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ABSTRACT. We study Toeplitz operators on the space of real analytic func-
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1. INTRODUCTION

Toeplitz operators and their generalizations consitute one of the most im-
portant classes of operators. The classical theory of Toeplitz operators concerns
the Hardy spaces Hp(T). A Toeplitz operator on Hp(T) is a bounded linear op-
erator T : Hp(T)→ Hp(T) such that

(Tχj, χk) =
∫
T

T(χj)χkdm = ak−j, j, k ∈ N0

for some sequence {an}n∈Z. We write here χn to denote the function z 7→ zn

restricted to T. The systematic study of Toeplitz operators started with a result of
Brown and Halmos [5] according to which an operator T : H2(T) → H2(T) is a
Toeplitz operator if and only if there exists a function φ ∈ L∞ such that

(1.1) T = Tφ := PMφ.
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The symbol Mφ stands for the operator of multiplication by φ, which maps the
space Lp into itself, and P is the Riesz projection, which on trigonometric polyno-
mials is defined by the condition

P :
N

∑
n=−N

cnχn 7→
N

∑
n=0

cnχn.

A famous theorem of M. Riesz states that P is bounded in Lp norm if 1 < p < ∞.
The theory of Toeplitz operators on the Hardy spaces is now well-established.
Books [4] and [20] are excellent in-depth monographs concerning this subject.
The important formula (1.1) is easy to generalize to other function spaces such
as the Bergman spaces [24] and the Fock spaces [25]. One simply substitutes
the Riesz projection by other appropriate projections. Other generalizations were
also considered [22].

In [8] we considered another prominent space of analysis, namely the space
A(R) of real analytic functions on the real line. Let us recall that a function f is
real analytic on R if locally near any point x0 ∈ R the function f is the sum of a
convergent power series

(1.2)
∞

∑
n=0

an(x− x0)
n.

Naturally, the function f need not be real-valued. Thus in this paper we actually
study convergent power series and operations on them. Such a power series con-
verges also for complex numbers z such that |z− x0| < ρ, where ρ is the radius
of convergence of (1.2). This means that any function f ∈ A(R) is holomorphic
in some neighbourhood of the real line R. In other words we investigate oper-
ators on functions which are holomorphic on some neighbourhood of R. How-
ever compared with functions in the Hardy or the Bergman spaces the domain
of f ∈ A(R) depends on f with the sole condition that it contains the real line.
Obviously such functions as exp x or sin x are real analytic. Naturally, they are
also entire but it is easy to construct a function which is holomorphic on a neigh-
bourhood of R which is as small as desired. We emphasize that real analytic func-
tions are basic in PDE’s. Such fundamental results as the Cauchy–Kovalevskaya
theorem or Holmgren’s uniqueness theorem are formulated for just this class of
functions (cf. [21]).

What makes the study of A(R) difficult and interesting is that this space is
neither a Hilbert space nor Banach, it is not even metrizable. Interestingly, it was
shown by Domański and Vogt [14] that this space has no Schauder basis. It is
therefore hardly clear what a Toeplitz operator on A(R) is. The next definition
makes this concept precise.

DEFINITION 1.1. We say that a continuous linear operator

T : A(R)→ A(R)
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is a Toeplitz operator if there exist complex numbers . . . , a−1, a0, a1, . . . ∈ C such
that for each n ∈ N0 locally near 0

(1.3) T(xn)(ξ) = a−n + a−n+1ξ + a−n+2ξ2 + · · · .

Condition (1.3) means that on monomials a Toeplitz operator T : A(R) →
A(R) is defined by the following Toeplitz matrix

(1.4) M =


a0 a−1 a−2 . . .
a1 a0 a−1 . . .
a2 a1 a0 . . .

· · · · · · · · · . . .

 .

This matrix determines T completely since polynomials are dense in A(R) ([7],
p. 12). One should however be careful, since as we have already stated, polyno-
mials do not form a Schauder basis in A(R).

In [8] we developed a theory of such operators. It is a remarkable and rather
surprising fact that this theory is similar to the classical Hardy space case. One
of the main results in [8] says that an operator T : A(R) → A(R) is a Toeplitz
operator if and only if there exists a function F ∈ X (R) such that

(1.5) T = TF := CMF.

The symbol C stands for the Cauchy transform considered on an appropriate
function space (we will make this statement precise in Section 3). The opera-
tor MF is the operator of multiplication by F ∈ X (R). The latter space serves as
the symbol space. It is defined in the following way:

(1.6) X (R) := indK,U H(U \ K),

i.e. as the inductive limit of the Frechét spaces H(U \ K), which consist of all
functions holomorphic in U \ K. The sets U in (1.6) run through all open neigh-
bourhoods of R and K runs through all compact subsets of the real line. Note
the rather surprising similarity between formulas (1.1) and (1.5). Operators of
the form (1.5) appear in natural problems of complex analysis. We shall provide
examples which motivated our study in the next section.

In the classical theory of Toeplitz operators the Coburn–Simonenko theorem
says that either Tφ is injective or it has dense image. Equivalently, either Tφ is
injective or T

′
φ is injective. The first main result of this paper is an analog of this

result for the space of real analytic functions.

THEOREM 1.2. Assume that TF : A(R) → A(R) with non-zero F ∈ X (R) is
a Toeplitz operator on the space of real analytic functions. Then either ker TF = {0} or
ker T

′
F = {0}.
The Coburn–Simonenko theorem for Hardy spaces (see [6], [23]) implies

that a Toeplitz operator Tφ : Hp(T)→ Hp(T), 1 < p < ∞ is invertible if and only
if TF is a Fredholm operator of index zero. We also prove such a characterization
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of Toeplitz operators on A(R), although our argument is more direct and does
not use Theorem 1.2. The reason is that a general Fredholm theory of operators
on A(R) does not seem to be developed. Specifically, our second main result is
the following theorem.

THEOREM 1.3. Assume that TF : A(R) → A(R) with F ∈ X (R) is a Toeplitz
operator on the space of real analytic functions. The operator TF is invertible if and only
if TF is a Fredholm operator of index zero.

By a Fredholm operator onA(R) we obviously mean a continuous operator
T such that both ker T and A(R)/im T are finite dimensional. Such an operator
has necessarily closed range ([8], Proposition 5.1).

The proof of Theorem 1.2 is rather straightforward, although we use a rather
deep fact concerning the Cauchy transform on the Hardy spaces on smooth Jor-
dan curves. In order to prove Theorem 1.3 we use our characterization of Fred-
holm–Toeplitz operators on A(R) (see Theorem 2 of [8]).

The main motivation for considering Toeplitz operators onA(R) came with
the results of Domański and Langenbruch. The authors in [9], [10], [11], [12] con-
sidered operators on A(R) which are simply diagonal on functions z 7→ zn and
built a surprisingly rich theory for such operators. It was therefore natural to
make one step further and to consider operators defined by Toeplitz matrices. It
is important to realize that not much is known about continuous operators on lo-
cally convex spaces of holomorphic or differentiable functions with the exception
of differential and convolution operators. These theories are much less developed
than their Banach or Hilbert space counterparts. We believe that this makes our
results interesting.

2. EXAMPLES OF TOEPLITZ OPERATORS

In [8] we proved the following theorem.

THEOREM 2.1. The following assertions are equivalent:
(i) T : A(R) → A(R) is a Toeplitz operator, i.e. T is a continuous linear operator

such that locally near zero

(2.1) T(xn)(ξ) = a−n + a−n+1ξ + a−n+2ξ2 + · · ·

for some complex numbers an, n ∈ Z.
(ii) There exists a function F ∈ X (R) such that

(2.2) T = CMF,

where MF : X (R) → X (R) is the multiplication operator MF : f 7→ F f and C is the
Cauchy projection

C : X (R)→ A(R) ⊂ X (R).



TOEPLITZ OPERATORS ON THE SPACE OF REAL ANALYTIC FUNCTIONS 331

Then (2.1) holds with

(2.3) an =
1

2πi

∫
γ

F(ζ)ζ−n−1dζ,

where γ is a closed simple curve in U \K surrounding K with index 1 and F ∈ H(U \K).
(iii) There exists G ∈ A(R) and Φ ∈ A(R)′ such that

(T f )(z) = G(z) f (z) +
〈 f (z)− f (·)

z− · , Φ
〉

.

Then close to 0,

G(z) =
∞

∑
n=0

cnzn

and (2.1) holds with an = cn, n ∈ N0, and a−n, n ∈ N, the sequence of moments of
Φ, i.e.

a−n−1 = 〈zn, Φ〉, n = 0, 1, 2, . . . .

Theorem 2.1 solves completely the problem of describing the continuous
operators on A(R) which are defined by Toeplitz matrices (1.4). It is also easy
to give examples of such operators. It follows from Theorem 2.1 that a Toeplitz
operator T : A(R)→ A(R) is necessarily of the form

(TF f )(z) =
1

2πi

∫
γ

F(ζ) f (ζ)
ζ − z

dζ,

where F is holomorphic in some set U \ K, U is an open complex neighbourhood
of R and K is a compact subset of R. The simple closed curve γ surrounds K and
z and is contained in the domains of both f and F.

This implies that any operator of multiplication on A(R) by a function F
in A(R), i.e. by a function holomorphic on some complex neighbourhood of R,
is a Toeplitz operator. The matrix of such an operator is lower triangular and
it is a consequence of (2.3) that the coefficients (an), n ∈ N0 are just the Taylor
coefficients of F at 0. More interesting examples come with functions in H0(C∞ \
K) for some K ⊂⊂ R, i.e. with elements of A(R)′ (cf. Theorem 3.3 of [8], for
explanation). For instance, if F(z) = 1/(z− a)2 with a ∈ R then the matrix of TF
in the sense of Definition 1.1 is upper triangular of the form

M =


0 0 1 2a 3a2 . . .
0 0 0 1 2a . . .
0 0 0 0 1 . . .

· · · · · · · · · · · · · · · . . .

 ,

since obviously
1

(z− a)2 =
∞

∑
n=0

(n + 1)an

zn+2 ,
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when |z| > |a|. We proved ([8], Theorem 3.3) that the symbol space X (R) de-
composes into the direct sum of A(R) and the dual space A(R)′ . Basically, the
operators which correspond to symbols in A(R) have lower triangular matrices
and symbols in A(R)′ determine operators with upper triangular matrices.

Operators TF, which we call Toeplitz operators, appear in a natural way
in interpolation theory. We briefly describe the examples which motivated our
interest in this class of operators. In our presentation we follow [16]. Assume
that

x1, . . . , xm

are real numbers and
α1, . . . , αm

is a set of positive integers such that α1 + · · ·+ αm = n. One looks for a polyno-
mial P(z) satisfying the conditions

(2.4) P(xk) = f (xk), . . . , P(αk−1)(xk) = f (αk−1)(xk), k = 1, 2, . . . , m.

The function f is holomorphic in a neighbourhood U of the real line. The follow-
ing classical result solves the problem.

THEOREM 2.2 ([16], Theorem 2.8). Let γ be a closed rectifiable Jordan curve
contained in U, such that all the interpolation points x1, . . . , xm belong to I(γ) and let

ω(z) = (z− x1)
α1(z− x2)

α2 · · · (z− xm)
αm .

Then the integral

P(z) =
1

2πi

∫
γ

f (ζ)
ω(ζ)

ω(ζ)−ω(z)
ζ − z

dζ

is a polynomial of degree less than n satisfying conditions (2.4).

Observe that
1

2πi

∫
γ

f (ζ)
ω(ζ)

ω(ζ)−ω(z)
ζ − z

dζ =
1

2πi

∫
γ

f (ζ)
ζ − z

dζ − ω(z)
2πi

∫
γ

f (ζ)
ω(ζ)

dζ

ζ − z
.

Thus a solution to the interpolation problem is given by the operator

I − TωT1/ω.

Consider now the difference

R(z) = f (z)− P(z).

We have

R(z) =
1

2πi

∫
γ

f (ζ)
ζ − z

dζ − 1
2πi

∫
γ

f (ζ)
ω(ζ)

ω(ζ)−ω(z)
ζ − z

dζ

=
ω(z)
2πi

∫
γ

f (ζ)
ω(ζ)

dζ

ζ − z
= TωT1/ω f (z).
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Thus not only the solution to the interpolation problem but also the remainder
term is given by the composition of Toeplitz operators. In other words, conver-
gence properties of P when m tends to infinity are controlled by our Toeplitz
operators. We remark that the formulas for the interpolation polynomial and the
remainder term are known as Hermite’s formulas. Special cases are Taylor’s in-
terpolation polynomials and Lagrange’s interpolation polynomials. When α1 =
· · · = αm = p one obtains Jacobi’s interpolation polynomial

Jmp−1(z) =
p−1

∑
k=0

Qk(z)[q(z)]k,

where q(z) = (z− x1) · · · (z− xm). The functions Qk(z) are given by a combina-
tion of compositions of Toeplitz operators acting on f . The rather delicate prob-
lem of convergence of Jmp−1 when m tends to ∞ is again governed by Toeplitz
operators.

While these examples in our opinion justify our interest in operators of the
form TF on functions holomorphic in some neighbourhood of R, they do not ex-
plain why Theorem 1.3 is important. Here we provide another argument. This is
again based on [16]. By the first-order divided difference of f with respect to two
points x1 and x2 we mean the quantity

∆(1)[ f (z); x1, x2] =
f (x2)− f (x1)

x2 − x1
.

Then the k-th-order divided difference of f (z) with respect to the k + 1 points
x1, . . . , xk+1 is defined inductively by the formula

∆(k)[ f (z); x1, . . . , xk+1] =
∆(k−1)[ f (z); x2, . . . , xk+1]−∆(k−1)[ f (z); x1, . . . , xk]

xk+1 − x1
.

Consider now the function ∆(k)[ f (z); x1, . . . , xk, z] as a function of z in some com-
plex neighbourhood of R. Such functions with k = 1 appear in one of the proofs
of Cauchy’s integral formula. A priori, such a function is not defined when z is
equal to one of the points x1, . . . , xk. But it is easy to observe that

∆(k)[ f (z); x1, . . . , xk, z]

can be made to be holomorphic in some neighbourhood of R. Hence it is an
element of A(R). It is also an easy matter to show that

(2.5)
1

2πi

∫
γ

f (ζ)
ωk(ζ)

dζ

ζ − z
= ∆(k)[ f (z); x1, . . . , xk, z],

with
ωk(ζ) = (ζ − x1) · · · (ζ − xk),

where γ is a simple curve which surrounds the points x1, . . . , xk. Let now

g1, . . . , gk



334 M. JASICZAK

be functions in A(R) and consider the equation

(2.6)
k

∑
j=1

∆(j)[gj(z) f (z); x1, . . . , xj, z] = h(z)

with a given function h ∈ A(R). It is legitimate to call such an equation a divided
difference equation and to think about it as a finite-difference analog of a differ-
ential equation. The functions g1, . . . , gk and h are locally sums of convergent
power series. Thus equation (2.6) can be transformed into a system of equations
involving Taylor coefficients of these functions. It is however rather difficult to
solve such a system and it is hardly clear why the solution, which is given locally,
defines a holomorphic function on R. It follows from (2.5) that equation (2.6) is
just an equation of the form

TF f = h

for some function F holomorphic in an open neighbourhood of the real line ex-
cept for a finite number of real poles, i.e. F ∈ X (R). Theorem 1.3 says now that
if TF is a Fredholm operator and the index of TF is equal to 0, then equation (2.6)
is uniquely solvable for every function h holomorphic in some complex neigh-
bourhood of R with f defined in a possibly different neighbourhood of R. Thus
there must exist an open set U ⊃ R and a compact set K ⊂ R such that F does
not vanish in U \ K and the sum of the number of zeros minus the sum of the
number of poles of F in R must be equal to 0 — this is the winding number of F
(cf. Theorem 5.2 below).

3. PRELIMINARIES

3.1. THE SPACE OF REAL ANALYTIC FUNCTIONS AND TOEPLITZ OPERATORS. We
refer the reader to [7] for a nice introduction to real analytic functions. Here we
only recall facts which are of importance for us. Some information will be re-
peated from the Introduction. A function f : R → C is real analytic at x0 ∈ R if
there exists r > 0 such that

(3.1) f (x) =
∞

∑
n=0

an(x− x0)
n

for x ∈ (x0 − r, x0 + r). A function f is real analytic on R if it is real analytic at
each point x ∈ R. We use the symbolA(R) to denote the space of all real analytic
functions on R. Naturally, if the sequence (3.1) converges for real |x− x0| < r, it
converges also for complex numbers z such that |z− x0| < r. In other words, a
real analytic function f : R → C defines a function holomorphic in some open
neighbourhood U of the real line. Therefore, we have

(3.2) A(R) =
⋃

U⊃R
H(U),
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as sets, where the union is over all open neighbourhoods of R. The symbol
H(U) stands for the space of all functions holomorphic in U with the topol-
ogy of uniform convergence on compact subsets of U. Relation (3.2) is used to
topologize the space A(R). Namely, one equips A(R) with the strongest locally
convex topology which makes all the inclusions H(U) ↪→ A(R) continuous,
where U ⊃ R is open. Obviously, this is the inductive topology of the system
{H(U) ↪→ A(R)}U⊃R. Such a topology exists. We remark here that this is one of
two equivalent ways to equip the space of real analytic functions with a topology.
The other is the projective topology induced by the relation

A(R) =
⋂
K

H(K),

where H(K) is the space of germs of holomorphic functions on K and K runs over
all compact subsets of R. The topology on H(K) is the topology of the inductive
system H(V) ↪→ H(K), where V are all open neighbourhoods of K.

It is a very important result of Martineau [17] that these two topologies on
A(R) coincide. We refer the reader to [18] for background on locally convex
spaces, their projective and injective limits.

Every continuous linear functional ξ on H(K), K ⊂⊂ C, corresponds to a
holomorphic function fξ ∈ H0(C∞ \ K) (cf. Theorem 1.3.5 in [2]). H0(C∞ \ K)
stands for the space of all holomorphic functions on C∞ \ K which vanish at in-
finity. Naturally, C∞ is the Riemann sphere. The (Köthe–Grothendieck) duality
between H(K) and H0(C∞ \ K) is given by

(3.3) H(K)× H0(C∞ \ K) 3 (g, f ) 7→ 〈g, f 〉 = 1
2πi

∫
γ

g(z) f (z)dz,

where γ is a finite union of closed curves contained in U \ K if g ∈ H(U), U an
open neighbourhood of K, such that Ind γ(z) = 1 for any z ∈ K. This readily
implies that

(3.4) A(R)′ ∼= (proj K H(K))
′ ∼= ind K H(K)

′ ∼= ind K H0(C∞ \ K).

We can now define Toeplitz operators on A(R). We start with the definition of
the symbol space:

X (R) := indU,K H(U \ K),

where the sets U run through all open neighbourhoods of R and K through all
compact subsets of R. We showed in [8] that the corresponding inductive topol-
ogy exists. Assume that F ∈ X (R), i.e. that F ∈ H(U \ K), where U is an open set
with R ⊂ U and K is a compact set such that K ⊂ R. We assign to F an operator
TF which is a Toeplitz operator in the sense of Definition 1.1. For simplicity we
may assume that U is connected and simply connected and K is connected and
contains 0. Let f ∈ A(R). Thus f ∈ H(V) for some open neighbourhood of R.
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Let z ∈ U ∩V. We put

(3.5) TF f (z) :=
1

2πi

∫
γ

F(ζ) f (ζ)
ζ − z

dζ,

where γ is a smooth Jordan curve such that Ind γ(z) = 1 and Ind γ(ζ) = 1 for
ζ ∈ K. Obviously for any z ∈ U ∩ V we can find such a curve. It follows from
Cauchy’s theorem that the definition does not depend on γ. We showed in Theo-
rem 1 of [8] that TF is a continuous operator onA(R) and every Toeplitz operator
on this space in the sense of Definition 1.1 is of this form.

3.2. THE HARDY SPACES AND THE CAUCHY TRANSFORM. Observe that the op-
erator TF is defined by means of the Cauchy transform C = Cγ. We now recall
basic information concerning this operator when acting on the Hardy spaces on
smooth Jordan curves following the beautiful exposition in [1].

Let γ be a C∞ smooth Jordan curve. Whenever we speak of a closed curve
we mean exactly such a curve. By Jordan’s theorem, C \ γ consists of precisely
two components I(γ) and E(γ), where E(γ) is unbounded. For a closed curve
we denote by γ̂ the closure I(γ).

Let γ be a closed curve and denote Ω := I(γ). If k is a positive integer,
Ck(Ω) denotes the space of continuous complex-valued functions on Ω whose
partial derivatives up to and including order k exist and are continuous on Ω

and extend continuously to Ω. The space C∞(Ω) is the set of functions in Ck(Ω)
for all k, A∞(Ω) denotes the space of holomorphic functions on Ω that are in
C∞(Ω). The symbol A∞(bΩ) stands for the set of functions on bΩ which are the
boundary values of functions in A∞(Ω).

For u and v in C∞(bΩ), the L2 inner product on bΩ of u and v is defined
via 〈u, v〉b =

∫
bΩ

uvds. By ds we mean the differential element of the arc length on

bΩ. The space L2(bΩ) is defined to be the Hilbert space obtained by completing
the space C∞(bΩ) with respect to this inner product. The Hardy space H2(bΩ) is
defined to be the closure in L2(bΩ) of A∞(bΩ). When Ω = I(γ) we write H2(γ).

Let u be a C∞ function defined on bΩ. The Cauchy transform of u is a
holomorphic function CbΩu on Ω given by

(3.6) (CbΩu)(z) =
1

2πi

∫
bΩ

u(ζ)
ζ − z

dζ.

Following [1] we now gather fundamental properties of the Cauchy transform.

THEOREM 3.1 ([1], Theorem 3.1). The Cauchy transform maps C∞(bΩ) into
A∞(Ω).

This theorem allows us to treat the Cauchy transform as an operator which
maps the space C∞(bΩ) into C∞(Ω), or even as an operator from C∞(bΩ) into
itself. Notice however that when considered on the boundary bΩ the operator
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CbΩ is not given by the integral representation (3.6) due to the singularity in the
denominator.

THEOREM 3.2 ([1], Theorem 4.1). The Cauchy transform extends to a bounded
operator from L2(bΩ) into H2(bΩ).

We will denote the extension of the Cauchy transform to the operator from
L2(bΩ) to H2(bΩ) by the same symbol CbΩ. Thus for any φ ∈ L∞ we can con-
sider Toeplitz operators

H2(bΩ) 3 f 7→ Tφ,bΩ f := CbΩ(φ · f ) ∈ H2(bΩ).

As before, when Ω = I(γ) we write Tφ,γ and Cγ.
The following fact is a consequence of the Coburn–Simonenko theorem for

Toeplitz operators on smooth Jordan curves.

THEOREM 3.3. Assume that γ is a smooth Jordan curve and let φ ∈ L∞(γ). The
operator Tφ,γ is invertible if and only if it is a Fredholm operator of index 0.

The Coburn–Simonenko theorem itself is proved in [3] for Carleson curves
(Theorem 6.17 therein). Obviously this covers the case of smooth Jordan curves.

A crucial tool in our study is the following theorem.

THEOREM 3.4 ([1], Theorem 3.4). Suppose u ∈ C∞(bΩ). If M is a positive
integer, there is a function Ψ ∈ C∞(Ω) which vanishes to order M on the boundary such
that the boundary values of CbΩu are expressed via

(CbΩu)(z) = u(z)− 1
2πi

∫ ∫
Ω

Ψ(ζ)

ζ − z
dζ ∧ dζ,

for z ∈ bΩ.

Recall that a function Ψ vanishes to order M ∈ N0 if Ψ with all its deriva-
tives up to and including order M vanish on bΩ. Such a function Ψ can be viewed
as a function in CM(C) via extension by zero.

4. PROOF OF THEOREM 1.2

We start by determining the adjoint of TF, F ∈ X (R) in the sense of duality
(3.3). This is rather elementary, we provide the details for the sake of completenes.
Let ξ be a continuous funcional on A(R). It follows from (3.4) that ξ corresponds
to a function fξ ∈ H0(C∞ \ L) for some compact set L ⊂ R. Since F ∈ X (R)
there exist an open set U ⊃ R and a compact set K ⊂ R such that F ∈ H(U \ K).
Let also g ∈ A(R). Thus g ∈ H(V) for some open set V ⊃ R. It follows from
the definition of the operator TF that TFg ∈ H(U ∩ V). Let γ be a finite union of
closed curves in (U ∩ V) \ L such that Ind γ(z) = 1 for z ∈ L. Let Γ be a closed
curve in (U ∩V) \ (K ∪ L) such that Ind Γ(z) = 1 for z ∈ γ and z ∈ K. As a result,
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we also have Ind Γ(z) = 1 for z ∈ K ∪ L. By Fubini’s theorem we have

〈TFg, ξ〉 = 1
2πi

∫
γ

TFg(z) fξ(z)dz =
1

2πi

∫
Γ

F(ζ)g(ζ)
1

2πi

∫
γ

fξ(z)
ζ − z

dzdζ.

It follows from Cauchy’s integral formula that for ζ ∈ E(γ) and sufficiently large
R > 0,

fξ(ζ) =
1

2πi

∫
−γ

fξ(z)
z− ζ

dz +
1

2πi

∫
|z|=R

fξ(z)
z− ζ

dz,

where the circle |z| = R is oriented counter-clockwise. Since fξ vanishes at ∞, we
have

fξ(ζ) =
1

2πi

∫
γ

fξ(z)
ζ − z

dz

and, as a result,

(4.1) 〈TFg, ξ〉 =
∫
Γ

F(ζ)g(ζ) fξ(ζ)dζ.

Let us now define an operator SF : ind C H0(C∞ \ C) → ind C H0(C∞ \ C),
where C runs over the compact subsets of R. Assume that f ∈ H0(C∞ \ C) for
some compact set C ⊂ R. As before we have F ∈ H(U \ K). Let δ be a closed
curve in U \ (K ∪ C) such that Ind δ(z) = 1 for z ∈ K ∪ C. We may assume that
K ∪ C is a connected set. The operator SF is for ζ ∈ E(δ) defined by the formula

(4.2) SF f (ζ) :=
1

2πi

∫
−δ

F(z) f (z)
z− ζ

dz.

Observe that for any ζ ∈ C∞ \ (K ∪ C) there exists a closed curve δ such that
ζ ∈ E(δ) and Ind δ(z) = 1 for any z ∈ K ∪ C. Naturally, by Cauchy’s theorem the
definition is correct; that is, it does not depend on the choice of δ. Also, SF f ∈
H0(C∞ \ (K ∪ C)). It is easy to check that SF is continuous as an operator on
the space ind H0(C∞ \ C). Indeed, it is elementary that SF maps H0(C∞ \ C)
continuously into H0(C∞ \ (K ∪ C)). Thus it is a continuous operator between
the inductive limits. Thus we have

SF : ind H0(C∞ \ C)→ ind H0(C∞ \ C).

We will show that SF = T
′
F. We determine the action of SF fξ on h. Since

fξ ∈ H0(C∞ \ L) and F ∈ H(U \ K) we have by the definition of the operator SF
that SF fξ ∈ H0(C∞ \ (K ∪ L)). We again assumed that K ∪ L is connected. Also,
we have g ∈ H(V). We therefore choose a closed curve ∆ in V \ (K ∪ L) such that
Ind ∆(z) = 1 for z ∈ K ∪ L and have

〈g, SF fξ〉 =
1

2πi

∫
∆

g(ζ)SF fξ(ζ)dζ.
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Let δ be a closed curve in I(∆) such that Ind δ(z) = 1 for z ∈ K ∪ L. By the
definition of the operator SF we obtain

〈g, SF fξ〉 =
1

2πi

∫
∆

g(ζ)SF fξ(ζ)dζ =
1

2πi

∫
∆

g(ζ)
1

2πi

∫
−δ

F(z) fξ(z)
z− ζ

dzdζ

=
1

2πi

∫
−δ

F(z) fξ(z)
1

2πi

∫
∆

g(ζ)
z− ζ

dζdz.

By Cauchy’s integral formula

〈g, SF fξ〉 =
1

2πi

∫
δ

F(z) fξ(z)g(z)dz,

since if z ∈ δ then z ∈ I(∆). By Cauchy’s theorem

1
2πi

∫
δ

F(z) fξ(z)g(z)dz =
1

2πi

∫
Γ

F(ζ) fξ(ζ)g(ζ)dζ.

Since g and ξ were arbitrary, we have proved the following fact.

PROPOSITION 4.1. Assume that F ∈ X (R). The operator

SF : indL H0(C∞ \ L)→ indL H0(C∞ \ L)

defined in (4.2) is the adjoint of TF in the sense of duality (3.3).

We are now ready to prove our first main result.

THEOREM 4.2. Assume that TF : A(R) → A(R) with a non-zero F ∈ X (R) is
a Toeplitz operator on the space of real analytic functions. Then either ker TF = {0} or
ker T

′
F = {0}.
Proof. Assume that there exists a non-zero u ∈ ker TF and a non-zero v ∈

ker T
′
F. As before F ∈ H(U \ K). Let u ∈ H(V) and v ∈ H0(C∞ \ L). Let Γ be a

closed curve in (U ∩V) \ K such that Ind Γ(z) = 1 for z ∈ K. By assumption,

(4.3) 0 =
1

2πi

∫
Γ

F(ζ)u(ζ)
ζ − z

dζ

for any z ∈ I(Γ). Since F and u belong to C∞(Γ̂), we also have that CΓ(Fu) ∈
C∞(Γ̂) by Theorem 3.1. It follows from (4.3) that CΓ(Fu) ≡ 0 when CΓ(Fu) is
considered as a function on Γ (cf. the remarks which follow Theorem 3.1). It
follows therefore from Theorem 3.4 that

0 = CΓ(Fu)(z) = (F · u)(z)− 1
2πi

∫ ∫
I(Γ)

Ψ(ζ)

ζ − z
dζ ∧ dζ
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for z ∈ Γ and a function Ψ which is smooth on Γ̂ and vanishes to order M on Γ.
In other words, for z ∈ Γ,

(F · u)(z) = 1
2πi

∫ ∫
Γ̂

Ψ(ζ)

ζ − z
dζ ∧ dζ =: G(z).

The function G is of class C1 on the whole plane and is holomorphic for z ∈ C \ Γ̂.
This means that Fu extends to a function holomorphic in C \ K. Indeed, let Γ0 be
a proper subarc of the curve Γ. Let γ be an open arc in (U ∩V) \ Γ̂ whose closure
joins the ends of Γ0. Consider the curve ∆ := γ ∪ Γ0. We may assume that this
is a smooth curve. Both the functions Fu and G are holomorphic in a simply
connected set I(∆) and C1 on the closure of this set. Also, they are equal on Γ0.
This implies that Fu and G are equal in I(∆). Hence, G extends Fu. Observe that
G vanishes at ∞.

Consider now the function F · u · v. It follows from the above argument
that it belongs to H0(C∞ \ (K ∪ L)), since as we showed, F · u ∈ H0(C∞ \ K) and
v ∈ H0(C∞ \ L).

On the other hand, T
′
Fv = 0. Let now ζ ∈ U \ (K ∪ L). Choose two closed

curves ∆ and δ both oriented counter-clockwise such that δ ⊂ I(∆), ζ ∈ I(∆) \ I(δ)
and Ind δ(z) = 1 for z ∈ K ∪ L. From Cauchy’s integral formula,

(F · v)(ζ) = 1
2πi

∫
∆

F(z)v(z)
z− ζ

dz− 1
2πi

∫
δ

F(z)v(z)
z− ζ

dz.

Since T
′
Fv = 0, we also have

− 1
2πi

∫
δ

F(z)v(z)
z− ζ

dz = 0.

Thus for any ζ ∈ U \ (K ∪ L),

(F · v)(ζ) = 1
2πi

∫
∆

F(z)v(z)
z− ζ

dz.

The function on the right-hand side is holomorphic in I(∆). Thus Fv is holomor-
phic in I(∆), which means that it is holomorphic in U.

Consider again the function F · u · v. Since v ∈ H(V) we have

F · u · v ∈ H(U ∩V),

and, also

F · u · v ∈ H(U ∩V) ∩ H0(C∞ \ (K ∪ L)).

By Liouville’s theorem we must have that F · u · v ≡ 0. Since u and v are non-zero,
it must hold that F = 0. This is a contradiction.



TOEPLITZ OPERATORS ON THE SPACE OF REAL ANALYTIC FUNCTIONS 341

5. PROOF OF THEOREM 1.3

We now prove our second main result.

THEOREM 5.1. Assume that TF : A(R) → A(R) with F ∈ X (R) is a Toeplitz
operator on the space of real analytic functions. The operator TF is invertible if and only
if TF is a Fredholm operator of index zero.

We proved in Theorem 2 of [8] the following result.

THEOREM 5.2. An operator TF : A(R) → A(R), F ∈ X (R) is a Fredholm
operator if and only if there exist an open set U ⊃ R and a compact set K ⊂ R such that
F ∈ H(U \ K) does not vanish in U \ K. In this case

index TF = −winding F.

Proof of Theorem 5.1. Obviously if TF is invertible, then it is a Fredholm op-
erator of index 0.

Assume that
TF : A(R)→ A(R)

is a Fredholm operator and has index 0. It follows from Theorem 5.2 that there
are an open set U ⊃ R and a compact set K ⊂ R such that F ∈ H(U \ K) and F
does not vanish in U \ K. For simplicity we assume that K is connected, 0 ∈ K
and U is simply connected.

For any closed curve γ ⊂ U \ K such that Ind γ(z) = 1 for z ∈ K we have
the Toeplitz operator

TF,γ : H2(γ)→ H2(γ).

Since F does not vanish in U \ K, the operator TF,γ is also a Fredholm operator
([8], Theorem 6.4; see also Theorem 4.1.2 of [19]). Furthermore, without loss of
generality we may assume that

index (TF : A(R)→ A(R)) = index (TF,γ : H2(γ)→ H2(γ)).

This may require shrinking U. We again refer the reader to Theorem 2 of [8] for
explanation.

It follows that for any C∞ smooth Jordan curve γ ⊂ U \K with Ind γ(0) = 1
the operator TF,γ has index 0. Thus the operator TF,γ is invertible by Theorem 3.3.

We now show that TF : A(R) → A(R) is bijective. It is a remarkable
fact that we can use the open mapping theorem ([18], Theorem 24.30) in order
to conclude that TF : A(R) → A(R) is invertible. The space A(R) is an ultra-
bornological space and has a web (see Chapter 24 of [18] for explanation). It is a
consequence of the so called de Wilde theory that TF is open. It is here where the
projective picture plays its role.

Thus we must show that TF is bijective. Injectivity is obvious. Indeed, as-
sume that TF f = 0 for some function f ∈ H(V). This means that Cγ(F f ) = 0 for
any C∞ smooth Jordan curve γ ⊂ (U ∩ V) \ K with Ind γ(0) = 1. For any such
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a curve we have f ∈ H2(γ) and TF,γ f = 0. This implies that f ≡ 0, since each
operator TF,γ is injective.

It remains to show that TF is surjective. Let now g ∈ H(V) for some open
neighbourhood V of R. We will show that g = TF f for some f ∈ A(R). Choose
a sequence of C∞ smooth Jordan curves γn ⊂ (U ∩ V) \ K such that Ind γn(0) =
1 and

(5.1) R ⊂
∞⋃

n=1

γ̂n,

where by γ̂n we denoted the closure of the domain bounded by γn. As we have
already noticed, for each n ∈ N the operator TF,γn is invertible. In particular, it
is surjective. Naturally, g ∈ H2(γn) for each n ∈ N. Thus for each n ∈ N there
exists a function fn ∈ H2(γn) such that g = TF,γn fn. We claim that the functions
fn define a function in A(R). A priori, the functions fn ∈ H2(γn) are defined
only on γn. We can however take their Cauchy transforms

g(z) =
1

2πi

∫
γn

g(ζ)
ζ − z

dζ =
1

2πi

∫
γn

TF,γn fn(ζ)

ζ − z
=

1
2πi

∫
γn

Cγn(F · fn)(ζ)

ζ − z
dζ,

where Cγn above is understood as an operator on L2(γn). According to Proposi-
tion 5.3 of [8],

1
2πi

∫
γn

Cγn(F · fn)(ζ)

ζ − z
dζ =

1
2πi

∫
γn

F(ζ) fn(ζ)

ζ − z
dζ

for z ∈ I(γn). Fix a number n ∈N and choose a C∞ smooth Jordan curve γ̃ such
that

γ̃ ⊂ (I(γn) ∩ I(γn+1)) \ K

and Indγ(0) = 1. For any z in the domain bounded by γ̃ we have

g(z) =
1

2πi

∫
γn

F(ζ) fn(ζ)

ζ − z
dζ =

1
2πi

∫
γn+1

F(ζ) fn+1(ζ)

ζ − z
dζ.

It follows from Cauchy’s theorem and a standard limit argument based on Theo-
rem 6.3 of [1] that for z ∈ I(γ̃)

1
2πi

∫
γn

F(ζ) fn(ζ)

ζ − z
dζ =

1
2πi

∫
γ̃

F(ζ) fn(ζ)

ζ − z
dζ,

1
2πi

∫
γn+1

F(ζ) fn+1(ζ)

ζ − z
dζ =

1
2πi

∫
γ̃

F(ζ) fn+1(ζ)

ζ − z
dζ.
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Also, as we have already noticed ([8], Proposition 5.3),

1
2πi

∫
γ̃

F(ζ) fn(ζ)

ζ − z
dζ =

1
2πi

∫
γ̃

Cγ̃(F fn)(ζ)

ζ − z
dζ,

1
2πi

∫
γ̃

F(ζ) fn+1(ζ)

ζ − z
dζ =

1
2πi

∫
γ̃

Cγ̃(F fn+1)(ζ)

ζ − z
dζ.

Thus
TF,γ̃( fn − fn+1) = 0,

since if
1

2πi

∫
γ̃

h(ζ)
ζ − z

dζ ≡ 0

for h ∈ H2(γ̃) and all z ∈ I(γ̃), then h ≡ 0. Since TF,γ̃ is injective, it follows that
fn = fn+1 as functions in H2(γ̃). Taking the Cauchy integrals of fn and fn+1 we
conclude that these functions are equal in I(γ̃). Hence we may treat fn+1 as the
extension of fn and fn as the extension of fn+1. Since n was arbitrary, it follows
from (5.1) that we obtain a function f holomorphic in some open neighbourhood
of R. By Cauchy’s theorem g = TF f .
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[7] P. DOMAŃSKI, Notes on real analytic functions and classical operators, Contemp.
Math. 561(2012), 3–47.
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[14] P. DOMAŃSKI, D. VOGT, The space of real analytic functions has no basis, Studia
Math. 142(2000), 187–200.

[15] P.R. HALMOS, A Hilbert Space Problem Book, D. Van Nostrand Comp., Inc., Princeton,
NJ 1967.

[16] A.I. MARKUSHEVICH, Theory of Functions of a Complex Variable. Part II, AMS Chelsea
Publ., Amer. Math. Soc., Providence, RI 2005.

[17] A. MARTINEAU, Sur la topologie des espaces de fonctions holomorphes, Math. Ann.
163(1966), 62–88.

[18] R. MEISE, D. VOGT, Introduction to Functional Analysis, Oxford Grad. Texts in Math.,
vol. 2, Clarendon Press, Oxford Univ. Press, New York 1997.

[19] I. MITREA, M. MITREA, M. TAYLOR, Cauchy integrals, Calderón projectors, Toeplitz
operators on uniformly rectifiable domains, Adv. Math. 208(2015), 666–757.

[20] N.N. NIKOLSKI, Operators, Functions, and Systems: An Easy Reading, Vol. 1, Hardy,
Hankel and Toeplitz, Math. Serveys Monogr., vol. 92, Amer. Math. Soc., Providence, RI
2010.

[21] M. RENARDY, R.C. ROGERS, An Introduction to Partial Differential Equations, Texts
Appl. Math., vol. 13, Springer-Verlag, New York–Berlin–Heidelberg 1993.

[22] G. ROZENBLUM, N. VASILEVSKI, Toeplitz operators defined by sesquilinear forms:
Fock space case, J. Funct. Anal. 267(2014), 4399–4430.

[23] I.B. SIMONENKO, Some general questions of the theory of the Riemann boundary
value problem [Russian], Izv. Akad. Nauk SSSR, Ser. Mat. 32(1968), 1138–1146; English
Math. USSR Izv. 2(1968), 1091–1099.

[24] N.L. VASILEVSKI, Commutative Algebras of Toeplitz Operators on the Bergman Space,
Oper. Theory Adv. Appl., vol. 185, Birkhäuser, Basel-Boston-Berlin 2008.

[25] K. ZHU, Analysis on Fock Spaces, Springer, New York 2012.

M. JASICZAK, FACULTY OF MATHEMATICS AND COMPUTER SCIENCE, ADAM

MICKIEWICZ UNIVERSITY, UL. UMULTOWSKA 87, 61-614 POZNAŃ, POLAND
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