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ABSTRACT. A well known result of C. Cowen states that, for a symbol ϕ ∈
L∞, ϕ ≡ f + g ( f , g ∈ H2), the Toeplitz operator Tϕ acting on the Hardy space
of the unit circle is hyponormal if and only if f = c + Thg, for some c ∈ C,
h ∈ H∞, ‖h‖∞ 6 1. In this note we consider possible versions of this result
in the Bergman space case. Concretely, we consider Toeplitz operators on the
Bergman space of the unit disk, with symbols of the form

ϕ ≡ αzn + βzm + γzp + δzq,

where α, β, γ, δ ∈ C and m, n, p, q ∈ Z+, m < n and p < q. By studying the
asymptotic behavior of the action of Tϕ on a particular sequence of vectors, we
obtain a sharp inequality involving the above mentioned data. This inequality
improves a number of existing results, and it is intended to be a precursor of
basic necessary conditions for joint hyponormality of tuples of Toeplitz oper-
ators acting on Bergman spaces in one or several complex variables.
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NOTATION AND PRELIMINARIES

A bounded operator acting on a complex, separable, infinite dimensional
Hilbert space H is said to be normal if T∗T = TT∗; quasinormal if T commutes
with T∗T; subnormal if T = N|H, where N is normal on a Hilbert space K which
contains H and NH ⊆ H; hyponormal if T∗T > TT∗; and 2-hyponormal if
(T, T2) is (jointly) hyponormal, that is(

[T∗, T] [T∗2, T]
[T∗, T2] [T∗2, T2]

)
> 0.

Clearly,

normal ⇒ quasinormal ⇒ subnormal ⇒ 2-hyponormal ⇒ hyponormal.
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In this paper we focus primarily on the cases H2(T) and A2(D), the Hardy space
on the unit circle T and the Bergman space on the unit disk D, respectively. For
these Hilbert spaces, we look at Toeplitz operators, that is, the operators obtained
by compressing multiplication operators on the respective L2-spaces to the above
mentioned Hilbert spaces. We consider possible versions, in the Bergman space
context, of C. Cowen’s characterization of hyponormality for Toeplitz operators
on Hardy space of the unit circle. Concretely, we consider Toeplitz operators on
the Bergman space of the unit disk, with symbols of the form

ϕ ≡ αzn + βzm + γzp + δzq,

where α, β, γ, δ ∈ C and m, n, p, q ∈ Z+, m < n and p < q. By letting Tϕ act on
vectors of the form

zk + cz` + dzr (k < ` < r),

we study the asymptotic behavior of a suitable matrix of inner products, as k →
∞. As a result, we obtain a sharp inequality involving the above mentioned data.
We begin with a brief survey of the known results in the Hardy space context.

1. THE HARDY SPACE CASE

Let L2(T) denote the space of square integrable functions with respect to the
Lebesgue measure on the unit circle, and let H2(T) denote the subspace consist-
ing of functions with vanishing negative Fourier coefficients; equivalently, H2(T)
is the L2(T)-closure of the space of analytic polynomials. We also let L∞(T) and
H∞(T) denote the corresponding Banach spaces of essentially bounded functions
on T. The orthogonal projection from L2(T) onto H2(T) will be denoted by P.

Given ϕ ∈ L∞(T), the Toeplitz operator with symbol ϕ acting on the Hardy
space is Tϕ : H2(T) → H2(T), given by Tϕ f := P(ϕ f ) ( f ∈ H2(T)). Tϕ is said to
be analytic if ϕ ∈ H∞(T).

P.R. Halmos’s problem 5 ([8]) asks whether every subnormal Toeplitz op-
erator is either normal or analytic. In 1984, C. Cowen and J. Long answered
this question in the negative [4]. Along the way, C. Cowen obtained a charac-
terization of hyponormality for Toeplitz operators, as follows [3]: if ϕ ∈ L∞,
ϕ = f + g ( f , g ∈ H2), then Tϕ is hyponormal⇔ f = c + Thg, for some c ∈ C,
h ∈ H∞, and ‖h‖∞ 6 1. T. Nakazi and K. Takahashi [11] later found an alterna-
tive description: for ϕ ∈ L∞, let E(ϕ) := {k ∈ H∞ : ‖k‖∞ 6 1 and ϕ− kϕ ∈ H∞};
then Tϕ is hyponormal⇔ E(ϕ) 6= ∅. (For a generalization of Cowen’s result, see
[7].) In this note we take a first step toward finding suitable generalizations of
these results to the case of Toeplitz operators on the Bergman space over the unit
disk. We also wish to pursue appropriate generalizations of the results on joint
hyponormality of pairs of Toeplitz operators on the Hardy space, obtained in [6]
and [5].
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At present, there is no known characterization of subnormality of Toeplitz
operators in the unit circle in terms of the symbol. However, we do know that ev-
ery 2-hyponormal Toeplitz operator with a trigonometric symbol is subnormal [6].
Thus, a suitable intermediate goal is to find a characterization of 2-hyponormality
in terms of the symbol, perhaps using as a starting point either Cowen’s or
Nakazi–Takahashi’s characterizations of hyponormality.

For Toeplitz operators with trigonometric symbols, the following result gives
a flavor of what is known about hyponormality.

PROPOSITION 1.1 ([14]). Suppose

ϕ(z) ≡
n

∑
k=0

akzk +
n

∑
k=0

bkzk,

with an 6= 0. Let 
c0
c1
...

cn−1

 =


a1 a2 · · · an−1 an
a2 a3 · · · an 0
...

...
. . .

...
...

an 0 · · · 0 0




b1
b2
...

bn

 .

Then Tϕ is hyponormal if and only if |Φk(c0, . . . , ck)| 6 1 (0 6 k 6 n− 1), where Φk
denotes the Schur function introduced in [13].

2. THE BERGMAN SPACE CASE

By analogy with the case of the unit circle, let L∞ ≡ L∞(D), H∞ ≡ H∞(D),
L2 ≡ L2(D) and A2 ≡ A2(D) denote the relevant spaces in the case of the unit
disk D. Similarly, let P : L2 → A2 denote the orthogonal projection onto the
Bergman space. For ϕ ∈ L∞, the Toeplitz operator on the Bergman space with
symbol ϕ is

Tϕ : A2(D)→ A2(D),
given by

Tϕ f := P(ϕ f ) ( f ∈ A2).

Tϕ is said to be analytic if ϕ ∈ H∞.

2.1. A REVEALING EXAMPLE. Let

ϕ ≡ z2 + 2z.

On the Hardy space H2(T), Tϕ is not hyponormal. However, on the Bergman
space A2(D) Tϕ is hyponormal, as we now prove. Consider a slight variation of
the symbol, that is,

ϕ ≡ z2 + αz (α ∈ C).
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Observe that

〈[T∗ϕ, Tϕ] f , f 〉 = 〈|α|2[Tz, Tz] + [Tz2 , Tz2 ] f , f 〉

so that Tϕ is hyponormal if and only if

(2.1) |α|2‖z f ‖2 + 〈P(z2 f ), z2 f 〉 > |α|2〈P(z f ), z f 〉+ ‖z2 f ‖2

for all f ∈ A2(D).
A calculation now shows that this happens precisely when |α| > 2, as fol-

lows. For, given f ∈ A2(D), f ≡
∞
∑
0

bnzn, one can apply Lemma 2.1 beow and

obtain

‖z f ‖2 =
∞

∑
0

|bn|2
n + 2

, ‖P(z f )‖2 =
∞

∑
1
|bn|2

n
(n + 1)2 ,

‖z2 f ‖2 =
∞

∑
0

|bn|2
n + 3

, and ‖P(z2 f )‖2 =
∞

∑
2
|bn|2

n− 1
(n + 1)2 .

Thus, (2.1) becomes

(2.2) |α|2
∞

∑
0

|bn|2
n + 2

+
∞

∑
2
|bn|2

n− 1
(n + 1)2 > |α|2

∞

∑
1
|bn|2

n
(n + 1)2 +

∞

∑
0

|bn|2
n + 3

.

In short, equation (2.2) must hold for every sequence (bn) of coefficients of f .
Consider first a sequence (bn) with b0 := 1 and bn := 0 for all n > 1. By (2.1),
we have |α|2 > 2

3 . Next, take b0 := 0, b1 := 1 and bn := 0 for all n > 2; then
(2.1) yields |α|2 > 3. Finally, if we fix k > 2 and we use a sequence (bn) defined as
b0 := 0, b1 := 0, . . . , bk−1 := 0, bk := 1 and bn := 0 for all n > k, then (2.2) becomes

|α|2
k + 2

+
k− 1

(k + 1)2 > |α|2 k
(k + 1)2 +

1
k + 3

.

This immediately leads to the condition

|α|2 > 4
k + 2
k + 3

(all k > 2);

that is, |α|2 > 4. As a result, Tϕ is hyponormal if and only if |α| > 2. It follows
that Tz2+2z is hyponormal.

2.2. A KEY DIFFERENCE BETWEEN THE HARDY AND BERGMAN CASES.

LEMMA 2.1. For u, v > 0, we have

P(zuzv) =

{
0 v < u,
(v−u+1)

v+1 zv−u v > u.
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Proof.

P(zuzv) =
∞

∑
j=0

〈
zuzv,

zj

‖zj‖

〉 zj

‖zj‖

=
∞

∑
j=0

〈zuzv, zj〉zj

‖zj‖2 =
∞

∑
j=0

(j + 1)〈zv, zu+j〉zj

=

{
0 v < u,
v−u+1

v+1 zv−u v > u.

COROLLARY 2.2. For v > u and t > w, we have

〈P(zuzv), P(zwzt)〉 =
〈v− u + 1

v + 1
zv−u,

t− w + 1
t + 1

zt−w
〉
=

(t− w + 1)
(v + 1)(t + 1)

δu+t,v+w.

2.3. SOME KNOWN RESULTS. In this subsection, we briefly summarize a number
of partial results relating to the Bergman space case.

(•) (H. Sadraoui [12]). If ϕ ≡ g + f , the following are equivalent:
(i) Tϕ is hyponormal on A2(D);

(ii) H∗g Hg 6 H∗
f
H f ;

(iii) Hg = CH f , where C is a contraction on A2(D).
(•) (I.S. Hwang [9]). Let ϕ ≡ a−mzm + a−NzN + amzm + aNzN (0 < m < N)

satisfying amaN = a−ma−N , then Tϕ is hyponormal if and only if

1
N + 1

(|aN |2 − |a−N |2) >
1

m + 1
(|a−m|2 − |am|2) if |a−N | 6 |aN |,

N2(|a−N |2 − |aN |2) 6 m2(|am|2 − |a−m|2) if |aN | 6 |a−N |.

The last condition is not sufficient.
(•) (P. Ahern and Ž. Čučković [1]). Let ϕ ≡ g + f ∈ L∞(D), and assume that

Tϕ is hyponormal. Then

Bu > u,

where B denotes the Berezin transform and u := | f |2 − |g|2.
(•) (P. Ahern and Ž. Čučković [1]). Let ϕ ≡ g + f ∈ L∞(D), and assume that

Tϕ is hyponormal. Then

lim sup
z→ζ

(| f ′(z)|2 − |g′(z)|2) > 0

for all ζ ∈ T. In particular, if f ′ and g′ are continuous at ζ ∈ T then | f ′(ζ)| >
|g′(ζ)|.

(•) (Y. Lu and Y. Shi [10]). The authors study the weighted Bergman space case,
and prove the following result (cf. Theorem 2.4(ii) of [10]): let ϕ := αzn + βzm +
γzm + δzn, with n > m. Then m2(|β|2 − |γ|2) + n2(|α|2 − |δ|2) > mn|αβ− γδ|.



292 ŽELJKO ČUČKOVIĆ AND RAÚL E. CURTO

2.4. HYPONORMALITY OF TOEPLITZ OPERATORS ON THE BERGMAN SPACE. The
self-commutator of Tϕ is

C := [T∗ϕ, Tϕ].

We seek necessary and sufficient conditions on the symbol ϕ to ensure that C > 0.
The next result gives a flavor of the type of calculations we face when try-

ing to decipher the hyponormality of a Toeplitz operator on the Bergman space.
Although the calculation therein will be superseded by the calculations in the fol-
lowing section, it serves both as a preliminary example and as motivation for the
organization of our work.

PROPOSITION 2.3. Assume k, ` > max{a, b}. Then

〈[Tza , Tzb ](zk+cz`), zk+cz`〉= a2
[ 1
(k+1)2(k+1+a)

+c2 1
(`+1)2(`+1+a)

]
δa,b

+ ac
[ k− `+ a
(a + k + 1)(k + 1)(`+ 1)

δa+k,b+`

+
`− k + a

(a + `+ 1)(k + 1)(`+ 1)
δa+`,b+k

]
.

Proof. Keeping in mind that k, ` > max{a, b}, we calculate the action of the
commutator on the binomial zk + cz`:

〈[Tza , Tzb ](zk + cz`), zk + cz`〉

= 〈Tza Tzb(zk + cz`), zk + cz`〉 − 〈Tzb Tza(zk + cz`), zk + cz`〉

= 〈zb+k + czb+`, za+k + cza+`〉 − 〈P(zazk + czaz`), P(zbzk + czbz`)〉

=
δa,b

a + k + 1
+ c

δa+k,b+`

a + k + 1
+ c

δa+`,b+k

a + `+ 1
+ c2 δa,b

a + `+ 1

− (k− b + 1)
(k + 1)2 δa,b − c

(k− a + 1)
(k + 1)(`+ 1)

δa+`,b+k

− c
(k− b + 1)

(k + 1)(`+ 1)
δa+k,b+` − c2 (`− b + 1)

(`+ 1)2 δa,b

=
[ 1

a + k + 1
+ c2 1

a + `+ 1
− (k− b + 1)

(k + 1)2 − c2 (`− b + 1)
(`+ 1)2

]
δa,b

+ c
[ 1

a + k + 1
− (k− b + 1)

(k + 1)(`+ 1)

]
δa+k,b+`

+ c
[ 1

a + `+ 1
− (k− a + 1)

(k + 1)(`+ 1)

]
δa+`,b+k

=
[ (k + 1)(b− a) + ab
(k + 1)2(k + 1 + a)

+ c2 (`+ 1)(b− a) + ab
(`+ 1)2(`+ 1 + a)

]
δa,b

+ c
[ 1

a + k + 1
− (`− a + 1)

(k + 1)(`+ 1)

]
δa+k,b+`
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+ c
[ 1

a + `+ 1
− (k− a + 1)

(k + 1)(`+ 1)

]
δa+`,b+k

=
[ a2

(k + 1)2(k + 1 + a)
+ c2 a2

(`+ 1)2(`+ 1 + a)

]
δa,b

(if a 6= b then this whole expression is 0)

+ ac
k− `+ a

(a + k + 1)(k + 1)(`+ 1)
δa+k,b+`

+ ac
`− k + a

(a + `+ 1)(k + 1)(`+ 1)
δa+`,b+k

= a2
[ 1
(k + 1)2(k + 1 + a)

+ c2 1
(`+ 1)2(`+ 1 + a)

]
δa,b

+ ac[
k− `+ a

(a + k + 1)(k + 1)(`+ 1)
δa+k,b+`

+
`− k + a

(a + `+ 1)(k + 1)(`+ 1)
δa+`,b+k],

as desired.

COROLLARY 2.4. Assume a = b, k, ` > a and k 6= `. Then

〈[Tza , Tza ](zk + cz`), zk + cz`〉 = a2
[ 1
(k + 1)2(k + 1 + a)

+ c2 1
(`+ 1)2(`+ 1 + a)

]
.

2.5. SELF-COMMUTATORS. We focus on the action of the self-commutator C of
certain Toeplitz operators Tϕ on suitable vectors f in the space A2(D). The symbol
ϕ and the vector f are of the form

ϕ := αzn + βzm + γzp + δzq (n > m; p < q), and

f := zk + cz` + dzr (k < ` < r),

respectively, with ` and r to be determined later. We also assume that n− m =
q − p. Our ultimate goal is to study the asymptotic behavior of this action as k
goes to infinity. Thus, we consider the expression 〈C f , f 〉, given by

〈[(Tαzn+βzm+γzp+δzq)∗, Tαzn+βzm+γzp+δzq ](zk + cz` + dzr), zk + cz` + dzr〉,

for large values of k (and consequently large values of ` and r). It is straightfor-
ward to see that 〈C f , f 〉 is a quadratic form in c and d, that is,

(2.3) 〈C f , f 〉 ≡ A00 + 2Re(A10c) + 2Re(A01d) + A20cc + 2Re(A11cd) + A02dd.

Alternatively, the matricial form of (2.3) is

(2.4)

〈 A00 A10 A01
A10 A20 A11
A01 A11 A02

 1
c
d

 ,

 1
c
d

〉 .



294 ŽELJKO ČUČKOVIĆ AND RAÚL E. CURTO

We now observe that the coefficient A00 arises from the action of C on the
monomial zk, that is,

A00 = 〈Czk, zk〉 ≡ 〈[(Tαzn+βzm+γzp+δzq)∗, Tαzn+βzm+γzp+δzq ]zk, zk〉.

Similarly,

A10 = 〈Cz`, zk〉,

A01 = 〈Czr, zk〉,(2.5)

A20 = 〈Cz`, z`〉,

A11 = 〈Czr, z`〉,(2.6)

A02 = 〈Czr, zr〉.

To calculate A00 explicitly, we first recall that the algebra of Toeplitz opera-
tors with analytic symbols is commutative, and therefore Tzn commutes with Tzm ,
Tzp and Tzq .

We also recall that two monomials zu and zv are orthogonal whenever u 6=
v. As a result, the only nonzero contributions to A00 must come from the inner
products 〈[T∗zn , Tzn ]zk, zk〉, 〈[T∗zm , Tzm ]zk, zk〉, 〈[T∗zp , Tzp ]zk, zk〉 and 〈[T∗zq , Tzq ]zk, zk〉 .

Applying Corollary 2.4 we see that

A00 =
1

(k + 1)2

( |α|2n2

k + n + 1
+
|β|2m2

k + m + 1
− |γ|2 p2

k + p + 1
− |δ|2q2

k + q + 1

)
.

Similarly,

A10 = αβ
( 1
`+ m + 1

− k−m + 1
(k + 1)(`+ 1)

)
δn+k,m+`

+ αβ
( 1
`+ n + 1

− k− n + 1
(k + 1)(`+ 1)

)
δm+k,n+`

− γδ
( 1
`+ p + 1

− k− p + 1
(k + 1)(`+ 1)

)
δq+k,p+`

− γδ
( 1
`+ q + 1

− k− q + 1
(k + 1)(`+ 1)

)
δp+k,q+`.(2.7)

Now recall that m < n and k < `, so that m + k < n + `, and therefore δm+k,n+` =
0. Also, p < q implies p + k < q + `, so that δp+k,q+` = 0. As a consequence,

A10 = αβ
( 1
`+ m + 1

− k−m + 1
(k + 1)(`+ 1)

)
δn+k,m+`

− γδ
( 1
`+ p + 1

− k− p + 1
(k + 1)(`+ 1)

)
δq+k,p+`.(2.8)

Consider now A01, as described in (2.5). We wish to imitate the calculation
for A10. Observe that k < r, so that the vanishing of the relevant δ’s in (2.7) still
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holds. Thus, we obtain

A01 = αβ
( 1

r + m + 1
− k−m + 1

(k + 1)(r + 1)

)
δn+k,m+r

− γδ
( 1

r + p + 1
− k− p + 1

(k + 1)(r + 1)

)
δq+k,p+r.(2.9)

In short, A01 can be obtained from A10 by replacing ` by r. In a completely anal-
ogous way, we can calculate A11, by replacing ` by r and k by ` in (2.7):

A11 = αβ
( 1

r + m + 1
− `−m + 1

(`+ 1)(r + 1)

)
δn+`,m+r

− γδ
( 1

r + p + 1
− `− p + 1

(r + 1)(`+ 1)

)
δq+`,p+r.(2.10)

Also, A20 and A02 follow the pattern of A00:

A20 =
1

(`+ 1)2

( |α|2n2

`+ n + 1
+
|β|2m2

`+ m + 1
− |γ|2 p2

`+ p + 1
− |δ|2q2

`+ q + 1

)
, and

A02 =
1

(r + 1)2

( |α|2n2

r + n + 1
+
|β|2m2

r + m + 1
− |γ|2 p2

r + p + 1
− |δ|2q2

r + q + 1

)
.

Recall again that k < ` < r. We now make a judicious choice to simplify the
forms of A10, A11 and A01. That is, we let ` := n + k− m and r := `+ q− p. It
follows that n + k = m + ` < m + r and q + k < q + ` = p + r. Therefore, both
Kronecker deltas appearing in A01 are zero, and thus A01 = 0. Moreover,

A10 = αβ
( 1
`+ m + 1

− k−m + 1
(k + 1)(`+ 1)

)
− γδ

( 1
`+ p + 1

− k− p + 1
(k + 1)(`+ 1)

)
δq+k,p+` and(2.11)

A11 = αβ
( 1

r + m + 1
− `−m + 1

(r + 1)(`+ 1)

)
δn+`,m+r

− γδ
( 1

r + p + 1
− `− p + 1

(r + 1)(`+ 1)

)
.(2.12)

The 3× 3 matrix associated with C becomes

M :=

 A00 A10 0
A10 A20 A11
0 A11 A02

 .

We now wish to study the asymptotic behavior of k3M as k → ∞. Surprisingly,
k3 A00, k3 A02 and k3 A20 all have the same limit as k → ∞. Also, k3 A10 and k3 A11
have the same limit. To see this, observe that

k3 A00 =
k2

(k + 1)2

( k|α|2n2

k + n + 1
+

k|β|2m2

k + m + 1
− k|γ|2 p2

k + p + 1
− k|δ|2q2

k + q + 1

)
,
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so that

a := lim
k→∞

k3 A00 = |α|2n2 + |β|2m2 − |γ|2 p2 − |δ|2q2.

Then lim
k→∞

k3 A20 = lim
k→∞

k3 A02 = a. In terms of the remaining entries of k3M,

recall the assumption n−m = q− p, and let g := n−m = q− p. It follows that
` = k + g and r = `+ g = k + 2g. By using these values in (2.11), we obtain

k3 A10 = αβ
k3mn

(k + 1)(k + g + 1)(k + g + m + 1)

− γδ
k3 pq

(k + 1)(k + g + 1)(k + g + p + 1)
,

so that

ρ := lim
k→∞

k3 A10 = αβmn− γδpq.

The calculation for A11 is entirely similar, and one gets lim
k→∞

k3 A11 = ρ.

It follows that the asymptotic behavior of k3M is given by the tridiagonal
matrix  a ρ 0

ρ a ρ
0 ρ a

 .

Now, if instead of using a vector of the form

f := zk + cz` + dzr (k < ` < r),

with ` = k + g and r = ` + g = k + 2g (that is, a vector of the form f := zk +
czk+g + dzk+2g) we were to use a longer vector with similar power structure,

fN := zk + c1zk+g + c2zk+2g + · · ·+ cNzk+Ng,

it is not hard to see that the asymptotic behavior of the associated matrix would
still be given by the tridiagonal matrix with a in the diagonal and ρ in the super-
diagonal. To see this, one only need to observe that the entries of the matrix
P associated with 〈C f , f 〉 will follow the same pattern as the entries in M. For
example, when N = 3 the (3, 4)-entry of P will follow the pattern of A10 above,
with ` and k replaced by k + 3g and k + 2g, respectively. Similarly, the (2, 4)-entry
of P will follow the pattern of A01 above, with r and k replaced by k + 3g and
k + g, respectively. As a result, it is straightforward to see that, like A01, the entry
P24 will be zero. As for P34, one gets

P34 = αβ
( 1

k + 3g + m + 1
− k + 2g−m + 1

(k + 2g + 1)(k + 3g + 1)

)
δn+k+2g,m+k+3g

− γδ
( 1

k + 3g + p + 1
− k + 2g− p + 1

(k + 3g + 1)(k + 2g + 1)

)
δq+k+2g,p+k+3g.
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As before,

k3P34 = αβ
k3mn

(k + 2g + 1)(k + 3g + 1)(k + 3g + m + 1)

− γδ
k3 pq

(k + 2g + 1)(k + 3g + 1)(k + 3g + p + 1)
,

and once again,

lim
k→∞

k3P34 = αβmn− γδpq = ρ.

In summary, the hyponormality of Tϕ, detected by the positivity of the self-
commutator C, leads to the positive semi-definiteness of the tridiagonal matrix P
of size (N + 1)× (N + 1). Since this must be true for all N > 1, it follows that a
necessary condition for the hyponormality of Tϕ is the positive semi-definiteness
of the infinite tridiagonal matrix

Q :=


a ρ 0 · · ·
ρ a ρ · · ·
0 ρ a · · ·
...

...
...

. . .

 .

We now consider the spectral behavior of Q as an operator on `2(Z+).

LEMMA 2.5. For a ∈ R and ρ ∈ C, the spectrum of the infinite tridiagonal matrix
Q is [a− 2|ρ|, a + 2|ρ|].

Proof. This result is well known; we present a proof for the sake of complete-
ness. Observe that Q is the canonical matrix representation of the Toeplitz opera-
tor on H2(T) with symbol ϕ(z) := a + 2Re(ρz). Since the symbol is harmonic, it
follows that the spectrum of Tϕ ≡ aI + Tρz+ρz is the set a + 2Re({ρz : z ∈ D}−) =
a + 2[−|ρ|, |ρ|], as desired.

As a consequence, if Q is positive (as an operator on `2(Z+)), then

a > 2|ρ|.

2.6. MAIN RESULT.

THEOREM 2.6. Assume that Tϕ is hyponormal on A2(D), with

ϕ := αzn + βzm + γzp + δzq (n > m; p < q).

Assume also that n−m = q− p. Then

(2.13) |α|2n2 + |β|2m2 − |γ|2 p2 − |δ|2q2 > 2|αβmn− γδpq|.
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2.7. A SPECIFIC CASE. When p = m and q = n in

ϕ := αzn + βzm + γzp + δzq (n > m; p < q)

the inequality

|α|2n2 + |β|2m2 − |γ|2 p2 − |δ|2q2 > 2|αβmn− γδpq|

reduces to
n2(|α|2 − |δ|2) + m2(|β|2 − |γ|2) > 2mn|αβ− γδ|.

This not only generalizes previous estimates, but also sharpens them, since pre-
vious results did not include the factor 2 in the right-hand side.

3. WHEN IS Tϕ NORMAL?

We conclude this paper with a description of those symbols ϕ in Theo-
rem 2.6 which produce a normal operator Tϕ. We first recall a result of S. Axler
and Ž. Čučković.

LEMMA 3.1 ([2]). Let ϕ be harmonic and bounded on D. Then Tϕ is normal if
and only if there exist a pair of complex numbers a and b such that (a, b) 6= (0, 0) and
F := aϕ + bϕ is constant on D.

Assume now that Tϕ is normal. By Lemma 3.1, there exist a and b such
that (a, b) 6= (0, 0) and F := aϕ + bϕ is constant. In what follows, we write a
harmonic symbol as ϕ ≡ f + g, with f and g analytic. A straightforward cal-
culation using ∂

∂z and ∂
∂z , applied to F, shows that (|a|2 − |b|2) ∂ f

∂z = 0. If f is
constant, a similar calculation shows that g is also constant, and a fortiori ϕ is
constant. Thus, without loss of generality, we can assume that f is not constant,
and therefore |a| = |b| > 0. If we write a = |a|eiθ and b = |a|eiη , it is not hard to
see that ϕ + ei(η−θ)ϕ is constant on D. Let ψ := λϕ, with λ := e−(i/2)(η−θ). Let
λ := ei(η−θ), so that |λ| = 1. We conclude that ϕ + λϕ is constant on D.

THEOREM 3.2. Let ϕ ≡ αzn + βzm + γzp + δzq (with n < m, p < q, n−m =

q − p), and let λ := ei(η−θ), as above. Then Tϕ is normal if and only if ϕ is of one of
exactly three types:

(i) ϕ = αzn − λαzn (when n = p);
(ii) ϕ = αzn + βzm − λβzm − λαzn (when m = p); or

(iii) ϕ = βzm − λβzm (when m = q).

Proof. (⇒) Assume that Tϕ is normal. From the discussion in the para-
graph immediately preceding Theorem 3.2, we can always assume that ϕ + λϕ
is constant on D, for some λ ∈ T. Since ϕ is clearly nonconstant, we know that
G := ϕ+λϕ is a constant trigonometric polynomial, with analytic monomials zm,
zn, zp and zq. Since ϕ is a nonconstant harmonic function, in the above mentioned
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list of four monomials we must necessarily have at least two identical monomi-
als. Since m < n, p < q and n−m = q− p, we are led to consider the following
three cases.

Case 1. n = p (and therefore m < n = p < q); here

G = βzm + (α + λγ)zn + λδzq + λβzm + (α + λγ)zn + λδzq,

from which it easily follows that β = 0, γ = −λα and δ = 0. Then ϕ = αzn −
λαzn, as desired.

Case 2. m = p (and therefore m = p < q = n); here

G = (α + λδ)zn + (β + λγ)zm + λ(α + λδ)zn + (β + λγ)zm,

so that α + λδ = 0 and β + λγ = 0. It readily follows that δ = −λα and γ = −λβ.
We then get ϕ = αzn + βzm − λαzn + βzm, as desired.

Case 3. m = q, which leads to ϕ = βzm − λβzm.
(⇐) For the converse, observe that in each of the three representations we

have ϕ + λϕ = 0, which implies T∗ϕ = −λTϕ. Therefore, T∗ϕ commutes with Tϕ,
so Tϕ is normal.

The proof is now complete.

REMARK 3.3. The form of (i), (ii) and (iii) in Theorem 3.2 is entirely consis-
tent with Theorem 2.6. For instance, consider Case 1: here β = δ = 0 and γ = −α,
so that both sides of (2.13) are equal to 0.
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[1] P. AHERN, Ž. ČUČKOVIĆ, A mean value inequality with applications to Bergman
space operators, Pacific J. Math. 173(1996), 295–305.
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ADDED IN PROOFS. Yang Wen (JiangXi University of Sciences and Technology, PRC)
has recently brought to our attention that the inequality (2.13) can also be derived by a
careful application of the results in [1], using an appropriate split of the symbol ϕ.
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