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ABSTRACT. We consider eventually positive operator semigroups and study
the question whether their eventual positivity is preserved by bounded per-
turbations of the generator or not. We demonstrate that eventual positivity is
not stable with respect to large positive perturbations and that certain versions
of eventual positivity react quite sensitively to small positive perturbations. In
particular we show that if eventual positivity is preserved under arbitrary pos-
itive perturbations of the generator, then the semigroup is positive. We then
provide sufficient conditions for a positive perturbation to preserve the even-
tual positivity. Some of these theorems are qualitative in nature while others
are quantitative with explicit bounds.
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1. INTRODUCTION

For positive C0-semigroups, it is easy to derive basic perturbation results.
If, for instance, A generates a positive C0-semigroup on a Banach lattice E, B is
a positive operator and M is a multiplication operator on E (see Section C-I-9 of
[2]), then it is not difficult to show that the semigroup generated by A + B + M is
also positive. In the present paper we study the problem whether or not such a
perturbation result is still true for eventually positive semigroups.

An eventually positive semigroup is a C0-semigroup (etA) on, say, a complex
Banach lattice E such that, for every initial value 0 6 f ∈ E, the trajectory etA f
becomes positive for large enough t. Motivated by applications to partial differ-
ential equations (see e.g. [4], [13], [14]; see also [28] for an overview over related
elliptic problems) and by the rapid development of a corresponding theory in fi-
nite dimensions (see for instance [9], [12], [22], [23]), a study of eventually positive
semigroups on Banach lattices was initiated in a series of recent papers [5], [6],
[7]. In particular, these papers clarified that there are several distinct notions of
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eventual positivity such as an individual and a uniform one which are worthwhile
studying. For the convenience of the reader we recall the exact definitions of these
notions at the end of the introduction as we are going to need them throughout
the paper.

We shall see that perturbation theory is much more subtle for eventually
positive semigroups than it is for positive semigroups. We first demonstrate by
a number of counterexamples in Section 2 what is not true. In particular we will
see that, in sharp contrast to the case of positive semigroups, eventual positivity
of a semigroup is in general lost if we perturb its generator by a positive operator
of large norm; this is related to a recent result in Proposition 3.6 of [26] for per-
turbations of eventually positive matrices. Moreover, one of our examples shows
that individual eventual positivity is not even stable with respect to small positive
perturbations. This is the reason why we focus on uniform eventual positivity
throughout the rest of the paper. In Section 3 we prove qualitative as well as
quantitative perturbation results for eventually positive resolvents of operators,
and in Section 4 we prove qualitative and quantitative perturbation results for
C0-semigroups. In the appendix we consider rank-1-perturbations of linear op-
erators and prove explicit formulas for their resolvents and for the semigroups
generated by those operators; these formulas are needed in the main text.

We note that our results are far from constituting a complete perturbation
theory for eventually positive semigroups. In fact, we leave more questions open
than we solve. It is our hope though that, by exposing some surprising phenom-
ena, the present article can serve a starting point for further research on the topic.

PRELIMINARIES. Throughout, we use the notation and the terminology from [5],
[6], [7]. For the convenience of the reader we recall what we need throughout the
paper. We assume familiarity with the theory of real and complex Banach lattices
(see for instance [19], [25] for standard references on this topic) and with the basic
theory of C0-semigroups (see for instance [10], [11], [24]).

For every λ ∈ C and every real number r > 0 we denote by B(λ, r) := {z ∈
C : |z− λ| < r} the open ball in C of radius r.

If E, F are real or complex Banach spaces, then we denote the space of all
bounded linear operators from E to F by L(E; F) and we abbreviate L(E) :=
L(E; E). The identity operator on E is denoted by I := IE ∈ L(E). For every
T ∈ L(E) the spectral radius of T is denoted by r(T). For every densely defined
linear operator A : E ⊇ D(A) → F we denote by A′ : F′ ⊇ D(A′) → E′ the dual
operator of A, where E′ and F′ are the dual spaces of E and F. For all y ∈ F and
all ϕ ∈ E′ we define y ⊗ ϕ ∈ L(E; F) by (y ⊗ ϕ)z := 〈ϕ, z〉y for all z ∈ E. It is
easy to see that the operator norm of y⊗ ϕ is given by ‖y⊗ ϕ‖ = ‖y‖‖ϕ‖. Recall
that every rank-1-operator in L(E; F) is of the form y⊗ ϕ for appropriate vectors
y ∈ F \ {0} and ϕ ∈ E′ \ {0}.

Given a linear operator A : E⊇D(A)→ E on a complex Banach space E we
denote its spectrum and resolvent set by σ(A) and ρ(A) :=C \ σ(A), respectively.
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Note that if ρ(A) 6= ∅, then A is necessarily closed. The spectral bound of A is
given by

s(A) := sup{Re λ : λ ∈ σ(A)} ∈ [−∞, ∞],

We say that the spectral bound s(A) is a dominant spectral value of A if s(A) ∈
σ(A) and if Re λ < s(A) for all other spectral values λ of A. We define the
resolvent of A at λ ∈ ρ(A) by R(λ, A) := (λ I−A)−1. The resolvent R( · , A) :
ρ(A) → L(E) is an analytic map. Any pole of this analytic map is an isolated
point of σ(A) and in fact an eigenvalue of A; see Theorem 2 in Section VIII.8
of [29]. Let λ0 be a pole of the resolvent of A. We call λ0 a geometrically simple
eigenvalue of A if the eigenspace ker(λ0 I−A) is one-dimensional; we call λ0 an
algebraically simple eigenvalue of A if the spectral projection P associated with λ0
has one-dimensional range. The eigenvalue λ0 is algebraically simple if and only
if it is geometrically simple and Im(P) = ker(λ0 I−A). Also, if λ0 is algebraically
simple, then λ0 is a simple pole of R( · , A). Let A : E ⊇ D(A) → E be a linear
operator with non-empty resolvent set on a complex Banach space E. An operator
K ∈ L(E) is called A-compact if there is a λ0 ∈ ρ(A) such that KR(λ0, A) is
compact. By the resolvent equation this is equivalent to KR(λ, A) being compact
for every λ ∈ ρ(A). Note that every compact operator K ∈ L(E) is naturally A-
compact. Moreover, if A has compact resolvent, then every operator K ∈ L(E) is
A-compact.

A complex Banach lattice E is by definition the complexification of a real
Banach lattice ER which we call the real part of E. The positive cone of a real or
complex Banach lattice E is denoted by E+. A vector f ∈ E is called positive,
which we denote by f > 0, if f ∈ E+. For two elements f , g ∈ E in case of a real
Banach lattice or f , g ∈ ER in case of a complex Banach lattice we write, as usual,
f 6 g if g− f > 0. We write f < g if f 6 g but f 6= g. The dual space E′ of a
real or complex Banach lattice E is again a real or complex Banach lattice, where
a functional ϕ ∈ E′ fulfils ϕ > 0 if and only if 〈ϕ, x〉 > 0 for all x ∈ E+; we denote
the positive cone in E′ by E′+ := (E′)+.

Let E be a real or complex Banach lattice and let u∈E+. The vector subspace

Eu := {x ∈ E : there exists c > 0 with |x| 6 cu}

of E is called the principal ideal generated by u. We endow Eu with the gauge norm
‖ · ‖u with respect to u. The gauge norm is given by

‖x‖u := inf{c > 0 : |x| 6 cu}

for all x ∈ Eu and is at least as strong as the norm induced by E, usually even
stronger. Moreover it renders Eu a (real or complex) Banach lattice. A vector
u ∈ E is called a quasi-interior point of E+ if u > 0 and if Eu is dense in E. If, for
instance, E is an Lp-space over a σ-finite measure space (Ω, µ) (where 16 p <∞)
then 06u∈E is a quasi-interior point of E+ if and only if u(ω)>0 for almost all
ω∈Ω.
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Let u ∈ E+. We call a vector f ∈ E strongly positive with respect to u, which
we denote by f �u 0, if there exists a number ε > 0 such that f > εu. This
condition is equivalent to the condition f > 0 and u ∈ E f . An operator T ∈ L(E)
is called strongly positive with respect to u, which we denote by T �u 0, if T f �u 0
for all 0 < f ∈ E.

Let E be a complex Banach lattice. A linear operator A : E ⊇ D(A) → E is
called real if

D(A) = ER ∩ D(A) + iER ∩ D(A)

and if A maps ER ∩ D(A) to ER. Clearly, an operator T ∈ L(E) is real if and
only if TER ⊆ ER. It is easy to see that a C0-semigroup (etA)t>0 on E is real,
meaning that etA is a real operator for every t > 0, if and only if A is real. A
linear operator T ∈ L(E) on a real or complex Banach lattice E is called positive
if TE+ ⊆ E+; we denote this by T > 0. In particular such an operator is real.
A C0-semigroup (etA)t>0 on E generated by A is called positive if etA > 0 for all
t > 0. Furthermore, given S, T ∈ L(E) we write S 6 T if S and T are both real
operators and T − S > 0.

A real operator T ∈ L(E) is called a multiplication operator if there exists a
number c > 0 such that −c IE 6 T 6 c IE; it is also possible to define non-real
multiplication operators, but we have no need for this in the present article. All
multiplication operators on a Banach lattice constitute a vector space which is
usually called the center of the Banach lattice; see for instance Section 3.1 of [19]
for more information. We recall how real multiplication operators can be charac-
terised on two important classes of complex Banach lattices, also explaining the
name “multiplication operator”. Let (Ω, µ) be a σ-finite measure space and K a
compact Hausdorff space. Then the real operator T is a multiplication operator
on E = Lp(Ω) with 1 6 p < ∞ or E = C(K;C) if and only if there exists a function
h ∈ L∞(Ω, µ;R) or h ∈ C(K;R), respectively, such that T f = h f for all f ∈ E.

NOTIONS OF EVENTUAL POSITIVITY. As in [5], [6], [7] we consider eventual pos-
itivity for resolvents of linear operators as well as for C0-semigroups. For the
convenience of the reader we recall the most important definitions now. First we
recall several notions of eventual positivity for resolvents.

DEFINITION 1.1. Let A : E ⊇ D(A) → E be a linear operator on a complex
Banach lattice E and let λ0 ∈ [−∞, ∞) be either a spectral value of A or −∞.

(i) The resolvent of A is called individually eventually positive at λ0 if, for every
0 6 f ∈ E, there exists a real number λ1 > λ0 such that (λ0, λ1] ⊆ ρ(A) and such
thatR(λ, A) f > 0 for all λ ∈ (λ0, λ1].

(ii) The resolvent of A is called uniformly eventually positive at λ0 if it is indi-
vidually eventually positive at λ0 and if the number λ1 in (i) can be chosen to be
independent of f .

Now assume in addition that u is a quasi-interior point of E+.
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(iii) The resolvent of A is called individually eventually strongly positive with re-
spect to u at λ0 if, for every 0 < f ∈ E, there exists a real number λ1 > λ0 such
that (λ0, λ1] ⊆ ρ(A) and such thatR(λ, A) f �u 0 for all λ ∈ (λ0, λ1].

(iv) The resolvent of A is called uniformly eventually strongly positive with respect
to u at λ0 if it is individually eventually strongly positive with respect to u at λ0
and if the number λ1 in (iii) can be chosen to be independent of f .

Note that one can also define various versions of eventual negativity of a
resolvent as was for instance done in Definition 4.2 of [6]. We will, however, not
discuss this notion in detail here.

The most interesting case in the above definition is the case λ0 = s(A).
In fact, eventual positivity of the resolvent of A at the spectral bound is closely
related to eventual positivity of the semigroup (see for instance Theorem 1.1 of
[6]). Various version of eventual positivity of a semigroup can be found in the
subsequent definition.

DEFINITION 1.2. Let (etA)t>0 be a C0-semigroup on a complex Banach lat-
tice E.

(i) The semigroup is called individually eventually positive if, for every 0 6 f ∈
E, there exists a time t0 > 0 such that etA f > 0 for all t > t0.

(ii) The semigroup is called uniformly eventually positive if it is individually
eventually positive and if the time t0 in (i) can be chosen to be independent of f .

Now assume in addition that u is a quasi-interior point of E+.
(iii) The semigroup is called individually eventually strongly positive with respect

to u if, for every 0 < f ∈ E, there exists a time t0 > 0 such that etA f �u 0 for all
t > t0.

(iv) The semigroup is called uniformly eventually strongly positive withh respect to
u if it is individually eventually strongly positive with respect to u and if the time
t0 from (iii) can be chosen to be independent of f .

It was demonstrated in Examples 5.7 and 5.8 of [7] that individual even-
tual strong positivity does not in general imply uniform eventual positivity, nei-
ther for resolvents nor for semigroups. In finite dimensions however, each of
the above individual notions coincides with its uniform counterpart and we shall
thus only speak of eventual positivity and eventual strong positivity if we work on
finite dimensional Banach lattices. In the latter case the quasi-interior point u is
not mentioned explicitly since the question whether a resolvent or a semigroup
is eventually strongly positive with respect to u does not depend on the choice of
u in finite dimensions.

In the present paper we mainly deal with eventual strong positivity with
respect to a given quasi-interior point u (which is much easier to characterise
than mere eventual positivity, as observed in Examples 7.1 of [6]). Mere eventual
positivity will, however, occur in several counterexamples in this article.
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2. LOSING EVENTUAL POSITIVITY UNDER POSITIVE PERTURBATIONS

If (etA)t>0 is a positive C0-semigroup on a complex Banach lattice E (mean-
ing that etA > 0 for all t > 0) and B ∈ L(E) is a positive operator, then it
follows easily from the Dyson–Phillips series (see e.g. Theorem III.1.10 of [10])
that the perturbed semigroup (et(A+B))t>0 is positive, too. If, on the other hand,
B ∈ L(E) is not necessarily positive, but real and a multiplication operator, then
we can also conclude that (et(A+B))t>0 is positive. Indeed, we have B + c I > 0
for a sufficiently large number c > 0 and hence,

et(A+B) = e−cet(A+B+c I) > 0

for all t > 0. It is the purpose of the current section to demonstrate that mat-
ters are much more complicated for eventually positive semigroups. In the first
subsection we show how eventual positivity of the semigroup can get lost if we
perturb A by a sufficiently large positive operator. In the second subsection we
demonstrate that individual eventual positivity can be destroyed by positive per-
turbations of arbitrarily small norm.

2.1. LARGE PERTURBATIONS. It was demonstrated in Proposition 3.6 of [26] that
eventual strong positivity of a matrix can always be destroyed by a suitable pos-
itive perturbation, unless the original matrix was positive itself. A similar phe-
nomenon occurs for C0-semigroups. We first illustrate this by a concrete three
dimensional example (Example 2.1). Afterwards we prove a general theorem
which shows that the situation is similar in infinite dimensions (Theorem 2.3).

Let us now begin by studying a simple three dimensional matrix A that gen-
erates an eventually strongly positive semigroup on C3. We will show that the
eventual positivity is destroyed if we perturb A by a certain positive multiplica-
tion operator (i.e. by a diagonal matrix whose entries are all > 0). Our example
is a manifestation of the fact that certain sign patterns may or may not lead to
eventual positivity as extensively discussed in [3], [12] and references therein.

EXAMPLE 2.1. We consider the symmetric matrix

A =

−2 −1 3
−1 −2 3
3 3 −6


whose spectrum is σ(A) = {0,−1,−9} and whose corresponding eigenvectors

u1 =
1√
3

[
1 1 1

]T , u2 =
1√
2

[
1 −1 0

]T and u3 =
1√
6

[
1 1 −2

]T ,

form an orthonormal basis in C3. Hence 0 is the dominant eigenvalue of A; the
corresponding eigenspace ker A is one-dimensional and contains an eigenvector
whose entries are all strictly positive. It thus follows from Theorem 6.7 of [6] that
the semigroup (etA)t>0 is eventually strongly positive. Yet, the semigroup is not
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positive because A has negative entries outside the diagonal. We now show that

a self-adjoint rank-1 perturbation of the form sB with s > 0 and B :=
[ 0 0 0

0 1 0
0 0 0

]
destroys the eventual positivity if s > 4. Indeed, it is easily verified that

v =
[
0 3 1

]T
is an eigenvector of (A + 4B) corresponding to the eigenvalue 3. Computing the
other eigenvalues we obtain

σ(A + 4B) =
{

3,−1
2
(9±

√
65)
}

,

so 3 is the dominant eigenvalue. For s = 4 the eigenfunction is not strongly
positive any more, and we will show that by choosing s > 4 the positivity is lost
entirely.

Since all eigenvalues are simple, it follows from standard perturbation the-
ory that there exists a curve λ(s) and vectors u(s) 6= 0 depending analytically on
s in an open interval J containing s = 4, such that λ(s)u(s) = (A + sB)u(s) for
all s ∈ J with initial conditions λ(4) = 3 and u(4) = v; see Section II.1.7 of [18].
Differentiating the above equation with respect to s yields

(2.1) λ′(s)u(s) + λ(s)u′(s) = Bu(s) + (A + sB)u′(s).

Taking the inner product of (2.1) with u(s) and using the symmetry of A + sB we
see that

λ′(s)‖u(s)‖2 + λ(s)〈u′(s), u(s)〉 = 〈Bu(s), u(s)〉+ 〈(A + sB)u′(s), u(s)〉
= 〈Bu(s), u(s)〉+ 〈u′(s), (A + sB)u(s)〉
= 〈Bu(s), u(s)〉+ λ(s)〈u′(s), u(s)〉

and so

λ′(s) =
〈Bu(s), u(s)〉
‖u(s)‖2

for all s ∈ J. If we apply this to s = 4 we obtain

(2.2) λ′(4) =
〈Bv, v〉
‖v‖2 =

9
10

.

To compute w := u′(4) we rearrange (2.1) to get

(A + sB− λ(s) I)u′(s) = (λ′(s) I−B)u(s).

Setting s = 4 and making use of (2.2), we need to solve

(A + 4B− 3 I)w =
( 9

10
I−B

)
v.

Substituting the matrices A and B we seek w = (w1, w2, w3) ∈ R3 so that−5 −1 3
−1 −1 3
3 3 −9

w1
w2
w3

 =
1

10

9 0 0
0 −1 0
0 0 9

0
3
1

 =
1

10

 0
−3
9

 .
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Solving this equation we see that

w = u′(4) =
1
40

−3
15
0

+ τ

0
3
1

 ,

for some τ ∈ R. Regardless of the value of τ, the first component of u(s) has
a negative derivative at s = 4, which means that first component changes sign
from positive to negative at s = 4. Hence the eigenvector u(s) of the dominant
eigenvalue λ(s) is not positive (or negative) for s in some interval (4, 4+ ε), where
ε > 0. Hence, the semigroup (et(A+sB))t>0 is not eventually positive for s ∈
(4, 4 + ε). This follows for instance from Theorem 7.7(i) of [7].

Next we look at the above example in a different way.

EXAMPLE 2.2. Clearly the matrix

Ca,s =

a a a
a s a
a a a


generates a strongly positive semigroup (etCa,s)t>0 on C3 for every a, s > 0. Let
A be given by (2.1). By Example 2.1 (etA)t>0 is eventually strongly positive but
not positive. We have also seen in Example 2.1 that for a = 0 the semigroup
(et(Ca,s+A))t>0 is not eventually positive for suitable choice of s > 4. The rea-
son is that the eigenvector corresponding to the dominant eigenvalue has strictly
positive and strictly negative components. Having chosen such s > 4, the con-
tinuous dependence of the eigenvalues and eigenvectors on the coefficients of a
matrix shows that we can choose a > 0 such that (et(Ca,s+A))t>0 is not eventually
positive.

Hence we have the generator Ca,s of a strongly positive semigroup and a
bounded operator A generating an eventually strongly positive semigroup, but
the semigroup generated by Ca,s + A does not exhibit any positivity properties.

The above example demonstrates that strong positivity of a semigroup is
possibly destroyed if the generator is perturbed by the generator of an eventually
strongly positive semigroup; compare also Theorem 3.5 of [26].

We close this subsection with a general result asserting that, under certain
technical assumptions, eventual strong positivity of a semigroup with respect to a
quasi-interior point u is always unstable under suitable large positive perturbation
unless the semigroup is positive. Recall from Theorem 7.6 of [7] that, if (etA)t>0 is
an eventually positive C0-semigroup and the spectrum σ(A) is non-empty, then
the spectrum contains the spectral bound s(A). A finite dimensional analogue
of the following theorem, which deals with powers of matrices rather than with
time continuous semigroups, can be found in Proposition 3.6 of [26].
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THEOREM 2.3. Let E be a complex Banach lattice and let (etA)t>0 be a real C0-
semigroup on E which is individually eventually strongly positive with respect to a quasi-
interior point u of E+. Suppose that s(A) is not equal to −∞ and that it is a pole of
R( · , A). Then the following assertions are equivalent:

(i) For every positive operator B ∈ L(E) the perturbed semigroup (et(A+B))t>0 is
individually eventually positive.

(ii) For every positive rank-1 operator B∈L(E) the perturbed semigroup (et(A+B))t>0
is individually eventually positive.

(iii) The semigroup (etA)t>0 is positive.

Proof. We may assume that s(A) = 0. Obviously, (iii) implies (i) and (i)
implies (ii). To show “(ii)⇒ (iii)”, assume that (et(A+B))t>0 is individually even-
tually positive for every positive rank-1 operator B ∈ L(E).

It suffices to prove that R(µ, A) > 0 for all µ > 0. To this end, fix an
arbitrary real number µ > 0 and an arbitrary functional 0 < ϕ ∈ E′. We show
thatR(µ, A)′ϕ > 0.

Since the spectral value s(A) = 0 is a pole of R( · , A), it is an eigenvalue
of A ([29], Theorem 2 in Section VIII.8), and it follows from Theorem 5.1 of [5]
and Corollary 3.3 of [6] that A admits an eigenvector v�u 0 for the eigenvalue 0.
Since u is a quasi-interior point of E+, so is v and hence we have 〈ϕ, v〉 > 0. We
can thus find a scalar α > 0 such that α〈ϕ, v〉 = µ.

Define B := αϕ ⊗ v ∈ L(E). As B is a positive rank-1 operator, the semi-
group (et(A+B))t>0 is by assumption individually eventually positive. It follows
from Proposition A.2(i) in the Appendix that s(A + B) = α〈ϕ, v〉 = µ, that this
number is a first order pole of the resolventR( · , A+ B) and that the correspond-
ing spectral projection Q is given by Q = (ϕ⊗ v)R(µ, A) = (R(µ, A)′ϕ)⊗ v.

Since (λ− µ)R(λ, A + B) → Q with respect to the operator norm as λ ↓ µ
and since the semigroup generated by A + B is individually eventually posi-
tive, it follows from Corollary 7.3 of [7] that Q > 0. Thus, we conclude that
(R(µ, A)′ϕ)⊗ v > 0 and hence,R(µ, A)′ϕ > 0, as claimed.

2.2. SMALL PERTURBATIONS. In this subsection we demonstrate that individual
eventual positivity is very unstable with respect to small perturbations. The fol-
lowing example shows that it can be destroyed by positive perturbations of arbi-
trarily small norm. To do all necessary computations in our example we need a
few formulas for rank-1-perturbations which can be found in the appendix of the
paper. On any given set S we denote the constant function S→ R with value 1
by 1.

EXAMPLE 2.4. On the Banach lattice E = C([−1, 1]) there exist a bounded
linear operator A and a positive rank-1-projection K with the following proper-
ties:

(i) The spectral bound s(A) equals 0, is a dominant spectral value of A and a
first order pole of the resolventR( · , A).
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For every α > 0 the spectral bound s(A + αK) equals α, is a dominant spec-
tral value of A + αK and a first order pole of the resolventR( · , A + αK).

(ii) The resolventR( · , A) is individually but not uniformly eventually strongly
positive with respect to 1 at 0.

Moreover, the semigroup (etA)t>0 is individually but not uniformly even-
tually strongly positive with respect to 1.

(iii) The resolventR( · , A+ αK) is not individually eventually positive at s(A+
αK) for any α > 0.

Moreover, the semigroup (et(A+αK))t>0 is not individually eventually posi-
tive for any α > 0.

To prove this, we choose A to be the same operator which was constructed
in Example 5.7 of [7]. For the convenience of the reader we briefly recall this
construction:

Let ϕ ∈ E′ be the functional given by 〈ϕ, f 〉 =
1∫
−1

f dx for every f ∈ E and

let F = ker ϕ. Then we have E = 〈1〉 ⊕ F, where 1 denotes the constant function
with value 1 and 〈1〉 is its span. Let S ∈ L(F) be the reflection operator given by
(R f )(ω) = f (−ω) for every f ∈ F and every ω ∈ [−1, 1] and let A ∈ L(E) be
given by

A = 0〈1〉 ⊕ (−2 IF −S).

We define K := 1⊗δ−1, where δ−1 is the Dirac functional δ−1 : f 7→ f (−1) on
E. Hence, we have K f = f (−1) 1 for every f ∈ E. Obviously, K is a positive
rank-1-projection. Let us now show that the properties (i)–(iii) are fulfilled.

(i) Since σ(S) = {−1, 1}, we conclude that σ(A) = {−3,−1, 0}. Hence, the
spectral bound s(A) equals 0 and is a dominant spectral value of A; clearly, it is
also a first order pole of the resolventR( · , A). Note that 1 is an eigenvector of A
for the eigenvalue 0.

Now, let α > 0. We have αK = αδ−1 ⊗ 1 and it follows from Proposi-
tion A.2(i) that any complex number λ with Re λ > 0 is a spectral value of A+ αK
if and only if λ = 〈αδ−1, 1〉 = α. Hence, the spectral bound of A + αK equals α
and is a dominant spectral value of A + αK. The formula for R( · , A + αK) in
Proposition A.2(i) immediately shows that the spectral value α is a first order
pole of the resolvent.

(ii) This was shown in Example 5.7 of [7].
(iii) Fix α > 0. We argue similarly as in Example 5.7 of [7]: for every

ε ∈ (0, 1) we can find a function 0 6 fε ∈ E such that fε(1) = ‖ fε‖∞ = 1,
〈ϕ, fε〉 = ε and fε(−1) = 0. A short computation (or compare with formula (5.3)
in Example 5.7 of [7]) shows that for every λ ∈ ρ(A) the resolvent of A is given by

R(λ, A) =
1
λ

I〈1〉⊕
1

(λ + 2)2 − 1
((λ + 2) IF −S).
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Using this, an elementary calculation yields

(R(λ, A) fε)(−1) =
ε

2

( 1
λ
− 1

λ + 3

)
− 1

(λ + 2)2 − 1

for every λ ∈ ρ(A). Hence, for every λ > 0 we can find an ε ∈ (0, 1) such that
(R(λ, A) fε)(−1) < 0. Now we can show that R( · , A + αK) is not individually
eventually positive at s(A + αK) = α: according to formula (A.2) we have

R(λ, A + αK) fε = R(λ, A) fε +
α

λ− α
(R(λ, A) fε)(−1) 1

and thus

(R(λ, A + αK) fε)(−1) =
(

1 +
α

λ− α

)
(R(λ, A) fε)(−1)

for all λ ∈ ρ(A+ αK). Hence, if λ > α is given, then we only have to choose ε > 0
such that (R(λ, A) fε)(−1) < 0 to obtainR(λ, A + αK) fε 6> 0.

It only remains to show that the semigroup (et(A+αK))t>0 is not individually
eventually positive. To this end, we choose ε > 0 such that (R(α, A) fε)(−1) < 0.
It follows from formula (A.3) that we have

e−tαet(A+αK) fε = e−tαetA fε + α[(R(α, A) fε)(−1)− (e−tαetAR(α, A) fε)(−1)] 1

for every t > 0. Since the spectral bound of A− α I equals −α and the operator
A− α I is bounded, we have e−tαetA → 0 as t → ∞ with respect to the operator
norm. Hence, e−tαe−tαet(A+αK) fε converges to α(R(α, A) fε)(−1) 1 < 0 with re-
spect to the ‖ · ‖∞-norm as t→ ∞. In particular, et(A+αK) fε is not positive (in fact,
it even fulfils −et(A+αK) fε �1 0) for all sufficiently large t.

The above example indicates that if we want to prove any perturbation re-
sults for eventually positive resolvents or semigroups, then we should assume
a version of uniform eventual positivity. This is our leitmotif for the rest of the
paper.

3. PERTURBATION THEOREMS FOR RESOLVENTS

In this section we consider resolvents which are, at a spectral value λ0, uni-
formly eventually strongly positive with respect to a quasi-interior point u. In the
first subsection we show that this property is stable with respect to sufficiently
small perturbations which are either positive or real multiplication operators. In
the second subsection we consider uniform eventual strong positivity at the spec-
tral bound and prove a quantitative perturbation result for this property.

A concrete class of operators for which eventual positivity of resolvents has
been studied for quite some time — though usually not under this name — is
constituted by fourth order differential operators; see [28] for an overview; com-
pare also Proposition 6.5 of [6]. For such operators, various perturbations results
have been proved by quite concrete methods and estimates; see for instance [17].
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Here, we rather focus on abstract functional analytical tools and prove results for
abstract operators.

3.1. A QUALITATIVE RESULT. The main result of this subsection is the following
qualitative perturbation result on eventually strongly positive resolvents at arbi-
trary real eigenvalues which are poles of the resolvent. Note that we do not make
any kind of compactness assumption in this theorem.

THEOREM 3.1. Let E be a complex Banach lattice and let A be a closed, densely
defined real operator on E. Assume that λ0 ∈ σ(A)∩R is a pole ofR( · , A) and suppose
that R( · , A) is uniformly eventually strongly positive with respect to u at λ0, where u
is a quasi-interior point of E+.

For all sufficiently small r > 0 there exists ε > 0 such that the following properties
hold for every positive operator B ∈ L(E) of norm ‖B‖ < ε:

(i) The operator A + B has a unique spectral value λB ∈ B(λ0, r).
(ii) The spectral value λB is a real number, a pole of the resolvent R( · , A + B) and

an algebraically simple eigenvalue of A + B.
(iii) The resolventR( · , A + B) is uniformly eventually strongly positive with respect

to u at λB.

One can prove a similar result for perturbations B which are not positive,
but real multiplication operators; see Corollary 3.5 below.

In order to prove Theorem 3.1 we need two auxiliary results. The first one is
a version of Proposition 4.2 of [7] on arbitrary Banach lattices. The fact that such
a result holds was already remarked in the discussion after Definition 4.2 of [6];
however, the result was not stated explicitly there.

PROPOSITION 3.2. Let A : E ⊇ D(A) → E be a real operator on a complex
Banach lattice A and let λ0 be either −∞ or a spectral value of A in R. Consider a real
number λ1 > λ0 such that (λ0, λ1] ⊆ ρ(A) and assume that R(λ1, A) > 0. Then the
following assertions hold:

(i) We haveR(λ, A) > 0 for all λ ∈ (λ0, λ1].
(i) If u is a quasi-interior point of E+ and if R(λ1, A)n �u 0 for some n ∈ N, then

R(λ, A)�u 0 for all λ ∈ (λ0, λ1).

The proof is exactly the same as the proof of Proposition 4.2 in [7].
The second ingredient for the proof of Theorem 3.1 is Lemma 3.3 below

that guarantees that a pole of the resolvent which is, in addition, an algebraically
simple real eigenvalue preserves these properties through a small perturbation
by a real operator. This lemma is a typical result from standard perturbation
theory; compare for instance Section IV.3 of [18]. Nevertheless, in order to have it
available in exactly the version we need, we include a proof. In the preliminaries
we introduced the concept of a real operator only on complex Banach lattices and
to avoid the necessity of even more terminology, we shall state the lemma only
on those spaces; compare however Remark 3.4 below.
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LEMMA 3.3. Let E be a complex Banach lattice and let A be a closed operator on
E. Assume that λ0 ∈ σ(A) is a pole of the resolventR( · , A) and an algebraically simple
eigenvalue of A with spectral projection P0. Let r > 0 be such that B(λ0, r) ∩ σ(A) =
{λ0} and set ε = min

|λ−λ0|=r
‖R(λ, A)‖−1. For every B ∈ L(E) with ‖B‖ < ε the

following assertions are fulfilled:
(i) A + B has a unique spectral value λB ∈ B(λ0, r) and λB is a pole of the resolvent

R( · , A + B) and an algebraically simple eigenvalue of A + B.
(ii) Denote by PB the spectral projections associated with λB. Then λB → λ0 and

PB → P0 with respect to the operator norm as ‖B‖ → 0.
(iii) If λ0 ∈ R and the operators A and B are real, then λB ∈ R.

Proof. Let Cr be the positively oriented circle of radius r > 0 centred at λ0 as
given in the statement of the lemma and let B ∈ L(E) with ‖B‖ < ε. For all λ ∈ Cr
we have ‖R(λ, A)B‖ 6 ‖R(λ, A)‖‖B‖ 6 ‖B‖/ε < 1. Since λ I−(A + B) =
(I−BR(λ, A))(λ I−A), a Neumann series expansion yields that λ I−(A + B) is
invertible and that

(3.1) R(λ, A + B) = R(λ, A)[I−BR(λ, A)]−1 = R(λ, A)
∞

∑
k=0

[BR(λ, A)]k

for all λ ∈ Cr. In particular we can define the projection

PB :=
1

2πi

∫
Cr

R(λ, A + B)dλ.

We first show that PB depends continuously on B. Indeed, let

α := min
|λ−λ0|=r

‖R(λ, A + B)‖−1,

that is, we have α · ‖R(λ, A + B)‖ 6 1 for all λ ∈ Cr. Let δ ∈ (0, 1). Another
Neumann series argument shows that whenever an operator B̃ ∈ L(E), say of
norm ‖B̃‖ < ε, is closer to B than αδ, then

‖R(λ, A + B̃)−R(λ, A + B)‖ 6 δ

α(1− δ)

for all λ ∈ Cr, and thus ‖PB̃ − PB‖ 6 δr/(α(1− δ)). This proves that PB̃ → PB in
L(E) as B̃→ B in L(E).

Now it follows from Lemma I.4.10 of [18] (the proof there does not rely on E
being finite dimensional) and our assumption that dim(Im PB) = dim(Im P0) =
1 whenever ‖B‖ < ε. In particular, A + B has only one spectral value λB in
the disk B(λ0, r); since the corresponding spectral projection PB has rank one, it
follows that λB is a pole of the resolvent R( · , A + B) ([18], Section III.6.5) and
an algebraically simple eigenvalue. We thus proved (i) and the second part of
(ii). Because r > 0 can be chosen arbitrarily small, we conclude that λB → 0 as
‖B‖ → 0, which proves the first part of (ii).
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To prove (iii), suppose that A, B are real and that λ0 ∈ R. If λB 6∈ R, then
λB is a second spectral value of A + B in the disk B(λ0, r), which contradicts (i).
Thus, λB ∈ R.

REMARK 3.4. The proof of Lemma 3.3 actually shows a bit more. Asser-
tions (i) and (ii) of the lemma remain true if E is only assumed to be a complex
Banach space. Assertion (iii) does not make sense if E is only a complex Banach
space since the notion of a real operator is not defined on such spaces. If, however,
E is a so-called complexification of a real Banach space ER, then the notion of a real
operator makes sense; in this situation, assertion (iii) of Lemma 3.3 remains true.

For a detailed treatement of complexifications we refer the reader for exam-
ple to [21]. Here we only point out that every complex Banach lattice is a certain
complexification of a real Banach lattice and thus of a real Banach space (see Sec-
tion II.11 of [25] or Section 2.2 of [19]).

We are now ready to prove Theorem 3.1.

Proof of Theorem 3.1. It follows from Theorem 4.2 and Proposition 4.1 of [5]
that λ0 is an algebraically simple eigenvalue of A. By assumption we can choose
r > 0 such that B(λ0, r)∩ σ(A) = {λ0} and thatR(λ0 + r, A)�u 0. Choose ε > 0
as in Lemma 3.3 and let B ∈ L(E) be positive with norm ‖B‖ < ε. Then by that
lemma there exists a unique λB ∈ B(λ0, r) ∩ σ(A + B). Moreover λB is a pole of
the resolvent R( · , A + B) and an algebraically simple eigenvalue of A + B and
we have λB ∈ (λ0 − r, λ0 + r). This proves (i) and (ii).

Since BR(λ0 + r, A) > 0, identity (3.1) with λ replaced with r + λ0 implies
that R(λ0 + r, A + B) > R(λ0 + r, A) �u 0. Proposition 3.2(ii) now shows that
R(λ, A + B)�u 0 for all λ ∈ (λB, λ0 + r].

Let us now consider the case where the perturbation B is not positive, but a
real multiplication operator.

COROLLARY 3.5. Let E be a complex Banach lattice and let A be a closed, densely
defined real operator on E. Assume that λ0 ∈ σ(A)∩R is a pole ofR( · , A) and suppose
that R( · , A) is uniformly eventually strongly positive with respect to u at λ0, where u
is a quasi-interior point of E+.

Then, for all sufficiently small r > 0 there exists ε > 0 such that the assertions
(i)–(iii) from Theorem 3.1 hold for every real multiplication operator B ∈ L(E) of norm
‖B‖ < ε.

The proof of this corollary relies on the following observation concerning
multiplication operators.

LEMMA 3.6. Let E be a complex Banach lattice and let T ∈ L(E) be a real multi-
plication operator. Then we have

‖T‖ > min{c > 0 : −c I 6 T 6 c I}.
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Proof. By TR we denote the restriction T|ER of T to the real part of ER of E.
We have

min{c > 0 : −c IE 6 T 6 c IE} = min{c > 0 : −c IER 6 TR 6 c IER} = ‖TR‖,
where the latter equality can be found in Theorem 3.1.11 of [19]. This proves the
assertion since we clearly have ‖TR‖ 6 ‖T‖.

REMARK 3.7. We suspect that there is equality in Lemma 3.6 as is true on
real Banach lattices ([19], Theorem 3.1.11). This is, however, not important for our
purposes.

We are now ready to prove Corollary 3.5.

Proof of Corollary 3.5. According to Theorem 3.1 we can, for each sufficiently
small r > 0, find ε̃ > 0 such that for each operator 0 6 B̃ ∈ L(E) of norm ‖B̃‖ < ε̃

the following holds: there exists exactly one spectral value of A + B̃ in the disk
B(λ0, r/3) and no other spectral value in the disk B(λ0, r) and the assertions (ii)
and (iii) of the theorem are fulfilled for this spectral value and for the operator
A + B̃.

Now, define ε := min{r/3, ε̃/2} and let B ∈ L(E) be a real multiplication
operator of norm ‖B‖ < ε. According to Lemma 3.6 we have B̃ := B + ‖B‖ I > 0;
moreover, the positive operator B̃ has norm ‖B̃‖ < ε̃.

Hence there exists exactly one spectral value of A + B̃ in the disk B(λ0, r/3)
and no other spectral value in the disk B(λ0, r); furthermore, assertions (ii) and (iii)
of Theorem 3.1 are fulfilled for this spectral value and for the operator A+ B̃. This
implies that the operator A + B̃−‖B‖ I = A + B has exactly one spectral value in
the disk B(λ0, 2r/3) and that assertions (ii) and (iii) of Theorem 3.1 are fulfilled
for this spectral value and for the operator A + B.

For matrices we can prove a stronger result than Theorem 3.1. Relying on
the fact that the set of strongly positive matrices is open in the space of all real
matrices we obtain stability of eventual strong positivity even with respect to
negative perturbations.

PROPOSITION 3.8. The set of matrices in Rd×d having an eigenvalue at which its
resolvent is eventually strongly positive is open in Rd×d.

Proof. Let A ∈ Rd×d be a matrix having an eigenvalue λ0 at which R( · , A)
is eventually strongly positive. By Theorem 4.4 of [7] the corresponding spectral
projection P0 fulfils P0 � 0, by which we mean that every entry of P0 is strictly
positive. Moreover, according to Proposition 3.1 of [7] λ0 is the only eigenvalue
of A having a positive eigenvector, and λ0 is algebraically simple. Lemma 3.3
implies the existence of ε0 > 0 such that A + B has an algebraically simple eigen-
value λB ∈ R near λ0 if ‖B‖ < ε0. Moreover, the corresponding spectral projec-
tion PB converges to P0 as ‖B‖ → 0. Since P0 � 0 there exists ε ∈ (0, ε0] such that
PB � 0 whenever ‖B‖ < ε. Now, Theorem 4.4 of [7] implies that R( · , A + B) is
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eventually strongly positive at λB whenever ‖B‖ < ε. Hence all matrices in the
ε-neigbourhood of A have an eigenvalue at which their resolvent is eventually
strongly positive.

3.2. A QUANTITATIVE RESULT. In this subsection we consider uniform eventual
strong positivity of resolvents at the spectral bound of an operator A and prove a
quantitative perturbation result, meaning that we give an estimate of how large a
positive perturbation may be in norm in order not to destroy the eventual strong
positivity. Eventual positivity at s(A) is of particular importance since it is re-
lated to eventual positivity of (etA)t>0 (in case that A is a generator); compare
the perturbation result in Theorem 4.9 which we obtain as a consequence of the
perturbation result in the present subsection.

To formulate the next theorem we need the following notation: for every
operator A : E ⊇ D(A) → E on a complex Banach space E we define the real
spectral bound sR(A) of A to be the supremum of all real spectral values of A, i.e.
sR(A) := sup(σ(A) ∩R); we clearly have −∞ 6 sR(A) 6 s(A) 6 ∞.

THEOREM 3.9. Let E 6= {0} be a complex Banach lattice, let u ∈ E be a quasi-
interior point of E+ and let A be a densely defined and real linear operator on E such that
s(A) is a spectral value of A and a pole of R( · , A). Suppose there exists λ1 > s(A)
such thatR(λ, A)�u 0 for all λ ∈ (s(A), λ1) and assume furthermore that

M := sup
Re λ>λ1

‖R(λ, A)‖ < ∞.

Then, for every operator 0 6 K ∈ L(E) with norm ‖K‖ < 1/M the real spectral bound
sR(A + K) fulfils the following properties:

(i) sR(A + K) 6 s(A + K) < λ1.
(ii)R(λ, A + K)�u 0 for all λ ∈ (sR(A + K), λ1).

(iii) If K is A-compact, then sR(A+K)>s(A) and sR(A+K) is a pole ofR( · , A+K).
(iv) If K is A-compact and non-zero, then sR(A + K) > s(A).

Note that the condition M < ∞ in the above theorem is equivalent to the
condition that λ1 be larger than the so-called pseudo-spectral bound s0(A) of A (see
p. 356 of [1] for a definition); in particular, we have M < ∞ in case that s(A) =
s0(A). The latter equality is for instance fulfilled if the operator A generates a
C0-semigroup on E which is eventually norm continuous (see Corollary IV.3.11
of [10] and Theorem 5.1.9 of [1]) or which is individually eventually positive (see
Corollary 7.5 of [7]).

Proof of Theorem 3.9. Let 0 6 K ∈ L(H) and note that

λ I−(A + K) = [I−KR(λ, A)](λ I−A),

for each λ∈ρ(A). Hence, if λ∈ρ(A) and r(KR(λ, A))<1, then λ∈ρ(A + K) and

(3.2) R(λ, A + K) = R(λ, A)[I−KR(λ, A)]−1.
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(i) Obviously, sR(A + K) 6 s(A + K). If λ ∈ C with Re λ > λ1 then we have
r(KR(λ, A)) 6 ‖KR(λ, A)‖ < (1/M)‖R(λ, A)‖ 6 1 and thus λ ∈ ρ(A + K).
This proves that s(A + K) < λ1.

(ii) As noted in the proof of (i) we have ‖KR(λ1, A)‖ < 1. Since the map-
ping λ 7→ ‖KR(λ, A)‖ is continuous we also obtain the estimate

r(KR(λ, A)) 6 ‖KR(λ, A)‖ < 1

for all λ ∈ (λ1− ε, λ1) if ε > 0 is chosen small enough. Each such λ is contained in
ρ(A + K) and (3.2) holds. Since KR(λ, A) is positive and has spectral radius < 1,
the inverse [I−KR(λ, A)]−1 is also positive. We thus have [I−KR(λ, A)]−1 f >
0 for each f > 0. As R(λ, A) �u 0, formula (3.2) now yields R(λ, A + K) �u 0.
According to Proposition 3.2(ii) this implies that R(λ, A + K) �u 0 holds in fact
for all λ ∈ (sR(A), λ1).

(iv) Assume now in addition that K is A-compact and non-zero. To prove
(iv) it suffices to show that A + K has a spectral value λ ∈ (s(A), λ1). To this end,
let P ∈ L(E) be the spectral projection of A associated with s(A). By Theorem 4.1
of [5] and Corollary 3.3 of [6], P is a rank-1 operator which fulfils P �u 0 and
we have P = lim

λ↓s(A)
(λ− s(A))R(λ, A) with respect to the operator norm. Let us

now define a mapping γ : [s(A), λ1)→ L(E) which is given by

γ(λ) =

{
(λ− s(A))KR(λ, A) if λ > s(A),
KP if λ = s(A).

Note that γ is continuous with respect to the operator norm and that γ(λ) is a
compact, positive operator for every λ ∈ [s(A), λ1). Moreover, we recall that
the restriction of the mapping L(E) → [0, ∞), T 7→ r(T) to the set of compact
operators is continuous with respect to the operator norm; this follows e.g. from
Remark IV.3.3 and the discussion in Section IV.3.5 of [18] or from Theorem 2.1(a)
of [8]. Hence, r(γ( · )) : [s(A), λ1)→ [0, ∞) is continuous.

Let us show that r(γ(s(A)) = r(KP) > 0. Since P has rank 1 and since
P�u 0, we can find a strictly positive functional ϕ ∈ E′ and a vector 0�u v ∈ E
such that P = ϕ ⊗ v and hence, KP = ϕ ⊗ Kv. Since v is a quasi-interior point
of E+ and K is non-zero, it follows that Kv 6= 0. Using that ϕ is strictly positive,
we deduce that 〈ϕ, Kv〉 > 0 and hence σ(KP) = σ(ϕ⊗ Kv) 3 〈ϕ, Kv〉 > 0. Thus,
r(KP) > 0.

We conclude that for all sufficiently small λ > s(A) we have that

r((λ− s(A))KR(λ, A)) >
r(KP)

2
> 0.

We can thus find λ ∈ (s(A), λ1) such that r(KR(λ, A)) > 1. On the other hand
we have ‖KR(λ1, A)‖ < 1. Hence we have r(KR(λ, A)) 6 ‖KR(λ, A)‖ < 1 for
all λ ∈ (s(A), λ1) which are sufficiently close to λ1. Using again that the spectral
radius is continuous on the compact operators with respect to the norm topol-
ogy ([8], Theorem 2.1(a)) we conclude from the intermediate value theorem that
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r(KR(λ, A)) = 1 for some λ ∈ (s(A), λ1). For this λ the operator λ I−A is invert-
ible, but the operator I−KR(λ, A) is not since the spectral radius of KR(λ, A) is
contained in its spectrum (this is a general fact for positive operators, see Propo-
sition V.4.1 of [25]). Hence, it follows from (3.1) that λ ∈ σ(A + K).

(iii) Assume that K is A-compact. If K = 0, then assertion (iii) is obvious. If K
is non-zero, then it follows from (iv) that sR(A + K) > s(A). We use formula (3.2)
to prove that sR(A+K) is a pole ofR( · , A+K). Let Ω := {z ∈ C : Re z > s(A)}.
On this set, the mappings λ 7→ R(λ, A) and λ 7→ KR(λ, A) are analytic and
the latter one takes only compact operators as its values. Since I−KR(λ, A) is
invertible for at least one λ ∈ Ω, it follows from the so-called analytic Fredholm
theorem (see e.g. Theorem 1 of [27]) that [I−KR(λ, A)]−1 is meromorphic on Ω.
Hence,R( · , A+K) is either analytic at sR(A+K) or it has a pole there; yet, since
sR(A + K) is, of course, a spectral value of A + K, the latter alternative must be
true.

4. PERTURBATION THEOREMS FOR SEMIGROUPS

In this final section we consider perturbations of semigroup generators. We
do however not prove theorems of the type “If (etA)t>0 is eventually strongly pos-
itive, then so is (et(A+B))t>0 for appropriate B”. Those results would, of course,
be desirable, but it seems to be a difficult task to prove them. Instead we assume
that the resolvent of the semigroup generator A is uniformly eventually strongly
positive at the spectral bound s(A). Using the results of Section 3 we then show
that the resolvent of the perturbed operator A + B is also uniformly eventually
strongly positive at s(A + B) and, by means of the characterisation results in Sec-
tions 4 and 5 of [6], this yields at least individual eventual strong positivity of the
semigroup generated by A + B. In case that the underlying space is an L2-space,
one even obtains uniform eventual strong positivity of this semigroup, see Theo-
rem 4.9 below and Theorem 10.2.1 of [15].

4.1. A QUALITATIVE RESULT. We start again with a subsection containing qual-
itative perturbation results. To prove our main theorems we need the following
auxiliary results. As we did with Lemma 3.3, we only formulate the following
result on a complex Banach lattice, although the proof shows that it is actually
true on arbitrary complexifications of real Banach spaces.

LEMMA 4.1. Let E be a complex Banach lattice and let (etA)t>0 be a real eventu-
ally norm continuous C0-semigroup on E. Suppose furthermore that s(A) is a dominant
spectral value of A, a pole of the resolvent and an algebraically simple eigenvalue; denote
the spectral projection associated with s(A) by P0. Then there exists an ε > 0 such that
the following properties are fulfilled for every real operator B ∈ L(E) with ‖B‖ < ε:

(i) The spectral bound s(A + B) of A + B is a dominant spectral value of A + B, a
pole of the resolventR( · , A + B) and an algebraically simple eigenvalue.
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(ii) We have s(A + B) → s(A) and PB → P0 with respect to the operator norm as
‖B‖ → 0; here, PB denotes the spectral projection of A + B associated with the isolated
spectral value s(A + B).

Proof. Since s(A) is a dominant spectral value and (etA)t>0 is eventually
norm continuous, we can find a number r > 0 such that Re λ 6 s(A) − 2r for
all λ ∈ σ(A) \ {s(A)}. The spectral bound of the restriction of A to the kernel
of P0 fulfils s(A|ker P0) 6 s(A) − 2r and since (etA|ker P0)t>0 is eventually norm
continuous, it follows that the growth bound of this restricted semigroup is also
no larger than s(A) − 2r ([10], Corollary IV.3.11). In particular, we obtain from
the Laplace transform representation of the resolvent that

sup
Re λ>s(A)−r

‖R(λ, A|ker P0)‖ < ∞.

On the other hand,
sup

|λ−s(A)|>r
‖R(λ, A|Im P0)‖ < ∞.

Hence, ‖R( · , A)‖ is bounded by a constant C ∈ (0, ∞) on the set

Ω := {λ ∈ C : Re λ > s(A)− r and |λ− s(A)| > r}.

Define ε = 1/C and let B ∈ L(E) with ‖B‖ < ε. According to Lemma 3.3, A + B
has a uniquely determined spectral value λB ∈ B(r, s(A)), and this spectral value
λB is real, a pole of the resolvent A + B and an algebraically simple eigenvalue of
A + B. Moreover, λB → s(A) and PB → P0 with respect to the operator norm as
‖B‖ → 0.

It only remains to show that A + B has no spectral value within the set Ω

since this implies that s(A + B) = λB has the claimed properties. So, let λ ∈ Ω.
Then we have

λ− (A + B) = [I−BR(λ, A)](λ I−A).

Since ‖BR(λ, A)‖ < εC = 1 the above operator is invertible and hence, λ ∈
ρ(A + B).

Now we formulate and prove the first main result of this subsection.

THEOREM 4.2. Let E be a complex Banach lattice and let (etA)t>0 be a real C0-
semigroup on E. Suppose that s(A) is a dominant spectral value of A and a pole of
the resolvent. Suppose that R( · , A) is uniformly eventually strongly positive at s(A)
with respect to a quasi-interior point u of E+. Assume moreover that at least one of the
following assumptions is fulfilled:

(i) (etA)t>0 is analytic and D(A) ⊆ Eu.
(ii) (etA)t>0 is immediately norm-continuous and Eu = E.

Then there exists an ε > 0 such that for every operator 0 6 B ∈ L(E) with ‖B‖ < ε the
semigroup generated by A + B is individually eventually strongly positive with respect
to u.
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Proof. According to Theorem 3.1 and Lemma 4.1 we can find an ε > 0 with
the following property: for all 0 6 B ∈ L(E) with ‖B‖ < ε the spectral bound
of A + B is a dominant and isolated spectral value of A + B, an algebraically
simple eigenvalue and a first order pole of the resolvent. Moreover, the resolvent
R( · , A + B) is uniformly eventually strongly positive at s(A + B) with respect to
u. We now see from Theorem 4.2 of [5] that the spectral projection P associated
with s(A + B) is strongly positive with respect to u.

Next we observe that assumptions (i) and (ii) imply that (et(A+B))t>0 is
eventually (in fact: immediately) norm continuous and that etAE ⊆ Eu for all
t > 0. Indeed, if (i) is fulfilled, then it follows from Proposition III.1.12(i) of [10]
that the perturbed semigroup (et(A+B))t>0 is analytic, too. From D(A + B) =

D(A) ⊆ Eu we can thus conclude that et(A+B)E ⊆ D(A + B) ⊆ Eu for every
t > 0. If, on the other hand, (ii) is fulfilled, then (etA)t>0 is immediately norm
continuous according to Theorem III.1.16(i) of [10]. Moreover, we obviously have
etAE ⊆ E = Eu.

Let us finally show that the two properties proved above imply that the
semigroup (et(A+B))t>0 is individually eventually strongly positive with respect
to u. Since the perturbed semigroup is eventually norm continuous and the spec-
tral bound s(A + B) is a dominant spectral value of A + B and a first order pole
of its resolvent, it follows that the rescaled semigroup (et(A+B−s(A+B) I))t>0 is
bounded. Since the spectral projection P associated with s(A + B) is strongly
positive with respect to u, we conclude from the characterisation theorem given
in Theorem 5.2 of [6] that (et(A+B))t>0 is individually eventually strongly positive
with respect to u.

A typical space where the condition Eu = E in assumption (ii) of the above
theorem is fulfilled is the space C(K;C) of all complex-valued continuous func-
tions on a compact Hausdorff space K; this holds independently of the choice of
the quasi-interior point u.

EXAMPLES 4.3. Let Ω ⊆ Rd be a bounded domain of class C2. Consider one
of the following situations:

(i) E = C0(Ω;C) (the space of all complex-valued continuous functions on Ω

which vanish at the boundary) and A = −∆2
D, where ∆D denotes the Dirichlet

Laplace operator on E.
(ii) E = C(Ω;C) and A = −(∆c

R)
2, where ∆c

R denotes the Laplace operator on
E with Robin boundary conditions (see Section 6.4 of [7] for details).

Then E and A fulfil the assumptions of Theorem 4.2. For (i), this is shown in
the proof of Theorem 6.1 of [6] and for (ii), this follows from Sections 6.3 and 6.4
of [7].

In case that the perturbation B is compact, we can replace assumption (ii) in
Theorem 4.2 with a weaker condition. This is the subject of the next theorem, our
second main result in this section.
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THEOREM 4.4. Suppose that the assumptions of Theorem 4.2 are fulfilled, but
instead of (i) or (ii) assume the following condition:

(iii) (etA)t>0 is eventually norm continuous and Eu = E.
Then there is an ε > 0 such that for every compact operator 0 6 B ∈ L(E) with
‖B‖ < ε the semigroup generated by A + B is individually eventually strongly positive
with respect to u.

Proof. The proof is the same as for Theorem 4.2. The only difference is
that we need the compactness of B to conclude that the perturbed semigroup
(et(A+B)t>0 is eventually norm continuous since the original semigroup (etA)t>0
is only assumed to be eventually but not necessarily immediately norm continu-
ous; see Proposition III.1.14 of [10]

Let us also comment on perturbation by (non-positive) multiplication oper-
ators.

COROLLARY 4.5. The Theorems 4.2 and 4.4 remain true if we replace the assump-
tion of B being positive with the assumption that B be a real multiplication operator
(where, however, ε has to be chosen half as large as in the theorems).

Proof. The operator B̃ := B + ‖B‖ I has norm at most 2‖B‖ and is positive
according to Lemma 3.6. Hence, the corollary follows from Theorems 4.2 and 4.4
and from the formula

et(A+B) = e−t‖B‖et(A+B̃)

which is true for all t > 0.

We can prove a much stronger result than in the above theorems in case that
E is finite dimensional.

PROPOSITION 4.6. Let d ∈ N, d > 1. The set of all generators of eventually
strongly positive C0-semigroups on Cd is an open subset of Rd×d.

Proof. Let A ∈ Cd×d be the generator of an eventually strongly positive
semigroup. Then obviously, A ∈ Rd×d. By the characterisation result in Corol-
lary 5.6 of [7] this implies that s(A) is a dominant spectral value of A and that the
corresponding spectral projection P0 has only strictly positive entries. Hence, it
follows from Proposition 3.1 of [7] that s(A) is an algebraically simple eigenvalue
of A. We now conclude from Lemma 4.1 that for all B ∈ Rd×d which are suffi-
ciently small in norm, the spectral bound s(A + B) is a dominant spectral value
of A + B. Moreover, the spectral projection PB corresponding to s(A + B) fulfils
PB → P0 as ‖B‖ → 0. Since PB is real, it thus contains only strictly positive entries
whenever ‖B‖ is sufficiently small and thus, we can again employ the characteri-
sation result in Corollary 5.6 of [7] to conclude that the semigroup (et(A+B))t>0 is
eventually strongly positive for all such B.
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It is a natural question whether the set of all generators of strongly posi-
tive matrix semigroups (etA)t>0 (meaning that each matrix etA has only strictly
positive entries whenever t > 0) is also open in Rd×d. Surprisingly, the answer
depends on the dimension d: it is positive if d = 2 (and, obviously, also if d = 1),
but negative if d > 3. The details can be found in the next corollary and the
subsequent example.

COROLLARY 4.7. The set all generators of strongly positive C0-semigroups on C2

is an open subset of R2×2.

Proof. The generator of a strongly positive C0-semigroup on C2 is obviously
a real matrix and it was shown in Proposition 6.2 of [7] that a matrix A ∈ R2×2

generates a strongly positive C0-semigroup if and only if it generates an eventu-
ally strongly positive C0-semigroup. Hence, the corollary follows from Proposi-
tion 4.6.

EXAMPLE 4.8. We showed in Proposition 4.6 that eventual strong positivity
of matrix semigroups is robust with respect to small, not necessarily positive per-
turbations. We now give an example that this is not the case for strong positivity
of the semigroup. Consider the generator

A :=
1√
2

0 0 1
0 0 1
1 1 0


on C3. Then it is easily checked that

A2k =
1
2

1 1 0
1 1 0
0 0 2

 and A2k+1 = A

for all k > 1 and thus etA =
∞
∑

k=0
(tk/k!)Ak � 0 for all t > 0. Moreover, σ(A) =

{0,±1}, where the eigenspace associated with 1 is spanned by the positive eigen-
vector (1, 1,

√
2). If we set

B :=
1√
2

 0 −1 0
−1 0 0
0 0 0

 ,

then

A + εB =
1√
2

 0 −ε 1
−ε 0 1
1 1 0


cannot generate a positive semigroup for any ε > 0. However, if ε is small
enough, then Theorem 4.2 implies that (et(A+εB)t>0 is eventually strongly pos-
itive.
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Clearly, the above example can be generalised to any finite dimension d > 3
by defining

A :=
1√

d− 1


0 . . . 0 1
...

...
...

0 . . . 0 1
1 . . . 1 0

 ∈ Cd,d.

Hence, Proposition 4.6 and the above example show that, in dimension d > 3,
eventual strong positivity of semigroups is a much more stable concept than
strong positivity.

4.2. A QUANTITATIVE RESULT. In this final section we prove a quantitative per-
turbation theorem for semigroups. It is based on the quantitative result about
resolvents in Theorem 3.9. It seems, in general, unclear how to ensure that the
real spectral bound sR(A + B) (see the discussion before Theorem 3.9 for a defi-
nition) is a dominant spectral value of A + B (and thus coincides with s(A + B)).
For this reason we restrict ourselves to self-adjoint semigroups and perturbations
on Hilbert spaces in the following theorem; since the spectrum of self-adjoint op-
erators is always real we clearly have sR(A + B) = s(A + B) in case that A and B
are self-adjoint.

THEOREM 4.9. Let {0} 6= H be a complex-valued L2-space over an arbitrary
measure space, let u ∈ H+ be a quasi-interior point and let (etA)t>0 be a self-adjoint and
real C0-semigroup on H with D(A) ⊆ Hu. Suppose that there is a λ1 > s(A) such that
R(λ, A)�u 0 for all λ ∈ (s(A), λ1).

If B ∈ L(H) is positive and self-adjoint with ‖B‖ < λ1 − s(A), then the semi-
group (et(A+B))t>0 is uniformly eventually strongly positive with respect to u.

Note that if the underlying measure space of H is σ-finite, then a vector
u ∈ H+ is a quasi-interior point if and only if u(ω) > 0 for almost all ω in
the measure space. The fact that we obtain uniform eventual strong positivity
for the perturbed semigroup in the above theorem is due to a recent result of
the authors in the Hilbert space case which appeared in the second author’s
Ph.D. Dessertation ([15], Theorem 10.2.1).

Proof of Theorem 4.9. Since et0 AH ⊆ Hu, it follows from Theorem 2.3(ii) of
[5] that et0 A is compact. Therefore, the semigroup (etA)t>0 is eventually com-
pact, and since it is analytic, it must in fact be immediately compact; see Exer-
cise II.4.30(6) of [10]. Hence, its generator A has compact resolvent ([10], Theo-
rem II.4.29). In particular, s(A) is a pole ofR( · , A) and B is A-compact.

We have M := sup
Re λ>λ1

‖R(λ, A)‖ = 1/(λ1 − s(A)) since A is self-adjoint.

Moreover, sR(A + B) equals s(A + B) since A + B is self-adjoint. It therefore fol-
lows from Theorem 3.9 that s(A + B) is a pole ofR( · , A + B) and thatR( · , A +
B) is uniformly eventually strongly positive at s(A + B) with respect to u. Hence,
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the spectral projection P associated with the spectral value s(A + B) of A + B ful-
fils P�u 0 according to Theorem 4.1 of [5]. Since D(A+ B) = D(A) ⊆ Hu it thus
follows from the characterisation of eventual positivity in Theorem 10.2.1 of [15]
that (et(A+B))t>0 is uniformly eventually strongly positive with respect to u.

Let us conclude the paper with the following example of a Laplace operator
on (0, 1) with non-local boundary conditions. Eventual positivity properties of
the unperturbed operator were discussed in Section 6 of [6] and in Section 11.7
of [15].

EXAMPLE 4.10. Let H denote the Hilbert space L2(0, 1) and consider the
sesqui-linear form

a : H1(0, 1)× H1(0, 1)→ C

which is given by

a(u, v) =
1∫

0

u′v′dx +
[
u(0) u(1)

] [1 1
1 1

] [
v(0)
v(1)

]
.

The operator A on H associated with a is self-adjoint; it is a (negative) Laplace
operator with non-local boundary conditions, given by

D(A) = {u ∈ H2(0, 1) : u′(0) = −u′(1) = u(0) + u(1)},
Au = −u′′.

It was shown in Theorem 11.7.3 of [15] that s(−A) < 0 and that the semigroup
(e−tA)t>0 is not positive, but uniformly eventually strongly positive with respect
to 1 (where 1 denotes the constant function on (0, 1) with value 1). Let us now
prove the following assertion:

If 0 6 B ∈ L(H) is self-adjoint and ‖B‖ < 1, then the semigroup generated by
−A + B is uniformly eventually strongly positive with respect to 1.

Proof. Obviously, u = 1 is a quasi-interior point of H+. Moreover, we have
D(A) ⊆ H1(0, 1) ⊆ L∞(0, 1) = H1. It was shown in Theorem 6.11(i) of [6]
that R(0,−A) �u 0 and in the proof of that theorem the following formula for
R(0,−A) was given:

(R(0,−A) f )(x) =
1
2

x∫
0

1∫
y

f (z)dz dy +
1
2

1∫
x

y∫
0

f (z)dz dy

for all f ∈ H and all x ∈ [0, 1]. We want to apply Theorem 4.9 and thus we have
to estimate the number − s(−A). This number coincides with the distance of 0 to
σ(−A) which is in turn equal to 1/‖R(0,−A)‖ since −A is self-adjoint. Hence,
we have to estimate the norm of R(0,−A). Since this is a positive operator, we
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only have to consider positive functions f ∈ H. For each such f we have

‖R(0,−A) f ‖2 6 ‖R(0,−A) f ‖∞ 6

1∫
0

1∫
0

f (z)dz dy = ‖ f ‖1 6 ‖ f ‖2.

Hence, we have ‖R(0,−A)‖ 6 1 and thus 1/‖R(0,−A)‖ > 1. The assertion
now follows from Theorem 4.9.

Appendix A. FORMULAS FOR RANK-1-PERTURBATIONS

Let A : E ⊇ D(A) → E be a linear operator on a complex Banach space E.
In this appendix we study what happens to the spectrum and the resolvent of A
if we perturb A by a rank-1-operator. If A generates a C0-semigroup and if the
perturbation is, in a sense, well-adapted to A, we also derive a formula for the
perturbed C0-semigroup.

PROPOSITION A.1. Let A : E ⊇ D(A) → E be a linear operator on a complex
Banach space E and let λ ∈ ρ(A). Moreover, assume that ϕ ∈ E′ and w ∈ E.

Then λ ∈ ρ(A + ϕ⊗ w) if and only if 1 6= 〈ϕ,R(λ, A)w〉. In this case we have

(A.1) R(λ, A+ϕ⊗ w)=R(λ, A)+
1

1−〈ϕ,R(λ, A)w〉 R(λ, A)(ϕ⊗ w)R(λ, A).

Proof. If 〈ϕ,R(λ, A)w〉 6= 1, then the right hand side of (A.1) is well defined
and, using that (ϕ⊗w) R(λ, A) (ϕ⊗w) = 〈ϕ,R(λ, A)w〉(ϕ⊗w), one can check
by a simple computation that it is the inverse of λ I−(A + ϕ ⊗ w); this implies
that λ ∈ ρ(A + ϕ⊗ w) and that the formula holds.

Now, assume that λ ∈ ρ(A+ ϕ⊗w). If w = 0, then clearly 〈ϕ,R(λ, A)w〉 =
0 6= 1, so let w 6= 0. Since both operators λ I−A and

λ I−(A + ϕ⊗ w) = (I−(ϕ⊗ w)R(λ, A))(λ I−A)

are bijective from D(A) to E, it follows that I−(ϕ⊗ w)R(λ, A) is a bijection on
E; in particular, the latter operator is injective, so

0 6= (I−(ϕ⊗ w)R(λ, A))w = (1− 〈ϕ,R(λ, A)w〉)w.

This proves that 〈ϕ,R(λ, A)w〉 6= 1.

If A is a square matrix and λ = 0, then (A.1) is a special case of the Sherman–
Morrison–Woodbury formula from numerical analysis; see Section 2.1.3 of [16] or
Lemma on p. 68 of [20].

If A generates a C0-semigroup (etA)t>0, then we do not obtain such a nice
formula for the perturbed semigroup (et(A+ϕ⊗w))t>0, in general. However, if
w is an eigenvector of A, then an explicit formula for the perturbed semigroup
can be given, and the perturbation formula for the resolvent from the previous
proposition can be considerably simplified.
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PROPOSITION A.2. Let A : E ⊇ D(A) → E be a linear operator on a complex
Banach space E. Let ϕ ∈ E′ and let v ∈ D(A) be an eigenvector of A for an eigenvalue
λ0 ∈ C.

(i) If λ ∈ ρ(A), then λ ∈ ρ(A + ϕ⊗ v) if and only if λ− λ0 6= 〈ϕ, v〉. In this case

(A.2) R(λ, A + ϕ⊗ v) = R(λ, A) +
1

(λ− λ0)− 〈ϕ, v〉 (ϕ⊗ v)R(λ, A).

(ii) If A generates a C0-semigroup on E and if 〈ϕ, v〉+ λ0 6∈ σ(A), then

(A.3) et(A+ϕ⊗v) = etA + (ϕ⊗ v)(et(〈ϕ,v〉+λ0) I−etA)R(〈ϕ, v〉+ λ0, A)

for all t > 0.

Proof. (i) This follows immediately from Proposition A.1.
(ii) The right hand side of (A.3) is clearly strongly continuous with respect

to t ∈ [0, ∞) and a direct computation verifies that it is a semigroup. We denote
by B the generator of this semigroup. Then one immediately checks that D(B) ⊇
D(A) = D(A + ϕ⊗ v) and that B f = (A + ϕ⊗ v) f for all f ∈ D(A) = D(A +
ϕ⊗ v). Hence, B is an extension of A + ϕ⊗ v. Since A + ϕ⊗ v and B are both
semigroup generators, their resolvent sets have non-empty intersection and thus,
we must have B = A + ϕ⊗ v.
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