∗-subalgebra with Property c∗-Γ, we obtain that d(M) = 3.

2. PRELIMINARIES

2.1. DIXMIER APPROXIMATION THEOREM. We will need the following Dixmier
approximation theorem in the paper.

LEMMA 2.1 (Dixmier approximation theorem). Let M be a finite von Neu-
mann algebra with center Z . Let τ be the center-valued trace onM. If a ∈ M, then

{τ(a)} = Z ∩ (conv(a)=),

where conv(a)= is the norm closure of the convex hull of {uau∗ : u is a unitary inM}.
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2.2. DIRECT INTEGRAL THEORY. General knowledge about direct integrals of
separable Hilbert spaces and von Neumann algebras acting on separable Hilbert
spaces can be found in [18] and [5]. Here we list a few lemmas that will be needed
in this paper.

LEMMA 2.2 ([5], Theorem 14.2.2, Corollary 14.2.3). SupposeM is a von Neu-
mann algebra acting on a separable Hilbert space H. LetZ be the center ofM. Then there
is a direct integral decomposition ofM relative to Z , i.e. there exists a locally compact
complete separable metric measure space (X, µ) such that:

(i) H is (unitarily equivalent to) the direct integral of {Hs : s ∈ X} over (X, µ),
where each Hs is a separable Hilbert space, s ∈ X;

(ii)M is (unitarily equivalent to) the direct integral of {Ms} over (X, µ), whereMs
is a factor in B(Hs) almost every where. Also, if M is of type In (n could be infinite),
II1, II∞ or III, then the componentsMs are, almost everywhere, of type In, II1, II∞ or III,
respectively.

Moreover, the center Z is (unitarily equivalent to) the algebra of diagonalizable
operators relative to this decomposition.

The following lemma gives a decomposition of a normal state on a direct
integral of von Neumann algebras.

LEMMA 2.3 ([5], Lemma 14.1.19). Suppose H is the direct integral of separable
Hilbert spaces {Hs} over (X, µ),M is a decomposable von Neumann algebra on H (i.e.,
every operator in M is decomposable relative to the direct integral decomposition, see
Definition 14.1.6 in [5]) and ρ is a normal state onM. There is a positive normal linear
functional ρs onMs for every s ∈ X such that ρ(a) =

∫
X

ρs(a(s))dµ for each a inM.

IfM contains the algebra C of diagonalizable operators and ρ|EME is faithful or tracial,
for some projection E inM, then ρs|E(s)MsE(s) is, accordingly, faithful or tracial almost
everywhere.

REMARK 2.4. From the proof of Lemma 14.1.19 in [5], we obtain that if ρ =
∞
∑

n=1
ωyn onM, where {yn} is a sequence of vectors in H such that

∞
∑

n=1
‖yn‖2 = 1

and ωy is defined onM such that ωy(a) = 〈ay, y〉 for any a ∈ M, y ∈ H, then ρs

can be chosen to be
∞
∑

n=1
ωyn(s) for each s ∈ X.

3. SOME EQUIVALENT DEFINITIONS OF PROPERTY Γ FOR TYPE II1
VON NEUMANN ALGEBRAS

We recall the definition of Property Γ for general type II1 von Neumann
algebras in [13].
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DEFINITION 3.1 ([13]). SupposeM is a type II1 von Neumann algebra with
a predual M]. Suppose σ(M,M]) is the weak* topology on M induced from
M]. We say thatM has Property Γ if and only if ∀ a1, a2, . . . , ak ∈ M and ∀ n ∈ N,
there exist a partially ordered set Λ and a family of projections

{piλ : 1 6 i 6 n; λ ∈ Λ} ⊆ M

satisfying:
(i) for each λ ∈ Λ, p1λ, p2λ, . . . , pnλ are mutually orthogonal equivalent pro-

jections inM with sum I;
(ii) for each 1 6 i 6 n and 1 6 j 6 k,

lim
λ
(piλaj − aj piλ)

∗(piλaj − aj piλ) = 0 in σ(M,M]) topology.

We remark that this definition coincides with Murray and von Neumann’s
definition whenM is a type II1 factor.

In this section, we will give some equivalent definitions of Property Γ for
type II1 von Neumann algebras. The following two lemmas are well-known. We
give brief proofs here for the purpose of completeness.

LEMMA 3.2. Suppose thatM is a type II1 von Neumann algebra. Then the fol-
lowing are true:

(i) for any nonzero element x ∈ M, there exists a normal tracial state ρ onM such
that ρ(x∗x) 6= 0;

(ii) there exists a non-zero central projection q of M, such that qM is a countably
decomposable type II1 von Neumann algebra.

Proof. Assume thatM acts on a Hilbert space H.
(i) Let Z be the center ofM and τ be the unique center-valued trace onM

(see Theorem 8.2.8 in [5]). Let ρ̂ be a normal state on Z such that ρ̂(τ(x∗x)) 6= 0.
Therefore ρ = ρ̂ ◦ τ is a normal tracial state satisfying the required condition.

(ii) Let ρ be a normal tracial state onM and I = {a ∈ M : ρ(a∗a) = 0}. It
follows from Proposition III.3.12 in [17] and Proposition 1.10.5 in [16] that there
exists a central projection q in Z such that I = (1− q)M. It is easy to verify that
qM is countably decomposable.

LEMMA 3.3. Suppose M is a type II1 von Neumann algebra. Then there is a
family of orthogonal central projections {qα : α ∈ Ω} inM with sum I such that qαM
is countably decomposable for each α ∈ Ω.

Proof. By Lemma 3.2 and Zorn’s lemma, there exists an orthogonal family
{qα} of non-zero central projections inM, which is maximal with respect to the
property that qαM is countable decomposable for each α. Let Q = ∑ qα. We
claim that Q = I, where I is the identity of M. Assume, to the contrary, that
Q 6= I. Then by Lemma 3.2, there is a nonzero central projection q in (I − Q)M
such that qM is countably decomposable. The existence of such q contradicts the
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maximality of the family {qλ}. Therefore I = ∑ qα and the proof of the lemma is
completed.

REMARK 3.4. Suppose M is a type II1 von Neumann algebra with Prop-
erty Γ. Let q be a central projection of M. Then it follows directly from the
definition of Property Γ that qM also has Property Γ.

LEMMA 3.5. Let M be a type II1 von Neumann algebra acting on a separable
Hilbert space H and ZM the center ofM. Let τ be the center-valued trace onM such
that τ(z) = z for any z ∈ ZM. Let M =

∫
X

⊕Msdµ and H =
∫
X

⊕
Hsdµ be the

direct integral decompositions of M and H relative to ZM as in Lemma 2.2. Assume
thatMs is a type II1 factor with a trace τs for each s ∈ X. Then for any a ∈ M,

τ(a)(s) = τs(a(s))Is

for almost every s ∈ X.

Proof. Fix a ∈ M. By the Dixmier approximation theorem, for each t ∈ N,
there exist a positive integer kt, a family of unitaries {v(t)j : t ∈ N, 1 6 j 6 kt} in

M and scalars {λ(t)
j : t ∈ N, 1 6 j 6 kt} ⊆ [0, 1] such that:

(i) for each t ∈ N, ∑
16j6kt

λ
(t)
j = 1;

(ii) lim
t→∞

∥∥∥ ∑
16j6kt

λ
(t)
j (v(t)j )∗av(t)j − τ(a)

∥∥∥ = 0.

Since {v(t)j : t ∈ N, 1 6 j 6 kt} is a countable set, we may assume that, for

every s ∈ X, v(t)j (s) is a unitary in Ms for any t ∈ N and any 1 6 j 6 kt. By
Proposition 14.1.9 in [5], for any t ∈ N, we may assume that∥∥∥ ∑

16j6kt

λ
(t)
j (v(t)j )∗av(t)j − τ(a)

∥∥∥ = sup
s∈X

∥∥∥ ∑
16j6kt

λ
(t)
j (v(t)j (s))∗a(s)v(t)j (s)− τ(a)(s)

∥∥∥.

It follows that

(3.1) lim
t→∞

∥∥∥ ∑
16j6kt

λ
(t)
j (v(t)j (s))∗a(s)v(t)j (s)− τ(a)(s)

∥∥∥ = 0

for almost every s ∈ X. Again, by the Dixmier approximation theorem and the
fact that eachMs is a type II1 factor, (3.1) gives that

τ(a)(s) = τs(a(s))Is

for almost every s ∈ X.

LEMMA 3.6. LetM be a type II1 von Neumann algebra with center ZM. Let τ
be the center-valued trace onM such that τ(a) = a for any a ∈ ZM. Suppose ε > 0,
x ∈ M and τ(x∗x) < εI. Then for any tracial state ρ onM,

ρ(x∗x) < 2ε.
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Proof. Note that τ(x∗x)< εI. It follows from the Dixmier approximation the-
orem that there exist a positive integer n ∈ N, a family of unitaries {v1, v2, . . . , vn}
inM and a family of scalars {α1, α2, . . . , αn} ⊆ [0, 1] such that:

(i) ∑
16i6n

αi = 1;

(ii)
∥∥∥τ(x∗x)− ∑

16i6n
αiv∗i x∗xvi

∥∥∥ < ε.

Since ρ is tracial, it follows from (i) and (ii) the following that completes the
proof:

ρ(x∗x)=ρ
(

∑
16i6n

αiv∗i x∗xvi

)
=ρ
(

∑
16i6n

αiv∗i x∗xvi

)
−τ(x∗x) + ρ(τ(x∗x))<2ε..

PROPOSITION 3.7. Suppose M is a type II1 von Neumann algebra acting on a
separable Hilbert space H. Let τ be the center-valued trace onM such that τ(a) = a for
any a ∈ ZM, where ZM is the center ofM. Suppose thatM has Property Γ. Then,
for a1, a2, . . . , ak ∈ M, any n ∈ N, any ε > 0, there exist n orthogonal equivalent
projections p1, p2, . . . , pn inM with sum I such that

τ((piaj − aj pi)
∗(piaj − aj pi)) < εI, ∀ 1 6 i 6 n, 1 6 j 6 k.

Proof. SupposeM has Property Γ. LetM=
∫
X

⊕Msdµ and H=
∫
X

⊕
Hsdµ

be the direct integral decompositions ofM and H relative to the center ZM as in
Lemma 2.2. We might assume thatMs is a type II1 factor with a trace τs for each
s ∈ X.

Fix a1, a2, . . . , ak ∈ M, n ∈ N, and ε > 0. By Corollary 4.2 in [13], there exist
n orthogonal equivalent projections p1, p2, . . . , pn inM with sum I such that

(3.2) ‖pi(s)aj(s)− aj(s)pi(s)‖2,s 6
ε

2
, ∀ 1 6 i 6 n, 1 6 j 6 k,

for almost every s ∈ X, where ‖ · ‖2,s is the trace norm induced by τs onMs for
each s ∈ X.

For any 1 6 i 6 n, 1 6 j 6 k, Lemma 3.5 gives

τ((piaj − aj pi)
∗(piaj − aj pi))(s)

= τs((pi(s)aj(s)− aj(s)pi(s))∗(pi(s)aj(s)− aj(s)pi(s)))Is(3.3)

for almost every s ∈ X.
For any 1 6 i 6 n, 1 6 j 6 k, from (3.2), (3.3) and Proposition 14.1.9 in [5], it

follows that
‖τ((piaj − aj pi)

∗(piaj − aj pi))‖ 6
ε

2
and, thus we have the following that finishes the proof:

τ((piaj − aj pi)
∗(piaj − aj pi)) < εI.

LEMMA 3.8. LetM be a type II1 von Neumann algebra with a center ZM. Let
M1 be a von Neumann subalgebra ofM and ZM1 be the center ofM1. Suppose τM
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and τM1 are the center-valued traces ofM, andM1 respectively. For any x ∈ M1, we
have ‖τM(x)‖ 6 ‖τM1(x)‖.

Proof. Let x be an element inM1. For any ε > 0, by the Dixmier approxima-
tion theorem, there exist a positive integer k, a family of unitaries {vj : 1 6 j 6 k}
in M1 and scalars {λj : 1 6 j 6 k} ⊆ [0, 1] such that (i) ∑

16j6k
λj = 1 and

(ii)
∥∥∥ ∑

16j6k
λjv∗j xvj − τM1(x)

∥∥∥ 6 ε.

Hence,

‖τM(x)‖=
∥∥∥τM

(
∑

16j6k
λjv∗j xvj

)∥∥∥
6
∥∥∥τM

(
∑

16j6k
λjv∗j xvj

)
−τM(τM1(x))

∥∥∥+‖τM(τM1(x))‖6 ε+‖τM1(x)‖.

Since ε is arbitrary, we have ‖τM(x)‖ 6 ‖τM1(x)‖.

PROPOSITION 3.9. Suppose M is a countably decomposable type II1 von Neu-
mann algebra. Let τ be the center-valued trace on M such that τ(a) = a for any
a ∈ ZM, where ZM is the center of M. Suppose that M has Property Γ. Then,
for a1, a2, . . . , ak ∈ M, any n ∈ N, any ε > 0, there exist n orthogonal equivalent
projections p1, p2, . . . , pn inM with sum I such that

τ((piaj − aj pi)
∗(piaj − aj pi)) < εI, ∀ 1 6 i 6 n, 1 6 j 6 k.

Proof. Let a1, a2, . . . , ak be in M. By Lemma 3.6 in [14], there is a type II1
von Neumann algebra M1 with separable predual and Property Γ such that
{a1, . . . , ak} ⊆ M1 ⊆ M. From Proposition 3.7, it follows that there exist n
orthogonal equivalent projections p1, p2, . . . , pn inM1 with sum I such that

τM1((piaj − aj pi)
∗(piaj − aj pi)) < εI, ∀ 1 6 i 6 n, 1 6 j 6 k,

where τM1 is the center-valued trace onM1. By Lemma 3.8, we obtain that

τ((piaj − aj pi)
∗(piaj − aj pi)) < εI, ∀ 1 6 i 6 n, 1 6 j 6 k.

REMARK 3.10. SupposeM is a type II1 von Neumann algebra with center
ZM. Let τ be the center-valued trace onM such that τ(a) = a for any a ∈ ZM.
Suppose {qα : α ∈ Ω} is a family of nonzero orthogonal central projections inM
with sum I. Therefore qαM is a type II1 von Neumann algebra with center qαZM.
Let τα be the center-valued trace on qαM such that τα(a) = a for any a ∈ qαZM.
We have

τ(a) = ∑
α∈Ω

τα(qαa), ∀ a ∈ M.

THEOREM 3.11. SupposeM is a type II1 von Neumann algebra and ZM is the
center ofM. Let τ be the center-valued trace onM such that τ(a) = a for any a ∈ ZM.
Then the following statements are equivalent:
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(i)M has Property Γ.
(ii) There exists a family of nonzero orthogonal central projections {qα : α ∈ Ω}

in M with sum I such that qαM is a countably decomposable type II1 von Neumann
algebra with Property Γ for each α ∈ Ω.

(iii) For any n ∈ N, any ε > 0 and a1, a2, . . . , ak ∈ M, there exist n orthogonal
equivalent projections p1, p2, . . . , pn inM with sum I such that

τ((piaj − aj pi)
∗(piaj − aj pi)) < εI, ∀ 1 6 i 6 n, 1 6 j 6 k.

(iv) There exists a positive integer n0>2 satisfying that for any ε>0 and a1, a2, . . . , ak
∈ M, there exist n0 orthogonal equivalent projections p1, p2, . . . , pn0 inM with sum I
satisfying

τ((piaj − aj pi)
∗(piaj − aj pi)) < εI, ∀ 1 6 i 6 n0, 1 6 j 6 k.

(v) For any ε > 0 and a1, a2, . . . , ak ∈ M, there exists a unitary u inM such that
(a) τ(u) = 0;
(b) τ((uaj − aju)∗(uaj − aju)) < εI, ∀ 1 6 j 6 k.

(vi) For any n ∈ N, any normal tracial state ρ onM, any ε > 0 and a1, a2, . . . , ak ∈
M, there exist n orthogonal equivalent projections p1, p2, . . . , pn inM with sum I such
that

‖piaj − aj pi‖2,ρ < ε, ∀ 1 6 i 6 n, 1 6 j 6 k,

where ‖ · ‖2,ρ is the 2-norm onM induced by ρ.
(vii) There exists a positive integer n0 > 2 satisfying that for any normal tracial state

ρ onM, any ε > 0 and a1, a2, . . . , ak ∈ M, there exist n0 orthogonal equivalent projec-
tions p1, p2, . . . , pn0 inM with sum I satisfying

‖piaj − aj pi‖2,ρ < ε, ∀ 1 6 i 6 n0, 1 6 j 6 k,

where ‖ · ‖2,ρ is the 2-norm onM induced by ρ.
(viii) For any normal tracial state ρ onM, any ε > 0 and a1, a2, . . . , ak ∈ M, there

exists a unitary u inM such that
(a) τ(u) = 0;
(b) ‖uaj − aju‖2,ρ < ε, for all 1 6 j 6 k, where ‖ · ‖2,ρ is the 2-norm onM

induced by ρ.

Proof. We will prove the result by showing that (i) ⇒ (ii) ⇒ (iii) ⇒ (iv) ⇒
(v)⇒ (ii), (iii)⇒ (i) and (iii)⇒ (vi)⇒ (vii)⇒ (viii)⇒ (ii).

(i)⇒ (ii) It follows from Lemma 3.3 and Remark 3.4.
(ii)⇒ (iii) Assume that there exists a family of nonzero orthogonal central

projections {qα : α ∈ Ω} with sum I such that qαM is a countably decomposable
type II1 von Neumann algebra with Property Γ for each α ∈ Ω. Fix n ∈ N, any
ε > 0 and a1, a2, . . . , ak ∈ M. Then

aj = ∑
α

qαaj, ∀ 1 6 j 6 n.
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For each α ∈ Ω, by Proposition 3.9, there exist n orthogonal equivalent projec-
tions p(α)1 , p(α)2 , . . . , p(α)n in qαM with sum qα such that

(3.4) τα((p(α)i (qαaj)− (qαaj)p(α)i )∗(p(α)i (qαaj)− (qαaj)p(α)i )) < ε · qα,

for all 1 6 i 6 n, 1 6 j 6 k, where τα is the center-valued trace on qαM. Let

pi = ∑
α

p(α)i , for all 1 6 i 6 n.

Then it is not hard to see that p1, . . . , pn are orthogonal equivalent projections in
M with sum I. By Remark 3.10 and inequality (3.4), we know

τ((piaj − aj pi)
∗(piaj − aj pi)) < εI, ∀ 1 6 i 6 n, 1 6 j 6 k.

(iii)⇒ (iv) It is obvious.
(iv)⇒ (v) Assume that there exists a positive integer n0 > 2 satisfying that

for any ε > 0 and a1, a2, . . . , ak ∈ M, there exist n0 orthogonal equivalent projections
p1, p2, . . . , pn0 inM with sum I satisfying

τ((piaj − aj pi)
∗(piaj − aj pi)) <

ε

n2
0

I, ∀ 1 6 i 6 n0, 1 6 j 6 k.

Let λ = e2πi/n0 be the n0-th root of unit. Let

u = p1 + λp2 + · · ·+ λn0−1 pn0 .

Since p1, . . . , pn0 are orthogonal equivalent projections inM, we know τ(u) = 0.
A quick computation shows that

τ((uaj − aju)∗(uaj − aju)) < εI.

(v) ⇒ (ii) Assume that (v) holds. From Lemma 3.3, there is a family of
orthogonal central projections {qα : α ∈ Ω} inM with sum I such that qαM is
countably decomposable for each α ∈ Ω.

Next we will show that qαM has Property Γ for each α in Ω. Let x1, . . . , xk be
elements in qαM. By the assumption (v), for any ε > 0, there exists a unitary u in
M such that (a) τ(u) = 0 and (b) τ((uaj− aju)∗(uaj− aju)) < εI, for all 1 6 j 6 k.
Since qαM is a countably decomposable type II1 von Neumann subalgebra, there
exists a faithful normal tracial state ρ on qαM. We can naturally extend ρ on
qαM to a normal tracial state ρ̃ on M by defining ρ̃(x) = ρ(qαx) for all x in
M. It is not hard to see that qαu is a unitary in qαM and τα(qαu) = τ(qαu) =
qατ(u) = 0, where τα is a center-valued trace on qαM. Moreover, by the Dixmier
approximation theorem, we have

ρ̃(x) = ρ̃(τ(x)), ∀ x ∈ M.

Hence
ρ(((qαu)aj − aj(qαu))∗((qαu)aj − aj(qαu))) = ρ̃((uaj − aju)∗(uaj − aju))

= ρ̃(τ((uaj − aju)∗(uaj − aju))) 6 ε,

for all 16 i6k. By Proposition 3.5 in [14], we conclude that qαM has Property Γ.
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(iii) ⇒ (i) Assume that (iii) is true. We assume that M acts on a Hilbert
space H. Let x1, . . . , xk be a family of elements inM. From (iii), for any positive
integer n, there exists a family of projections {pir : 1 6 i 6 n, r > 1} inM such
that:

(1) for each r > 1, p1,r, . . . , pn,r are orthogonal equivalent projections in M
with sum I;

(2) moreover,

lim
r→∞
‖τ((pi,raj − aj pi,r)

∗(pi,raj − aj pi,r))‖ = 0, ∀ 1 6 i 6 n, 1 6 j 6 k.

Thus, for any normal tracial state ρ onM, we have

lim
r→∞
‖ρ((pi,raj − aj pi,r)

∗(pi,raj − aj pi,r))‖(3.5)

= lim
r→∞
‖ρ(τ((pi,raj − aj pi,r)

∗(pi,raj − aj pi,r)))‖

6 lim
r→∞
‖τ((pi,raj − aj pi,r)

∗(pi,raj − aj pi,r))‖ = 0.

Let {ρλ}λ∈Λ be the collection of all normal tracial states onM. For each λ ∈ Λ,
let (πλ, Hλ, Îλ) be the GNS representation, obtained from ρλ, ofM on the Hilbert
space Hλ = L2(M, ρλ) with a cyclic vector Îλ in Hλ. We also let K = ∑

λ∈Λ
Hλ be

the direct sum of Hilbert spaces {Hλ} and π = ∑
λ∈Λ

πλ :M→ B(K) be the direct

sum of {πλ}. Thus π is a ∗-representation ofM on K defined by

π(x)((ξλ)) = (πλ(x)ξλ), ∀ (ξλ) ∈ ∑
λ∈Λ

Hλ = K.

It is not hard to see that π is a normal ∗-representation and π(M) is also a von
Neumann algebra. By Lemma 3.2(i), π is a ∗-isomorphism fromM onto π(M).

We claim that, for all 1 6 i 6 n, 1 6 j 6 k, (pi,raj − aj pi,r)
∗(pi,raj − aj pi,r)→

0 in ultraweak operator topology (or in σ(M,M]) topology).
Actually, the claim is equivalent to the statement that

π((pi,raj − aj pi,r)
∗(pi,raj − aj pi,r))→ 0 in ultraweak topology.

Note that

{(pi,raj − aj pi,r)
∗(pi,raj − aj pi,r) : 1 6 i 6 n, 1 6 j 6 k, r ∈ N}

is a bounded subset inM. It will be enough if we are able to show that

π((pi,raj − aj pi,r)
∗(pi,raj − aj pi,r))→ 0 in weak operator topology,

or

(3.6) π(pi,raj − aj pi,r)→ 0 in strong operator topology.

By the construction of π, (3.6) follows directly from (3.5).
From the claim in the preceding paragraph, by the definition of Property Γ,

we know thatM has property Γ.
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(iii)⇒ (vi) From the Dixmier approximation theorem, for any normal tracial
state ρ onM, we have

ρ(x) = ρ(τ(x)) ∀ x ∈ M.

Now (vi) follows easily from (iii).
(vi)⇒ (vii) It is obvious.
(vii)⇒ (viii) It is similar to (iv)⇒ (v).
(viii)⇒ (ii) Assume that (viii) holds. From Lemma 3.3, there is a family of

orthogonal central projections {qα : α ∈ Ω} in M with sum I such that qαM
is countably decomposable for each α ∈ Ω. We need to show that qαM has
Property Γ for each α in Ω.

Since each qαM is a countably decomposable type II1 von Neumann alge-
bra, there exists a faithful normal tracial state ρα on qαM. Then the normal tracial
state ρα on qαM can be naturally extended to a normal tracial state ρ̃ on M by
defining ρ̃(x) = ρα(qαx) for all x ∈ M. Let ε > 0 and a1, . . . , ak be elements in
qαM. Since (viii) holds, there exists a unitary u inM such that:

(a) τ(u) = 0;
(b) ‖uaj − aju‖2,ρ̃ < ε, for all 1 6 j 6 k, where ‖ · ‖2,ρ̃ is the trace norm induced

by ρ̃ onM.
Now it is not hard to verify that qαu is a unitary in qαM satisfying τα(qαu) =

τ(qαu) = 0, where τα is the unique center-valued trace on qαM. Moreover,

‖(qαu)aj − aj(qαu)‖2,ρα = ‖(qαu)aj − aj(qαu)‖2,ρ̃ = ‖uaj − aju‖2,ρ̃ < ε.

From Proposition 3.5 in [14], it follows that qαM has Property Γ for each α in Ω.
This ends the whole proof.

4. SIMILARITY DEGREE OF TYPE II1 VON NEUMANN ALGEBRAS WITH PROPERTY Γ

Let us recall the definition of Property c∗-Γ for unital C∗-algebras.

DEFINITION 4.1 ([14]). SupposeA is a unital C∗-algebra. We sayA has Prop-
erty c∗-Γ if it satisfies the following condition:

If π is a unital ∗-representation of A on a Hilbert space H such that
π(A)′′ is a type II1 factor, then π(A)′′ has Property Γ.

IfA is a separable unital C∗-algebra with Property c∗-Γ, Theorem 5.3 in [14]
gives that the similarity degree of A is no more than 3. Indeed, it was shown in
Theorem 5.3 in [14] that, for any C∗-algebra B, if φ is a bounded unital homomor-
phism from A to B, then ‖φ‖cb 6 ‖φ‖3.

LEMMA 4.2. SupposeM is a type II1 von Neumann algebra with Property Γ. Let
τ be the center-valued trace onM such that τ(a) = a for any a ∈ ZM, where ZM is
the center ofM. Suppose F is a finite subset ofM. Then there exists a separable unital
C∗-subalgebra A with Property c∗-Γ satisfying F ⊆ A ⊆M.
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Proof. Let F1 = F = {x1, x2, . . . , xk} be a finite subset of M. Since M
has Property Γ, by Theorem 3.11, there exists a 2 × 2 system of matrix units
{e(1)11 , e(1)12 , e(1)21 , e(1)22 } such that:

(i1) e(1)11 + e(1)22 = I, where I is the identity ofM;

(ii1) τ((e(1)ii x− xe(1)ii )∗(e(1)ii x− xe(1)ii )) 6 (1/2)I, for each x ∈ F1.

From (ii1), by the Dixmier approximation theorem, there exist a positive integer
n1, a family of unitaries v(1)1 , v(1)2 , . . . , v(1)n1 inM such that:

(iii1) for each 1 6 i 6 2 and each x ∈ F1, there is an element y in the convex hull
of {(v(1)t )∗(e(1)ii x− xe(1)ii )∗(e(1)ii x− xe(1)ii )v(1)t : 1 6 t 6 n1} with ‖y‖ < 1.

Let F2 = F1 ∪ {e
(1)
11 , e(1)12 , e(1)21 , e(1)22 } ∪ {v

(1)
1 , . . . , v(1)n1 }.

Assume that F1 ⊆ F2 ⊆ · · · ⊆ Fm have been constructed for some m > 2.
Since M has Property Γ, again by Theorem 3.11, there exists a 2× 2 system of
matrix units {e(m)

11 , e(m)
12 , e(m)

21 , e(m)
22 } such that:

(im) e(m)
11 + e(m)

22 = I, where I is the identity ofM;

(iim) τ((e(m)
ii x− xe(m)

ii )∗(e(m)
ii x− xe(m)

ii )) 6 (1/(m + 1))I, for each x ∈ Fm.

From (iim), by the Dixmier approximation theorem, there exist a positive integer
nm, a family of unitaries v(m)

1 , v(m)
2 , . . . , v(m)

nm inM such that:

(iiim) for each 1 6 i 6 2 and each x ∈ Fm, there is an element y in the convex hull
of {(v(m)

t )∗(e(m)
ii x− xe(m)

ii )∗(e(m)
ii x− xe(m)

ii )v(m)
t : 1 6 t 6 nm} with ‖y‖ < 1/m.

Let Fm+1 = Fm ∪ {e(m)
11 , e(m)

12 , e(m)
21 , e(m)

22 } ∪ {v
(m)
1 , v(m)

2 , . . . , v(m)
nm }.

Continuing this process, we are able to obtain a sequence {Fm}, a sequence
of system of units {e(m)

11 , e(m)
12 , e(m)

21 , e(m)
22 } such that:

(0) {x1, . . . , xk} = F1 ⊆ F2 ⊆ · · · ⊆ Fm ⊆ · · · ;
(1) for each m > 1, {e(m)

11 , e(m)
12 , e(m)

21 , e(m)
22 } is a system of units such that e(m)

11 +

e(m)
22 = I;

(2) τ((e(m)
ii x− xe(m)

ii )∗(e(m)
ii x− xe(m)

ii )) 6 (1/(m + 1))I, for each x ∈ Fm;
(3) for each i = 1, 2 and each x ∈ Fm, there is an element

y ∈ conv{v∗(e(m)
ii x− xe(m)

ii )∗(e(m)
ii x− xe(m)

ii )v : v is a unitary in Fm+1}

satisfying ‖y‖ < 1
m .

Let A be the unital C∗-algebra generated by
⋃

m∈N
Fm. Then A is separable

and it follows from the preceding construction that

(4) for i = 1, 2 and any x ∈ A, there exists a sequence of elements {ym}m>1 in
A such that, for m > 1, each ym is in the convex hull of {v∗(e(m)

ii x− xe(m)
ii )∗(e(m)

ii x−
xe(m)

ii )v : v is a unitary in A} and lim
m→∞

‖ym‖ = 0.
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Now we are going to show this C∗-subalgebra A ofM has Property c∗-Γ.
Suppose π is a unital ∗-representation ofA on a Hilbert space H such that π(A)′′

is a type II1 factor. Notice that for each m ∈ N, {e(m)
11 , e(m)

12 , e(m)
21 , e(m)

22 } is a 2× 2

system of matrix units in A. It follows that {π(e(m)
11 ), π(e(m)

12 ), π(e(m)
21 ), π(e(m)

22 )} is

also a system of matrix units. Hence π(e(m)
11 ), π(e(m)

22 ) are orthogonal equivalent
projections in π(A)′′ with sum I.

It follows from condition (4) that

(4’) for i = 1, 2 and any x ∈ π(A), there exists a sequence of elements {ym}m>1
in π(A) such that, for m > 1, each ym is in the convex hull of

{v∗(π(e(m)
ii )x− xπ(e(m)

ii ))∗(π(e(m)
ii )x− xπ(e(m)

ii ))v : v is a unitary in π(A)}
and lim

m→∞
‖ym‖ = 0.

Let ρ be the unique trace on π(A)′′. Since ρ is tracial, condition (4’) implies that,
for any x ∈ π(A),

lim
m→∞

ρ((π(e(m)
ii )π(x)− π(x)π(e(m)

ii ))∗(π(e(m)
ii )π(x)− π(x)π(e(m)

ii )))

= lim
m→∞

ρ(ym) = 0.(4.1)

By Kaplansky density theorem, it follows from (4.1) that

lim
m→∞

ρ((π(e(m)
ii )a− aπ(e(m)

ii ))∗(π(e(m)
ii )a− aπ(e(m)

ii ))) = 0

for any a ∈ π(A)′′. Note that a type II1 factor is always countably decomposable.
By Proposition 3.5 in [14], π(A)′′ has Property Γ, whence we conclude thatA has
Property c∗-Γ.

The proof is completed.

It was shown in [2] that the similarity degree of a type II1 factor with Prop-
erty Γ is 3. The following theorem gives a generalization.

THEOREM 4.3. If M is a type II1 von Neumann algebra with Property Γ, then
the similarity degree d(M) = 3.

Proof. Since M is a von Neumann algebra of type II1, by Corollary 1.9 in
[19], it is not nuclear. It follows from Theorem 1 in [11] that d(M) > 3. In the
following we show that d(M) is no more than 3.

Suppose φ : M → B(H) is a bounded unital homomorphism, where H is
a Hilbert space. We will show that ‖φ‖cb 6 ‖φ‖3. In fact we are going to prove
that, for any n ∈ N and any x = (xij) ∈ Mn(M),

(4.2) ‖φ(n)(x)‖ 6 ‖φ‖3‖x‖.
Fix n ∈ N and x = (xij) ∈ Mn(M). We assume that ‖x‖ = 1. Notice that

F = {xij : 1 6 i, j 6 n} is a finite subset ofM. By Lemma 4.2, there is a separable
unital C∗-subalgebra A ofM with Property c∗-Γ such that F ⊆ A. Let φ̃ be the
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restriction of φ on A. Then φ̃ : A → B(H) is a bounded unital homomorphism.
It was shown in the proof of Theorem 5.3 in [14] that

(4.3) ‖φ̃‖cb 6 ‖φ̃‖3.

Since F ⊆ A, it follows from (4.3) that

‖φ(n)(x)‖ = ‖φ̃(n)(x)‖ 6 ‖φ̃‖3 6 ‖φ‖3.

Therefore d(M) = 3 and the proof is completed.

Based on Theorem 4.3, a slight modification of the proof of Theorem 5.2 in
[14] gives the next corollary.

COROLLARY 4.4. LetM be a von Neumann algebra with the type decomposition

M =M1 ⊕Mc1 ⊕Mc∞ ⊕M∞,

whereM1 is a type I von Neumann algebra, Mc1 is a type II1 von Neumann algebra,
Mc∞ is a type II∞ von Neumann algebra andM∞ is a type III von Neumann algebra.
Suppose Mc1 is a type II1 von Neumann algebra with Property Γ. If φ is a bounded
unital representation ofM on a Hilbert space H, which is continuous fromM, with the
topology σ(M,M]), to B(H), with the topology σ(B(H), B(H)]), then φ is completely
bounded and ‖φ‖cb 6 ‖φ‖3.

Suppose A is a unital C∗-algebra. Let I be some index set and

l∞(I ,A) =
{
(xi)i∈J : for each i ∈ I , xi ∈ A and sup

i∈I
‖xi‖ < ∞

}
.

It was shown in Corollary 17 of [8] that ifM is a type II1 factor with Property Γ,
then d(l∞(I ,M)) 6 5 for any index set I . The next corollary gives an exact value
of d(l∞(I ,M)).

COROLLARY 4.5. IfM is a type II1 factor with Property Γ, then d(l∞(I ,M)) =
3 for any index set I .

Proof. Assume thatM is a type II1 factor with Property Γ. By Theorem 3.11,
for any index set I , l∞(I ,M) is a type II1 von Neumann algebra with Property Γ.
Therefore

d(l∞(I ,M)) = 3.

Let C be the CAR-algebra C = M2(C) ⊗ M2(C) ⊗ · · · (infinite C∗-tensor
product of 2 × 2 matrix algebras). It was shown in Proposition 21 of [8] that,
for any index set I , d(l∞(I , C)) 6 5. The next corollary gives an exact value of
d(l∞(I , C)).

COROLLARY 4.6. Let C = M2(C)⊗ M2(C)⊗ · · · (infinite C∗-tensor product
of 2× 2 matrix algebras). Then, for any infinite index set I , d(l∞(I , C)) = 3.

Proof. Denote by A = l∞(I , C) = ∑
i∈I

⊕
Ci, where Ci is a copy of C for each

i ∈ I . Let R and Ri be the canonical hyperfinite II1 factor generated by C and
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Ci, respectively. Let τi be a trace on Ri. Let M = l∞(I ,R) = ∑
i∈I

⊕Ri. We

might assume that bothM andA act naturally on the Hilbert space ∑
i∈I

l2(Ri, τi).

Denote by pi the projection in A such that piA = Ci. It follows that ∑
i∈I

pi = I.

First we will prove the following two claims.
Claim 4.6.1. For any x1, . . . , xk in A and any ε > 0, there exists a system of

matrix units {Est : 1 6 s, t 6 2} in A such that E11 + E22 = I and

‖xjEss − Essxj‖ < ε, for all 1 6 s 6 2, 1 6 j 6 k.

Proof of Claim 4.6.1. For each i ∈ I , note that pix1, . . . , pixk are in a CAR-
algebra Ci. Hence there exists a system of matrix units {e(i)st : 1 6 s, t 6 2} in Ci

such that e(i)11 + e(i)22 = pi and

‖xje
(i)
ss − e(i)ss xj‖ <

ε

2
, for all 1 6 s 6 2, 1 6 j 6 k.

Let
Est = ∑

i∈I
e(i)st , for all 1 6 s, t 6 2.

Then {Est : 1 6 s, t 6 2} is a system of matrix units in A such that E11 + E22 = I
and we have the following that finishes the proof of Claim 4.6.1:

‖xjEss − Essxj‖ = sup
i
‖xje

(i)
ss − e(i)ss xj‖ < ε, for all 1 6 s 6 2, 1 6 j 6 k.

Claim 4.6.2. For any x1, . . . , xk in A, there exists a separable C∗-subalgebra
B of A such that B is of Property c∗-Γ and all x1, . . . , xk are in B.

Proof of Claim 4.6.2. Let F1 = {x1, . . . , xk}. By Claim 4.6.1, there exists a sys-
tem of matrix units {E(1)

st : 1 6 s, t 6 2} in A such that E(1)
11 + E(1)

22 = I and

‖xE(1)
ss − E(1)

ss x‖ < 1 for all 1 6 s 6 2, 1 6 j 6 k, and x ∈ F1.

Let F1 = F1 ∪ {E
(1)
st : 1 6 s, t 6 2}.

Assume that F1 ⊆ F2 ⊆ · · · ⊆ Fm have been constructed for some m > 2. By
Claim 4.6.1, we know there exists a system of matrix units {E(m)

st : 1 6 s, t 6 2} in

A such that E(m)
11 + E(m)

22 = I and

‖xE(m)
ss − E(m)

ss x‖ < 1
m

for all 1 6 s 6 2, 1 6 j 6 k, and x ∈ Fm.

Let Fm+1 = Fm ∪ {E(m)
st : 1 6 s, t 6 2}.

Using similar arguments as in Lemma 4.2, we are able to obtain an increas-
ing sequence of subsets {Fm} ofA such that (a) the C∗-subalgebra B generated by
{Fm} in A is of Property c∗-Γ; and (b) all x1, . . . , xk are in B. This ends the proof
of Claim 4.6.2.
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We continue the proof of the corollary. From Claim 4.6.2, using similar ar-
guments as in Theorem 4.3, we conclude that d(A) 6 3.

Next we will show that d(A) > 3. Since I is an infinite set, let I0 be a

countable infinite subset of I . Then
(

∑
i∈I\I0

pi

)
A is a closed two sided ideal of

A. Moreover,
(

∑
i∈I0

pi

)
A ∼= A/

(
∑

i∈I\I0

pi

)
A. By Remark 6 in [10], we know that

d(A) > d
((

∑
i∈I0

pi

)
A
)

. In order to show that d(A) > 3, it suffices to show that

d
((

∑
i∈I0

pi

)
A
)
> 3. By replacing I by I0, we can assume that I = N.

Let ω be a free ultra-filter of N and

J =
{
(xi) ∈ M(= l∞(N,R) = ∑

i∈I
⊕Ri) : lim

i→ω
τi(x∗i xi) = 0

}
be a closed two sided ideal of M. By Theorem 7.1 in [15], M/J is a type II1
factor. By Remark 12 in [8], d(M/J ) > 3.

Let q : M → M/J be the quotient map. For any element (xi) ∈ M,
by Kaplansky’s density theorem, there exists an element (x̃i) ∈ A such that
q((x̃i)) = q((xi)). In other words, q(A) = M/J . By Remark 6 in [10], we get
that d(A) > d(M/J ). Combining with the result from the preceding paragraph,
we conclude that d(A) > 3.

Therefore d(l∞(I , C)) = d(A) = 3, when I is an infinite set.
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