ALGEBRAIC PAIRS OF PURE COMMUTING ISOMETRIES WITH FINITE MULTIPLICITY

UDENI D. WIJESOORIYA

Communicated by Hari Bercovici

Abstract

An algebraic isopair is a commuting pair of pure isometries that is annihilated by a polynomial. The notion of the rank of a pure algebraic isopair with finite bimultiplicity is introduced as an s-tuple $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right)$ of natural numbers. A pure algebraic isopair of finite bimultiplicity with rank α, acting on a Hilbert space, is nearly $\max \left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$-cyclic and there is a finite codimensional invariant subspace such that the restriction to that subspace is $\max \left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$-cyclic.

Keywords: Commuting isometries, algebraic isopairs, cyclic operators, rational inner functions, distinguished varieties.

MSC (2010): Primary 47A13, 47B20, 47B32, 47A16; Secondary 14H50, 14M99, 30 J 05.

1. INTRODUCTION

Given a polynomial $p \in \mathbb{C}[z, w]$ (or in $\mathbb{C}[z]$) let $Z(p)$ denote its zero set. We say p is square free if q^{2} does not divide p for every non-constant polynomial $q(z, w) \in \mathbb{C}[z, w]$. We say $q \in \mathbb{C}[z, w]$ is the square free version of p if q is the polynomial with smallest degree such that q divides p and $Z(p)=Z(q)$. The square free version is unique up to multiplication by a nonzero constant.

Let \mathbb{D}, \mathbb{T} and \mathbb{E} denote the open unit disk, the boundary of the unit disk and complement of the closed unit disk in \mathbb{C}, respectively. In [2] the notion of an inner toral polynomial is introduced. (See also [5], [6], [9], [11].) A polynomial $q \in \mathbb{C}[z, w]$ is inner toral if

$$
Z(q) \subset \mathbb{D}^{2} \cup \mathbb{T}^{2} \cup \mathbb{E}^{2}
$$

In other words, if $(z, w) \in Z(q)$ then either $|z|,|w|<1$ or $|z|=1=|w|$ or $|z|,|w|>1$. A distinguished variety in \mathbb{C}^{2} is the zero set of an inner toral polynomial.

Let V be an isometry defined on a Hilbert space H. By the Wold decomposition, there exist two reducing subspaces for V, say K and L, such that $H=$
$K \oplus L$ and $S=\left.V\right|_{K}$ is a shift operator and $U=\left.V\right|_{L}$ is a unitary operator. We say V is pure, if there is no unitary part. An isometry V is pure if and only if $\bigcap_{j=1}^{\infty} V^{j}(H)=\{0\}$. A subspace \mathcal{W} of H is called a wandering subspace for V if $V^{n}(\mathcal{W}) \perp V^{m}(\mathcal{W})$ for $n \neq m$ and $H=\bigoplus_{n=0}^{\infty} V^{n}(\mathcal{W})$. If V is a pure isometry and $\mathcal{W}=H \ominus V(H)=\operatorname{ker}\left(V^{*}\right)$, then $\operatorname{ker}\left(V^{*}\right)$ is a wandering subspace for V. Moreover, if V is a pure isometry then $V \cong M_{z}$ on the Hilbert-Hardy space $H_{\mathcal{W}}^{2}$ of \mathcal{W}-valued functions for a Hilbert space \mathcal{W} with dimension $\operatorname{dim}\left(\operatorname{ker}\left(V^{*}\right)\right)$. The multiplicity of a pure isometry V is defined as mult $(V)=\operatorname{dim}\left(\operatorname{ker}\left(V^{*}\right)\right)$.

A pure isopair is a pair of commuting pure isometries. A pure isopair $V=$ (S, T) is a pure algebraic isopair if there is a nonzero polynomial $q \in \mathbb{C}[z, w]$ such that $q(S, T)=0$ and is also referred to as pure q-isopair. The study of pure algebraic isopairs was initiated in [2] and also discussed in [10]. Among the many results in [2] it is shown (see Theorem 1.20) if $V=(S, T)$ is a pure algebraic isopair, then there is a square free inner toral polynomial p such that $p(S, T)=0$ that is minimal in the sense if $q(S, T)=0$, then p divides q. We call this polynomial p the minimal polynomial of V. The minimal polynomial of V is unique up to multiplication by a nonzero constant. Moreover, in [2] the notion of a nearly cyclic pure isopair is introduced. Here we fix a square free inner toral polynomial p and consider nearly multi-cyclic pure isopairs with the minimal polynomial p.

An isopair $V=(S, T)$ acting on a Hilbert space H is called at most nearly k-cyclic if there exist distinct $f_{1}, \ldots, f_{k} \in H$ such that the closure of

$$
\begin{equation*}
\left\{\sum_{j=1}^{k} q_{j}(S, T) f_{j}: q_{j} \in \mathbb{C}[z, w] \text { for } j=1,2, \ldots, k\right\} \tag{1.1}
\end{equation*}
$$

is of finite codimension in H. It is called at least nearly k-cyclic if the closure of

$$
\left\{\sum_{j=1}^{l} q_{j}(S, T) f_{j}: q_{j} \in \mathbb{C}[z, w] \text { for } j=1,2, \ldots, l\right\}
$$

is not of finite codimension in H for any $l<k$ and for any set of $f_{1}, \ldots, f_{l} \in H$. We say $V=(S, T)$ is nearly k-cyclic if it is both at most nearly k-cyclic and at least nearly k-cyclic. Moreover, $V=(S, T)$ is called k-cyclic if it is nearly k-cyclic and the span given in (1.1) is dense in H.

Given a pair of isometries $V=(S, T)$, define the bimultiplicity of V by

$$
\operatorname{bimult}(V)=(\operatorname{mult}(S), \operatorname{mult}(T))
$$

It is a well known fact that we can view pure isopairs as pairs of multiplication operators. In particular, if $V=(S, T)$ is a pure p-isopair of finite multiplicity (M, N), then there exists an $M \times M$ matrix-valued rational inner function Φ with its poles in \mathbb{E}, such that V is unitarily equivalent to $\left(M_{z}, M_{\Phi}\right)$ on $H_{\mathbb{C}^{M}}^{2}$ and
$\boldsymbol{p}\left(M_{z}, M_{\Phi}\right)=0$ (see [2]). Moreover

$$
\begin{equation*}
\boldsymbol{p}(\lambda, \Phi(\lambda))=0 \quad \text { for } \lambda \in \overline{\mathbb{D}} \tag{1.2}
\end{equation*}
$$

DEFINITION 1.1. We say a point $(\lambda, \mu) \in \mathbb{C}^{2}$ is a regular point for p if $(\lambda, \mu) \in$ $Z(p)$, but

$$
\nabla \boldsymbol{p}(\lambda, \mu)=\left.\left(\frac{\partial \boldsymbol{p}}{\partial z}, \frac{\partial \boldsymbol{p}}{\partial w}\right)\right|_{(\lambda, \mu)} \neq 0
$$

Let p be a square free inner toral polynomial. Write $p=p_{1} p_{2} \cdots p_{s}$ as a product of (distinct) irreducible factors. Then each p_{j} is inner toral. In other words, each $Z\left(\boldsymbol{p}_{j}\right)$ is a distinguished variety. The zero set of \boldsymbol{p} is the union of the zero sets of \boldsymbol{p}_{j}. Let

$$
\mathfrak{V}\left(\boldsymbol{p}_{j}\right)=Z\left(\boldsymbol{p}_{j}\right) \cap \mathbb{D}^{2}, \quad \mathfrak{V}(\boldsymbol{p})=Z(\boldsymbol{p}) \cap \mathbb{D}^{2}=\bigcup_{j=1}^{s} \mathfrak{V}\left(\boldsymbol{p}_{j}\right)
$$

Let \mathbb{N} denote the nonnegative integers and \mathbb{N}_{+}denote the positive integers.
Proposition 1.2. Let $V=(S, T)$ be a pure \boldsymbol{p}-isopair of finite bimultiplicity with minimal polynomial \boldsymbol{p} and suppose $\boldsymbol{p}=\boldsymbol{p}_{1} \boldsymbol{p}_{2} \cdots \boldsymbol{p}_{s}$, a product of distinct irreducible factors. For each j and $(\lambda, \mu) \in \mathfrak{V}\left(\boldsymbol{p}_{j}\right)$ that is a regular point for \boldsymbol{p}, the dimension of the intersection of $\operatorname{ker}(S-\lambda)^{*}$ and $\operatorname{ker}(T-\mu)^{*}$ is a nonzero constant.

DEFINITION 1.3. Let $V=(S, T)$ be a pure p-isopair of finite bimultiplicity with minimal polynomial p and suppose $p=p_{1} p_{2} \cdots p_{s}$, a product of distinct irreducible factors. The rank of V is a s-tuple, $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{N}_{+}^{s}$, denoted by $\operatorname{rank}(V)$, where

$$
\alpha_{j}=\operatorname{dim}\left(\operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*}\right),
$$

and $(\lambda, \mu) \in \mathfrak{V}\left(\boldsymbol{p}_{j}\right)$ and a regular point for \boldsymbol{p}.
THEOREM 1.4. Suppose $V=(S, T)$ is a pure \boldsymbol{p}-isopair of finite bimultiplicity with minimal polynomial \boldsymbol{p} and write $\boldsymbol{p}=\boldsymbol{p}_{1} \boldsymbol{p}_{2} \cdots \boldsymbol{p}_{s}$ as a product of distinct irreducible factors. If V has rank $\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right)$, then V is nearly max $\left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$-cyclic.

REMARK 1.5. Compare Theorem 1.4 with the results in [2].
We prove Theorem 1.4 in section 5 . An important ingredient in the proof of Theorem 1.4 is a representation for a pure p-isopair as a pair of multiplication operators on a reproducing kernel Hilbert space over $\mathfrak{V}(\boldsymbol{p})$ in the case \boldsymbol{p} is irreducible. Representations of this type already appear in the literature, (Theorem D. 14 of [7] for instance). Here we provide additional information. See Theorems 4.1 and 4.9

REMARK 1.6. The concept of nearly multi-cyclic isopairs was introduced in [2]. A discussion on multicyclicity of a bundle shift given in terms of its multiplicities can be found in [1]. In [13], the article presents a way to realize a Riemann surface with a distinguished variety.

Proposition 2.1. Suppose $p, q \in \mathbb{C}[z, w]$.
(i) $Z(p) \cap Z(q)$ is a finite set if and only if p and q are relatively prime.
(ii) If p and q are relatively prime, then the ideal $I \subset \mathbb{C}[z, w]$ generated by p and q has finite codimension in $\mathbb{C}[z, w]$; i.e. there is a finite dimensional subspace \mathcal{R} of $\mathbb{C}[z, w]$ such that for each $\psi \in \mathbb{C}[z, w]$ there exist polynomials $s, t \in \mathbb{C}[z, w]$ and $r \in \mathcal{R}$ such that

$$
\psi=s p+t q+r .
$$

Proof. Bezout's theorem says that if two algebraic curves, say described by $p=0$ and $q=0$, do not have any common factors, then they have only finitely many points in common. In particular if p and q do not have any common factors, then $Z(p)$ and $Z(q)$ have only finitely many points in common. In particular, for the ideal I generated by p and q, the affine variety $V(I)=Z(p) \cap Z(q)$ is finite. The Finiteness theorem of [7], page 13, says that if $V(I)$ is finite then the quotient ring $\mathbb{C}[z, w] / I$ has a finite dimension. Hence the ideal I has finite codimension in $\mathbb{C}[z, w]$.

For $p \in \mathbb{C}[z, w]$ and $\lambda \in \mathbb{D}$, let $p_{\lambda}(w)=p(\lambda, w)$.
Lemma 2.2. Suppose \boldsymbol{p} is square free and inner toral and write $\boldsymbol{p}=p_{1} p_{2} \cdots p_{s}$ as a product of irreducible factors. Let q be a nonzero polynomial.
(i) If q vanishes on a countably infinite subset of $\mathfrak{V}\left(\boldsymbol{p}_{j}\right)$, then \boldsymbol{p}_{j} divides q.
(ii) If q vanishes on a cofinite subset of $\mathfrak{V}(\boldsymbol{p})$, then p divides q.
(iii) If $Z(q) \cap Z(p) \cap \mathbb{D}^{2}$ is finite, then q and p are relatively prime.
(iv) The polynomial $\frac{\partial p}{\partial w}$ has only finitely many zeros in $\mathfrak{V}(p)$.
(v) If $q \frac{\partial p}{\partial w}$ is zero on a cofinite subset of $\mathfrak{V}(\boldsymbol{p})$, then \boldsymbol{p} divides q.
(vi) If Λ is the set of all $\lambda \in \mathbb{D}$ for which $\boldsymbol{p}_{\lambda}(w)$ has distinct zeros, then $\Lambda \subset \mathbb{D}$ is cofinite.

Proof. The proof of item (i) follows from Proposition 2.1 item (i) and by the fact that \boldsymbol{p}_{j} is irreducible. By item (i), each \boldsymbol{p}_{j} divides q. Since the \boldsymbol{p}_{j} 's are distinct, their product divides q, proving item (ii). If q and p have a common factor, then because p is inner toral, $Z(q)$ and $Z(p)$ have infinitely many common points in \mathbb{D}^{2}, proving (iii).

Let $q=\frac{\partial p}{\partial w}$ and suppose q has infinitely many zeros in $\mathfrak{V}(\boldsymbol{p})$. In this case there is a j such that q has infinitely many zeros in $\mathfrak{V}\left(\boldsymbol{p}_{j}\right)$. Hence by (i), q vanishes on $\mathfrak{V}\left(\boldsymbol{p}_{j}\right)$. Therefore, either $\frac{\partial \boldsymbol{p}_{j}}{\partial w}$ has infinitely many zeros in $\mathfrak{V}\left(\boldsymbol{p}_{j}\right)$ or there is an ℓ such that \boldsymbol{p}_{ℓ} has infinitely many zeros in $\mathfrak{V}\left(\boldsymbol{p}_{j}\right)$ and thus, by part (i), \boldsymbol{p}_{j} divides $\frac{\partial \boldsymbol{p}_{j}}{\partial w}$ or \boldsymbol{p}_{j} divides $\boldsymbol{p}_{\ell,}$, contradiction. Item (v) follows from item (ii). To prove item (vi), if Λ is not cofinite, then $\frac{\partial p}{\partial w}$ has infinitely many zeros in $Z(p)$. Since p is inner toral, $\frac{\partial p}{\partial w}$ has infinitely many zeros in $\mathfrak{V}(\boldsymbol{p})$, a contradiction to item (iv) and hence Λ is cofinite.

Proposition 2.3. Suppose $p \in \mathbb{C}[z, w]$ is a square free polynomial and write $p=p_{1} p_{2} \cdots p_{s}$ as a product of irreducible factors $p_{j} \in \mathbb{C}[z, w]$. If $q \in \mathbb{C}[z, w]$ and $Z(p) \subseteq Z(q)$, then there exist $\gamma=\left(\gamma_{1}, \ldots, \gamma_{s}\right) \in \mathbb{N}_{+}^{s}$ and an $r \in \mathbb{C}[z, w]$ such that p_{j} and r are relatively prime and

$$
q=p_{1}^{\gamma_{1}} p_{2}^{\gamma_{2}} \cdots p_{s}^{\gamma_{s}} r
$$

The proof is an application of Bezout's theorem.
REMARK 2.4. If p and q are inner toral polynomials, then we may replace the condition $Z(p) \subseteq Z(q)$ with $\mathfrak{V}(p) \subseteq Z(q)$.

3. RESULTS FOR GENERAL \boldsymbol{p}

In this section $p=p_{1} p_{2} \cdots p_{s}$ is a general square free inner toral polynomial with (distinct) irreducible factors \boldsymbol{p}_{j}. Let $\left(n_{j}, m_{j}\right)$ be the bidegree of $\boldsymbol{p}_{j}(z, w)$.

In [2] it is proven that any nearly cyclic pure p-isopair is unitarily equivalent to a cyclic pure p-isopair restricted to a finite codimensional invariant subspace (see Proposition 3.6 in [2]). Next proposition is a more generalized version of this result.

Proposition 3.1. Suppose $V=(S, T)$ is a pure \boldsymbol{p}-isopair of finite bimultiplicity (M, N) acting on the Hilbert space K. If H is a finite codimension V-invariant subspace of K and W is the restriction of V to H, then there exists a finite codimension subspace L of H such that V is unitarily equivalent to the restriction of W to L.

REMARK 3.2. In case the codimension of H is one, the codimension of L (in H) can be chosen as $N-1$ (or as $M-1$). In general, the proof yields a relation between the codimensions of H in K and L in H (or in K).

Corollary 3.3. Suppose $V=(S, T)$ is a pure \boldsymbol{p}-isopair of finite bimultiplicity (M, N) acting on the Hilbert space K. If there exists a finite codimension V-invariant subspace H of K such that the restriction of V to H is β-cyclic, then there exists a β-cyclic pure isopair W acting on a Hilbert space L and on a finite codimension W-invariant subspace F of L such that $\left.W\right|_{F}$ is unitarily equivalent to V.

Proof of Proposition 3.1 Following the argument in Proposition 3.6 of [2], let $F=K \ominus H$ and write, with respect to the decomposition $K=H \oplus F$,

$$
V=(S, T)=\left(\begin{array}{cc}
W=\left.(S, T)\right|_{H} & (X, Y) \tag{3.1}\\
0 & (A, B)
\end{array}\right)
$$

In particular A (and likewise B) is a contraction on a finite dimensional Hilbert space. Because V is pure and A is a contraction, A has spectrum in the open disc \mathbb{D}. Choose a (finite) Blaschke u such that $u(A)=0$. Note that $u(S)$ is an isometry on K and moreover the codimension of the range of $u(S)$ (equal to the dimension of the kernel of $\left.u(S)^{*}\right)$ in K is (at most) $d M$, where d is the degree (number of
zeros) of u. Further, since

$$
u(S)=\left(\begin{array}{cc}
u\left(\left.S\right|_{H}\right) & X^{\prime} \\
0 & u(A)=0
\end{array}\right)
$$

the range $L=u(S) K$ of $u(S)$ is a subspace of H of finite codimension. Since $u(S) V=W u(S)$ it follows that L is invariant for W and V is unitarily equivalent to W restricted to L.

To prove the remark, note that if A is a scalar (equivalently H has codimension one in K), then u can be chosen to be a single Blaschke factor. In which case the codimension of L is N in K and hence $N-1$ in H. In general, if d is the degree of the Blaschke u, then the codimension of L in K is $d N$. By reversing the roles of S and T one can replace N with M, the multiplicity of the shift T.

Proposition 3.4. Let $\left(M_{z}, M_{\Phi}\right)$ be a pure isopair of finite bimultiplicity (M, N) with minimal polynomial p, where $\Phi(z)$ is an $M \times M$ matrix-valued rational inner function. There exists an $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{N}_{+}^{s}$ such that:
(i) for $\lambda \in \mathbb{D}$, the characteristic polynomial $f_{\lambda}(w)$ of $\Phi(\lambda)$ satisfies

$$
\begin{equation*}
f_{\lambda}(w)=\operatorname{det}(w-\Phi(\lambda))=c(\lambda) \boldsymbol{p}_{1, \lambda}^{\alpha_{1}}(w) \cdots \boldsymbol{p}_{s, \lambda}^{\alpha_{s}}(w) \tag{3.2}
\end{equation*}
$$

for a constant (in w) $c(\lambda)$;
(ii) for each λ such that \boldsymbol{p}_{λ} has m distinct zeros, $\Phi(\lambda)$ is diagonalizable and similar to

$$
\bigoplus_{j=1}^{s} \bigoplus_{\mu_{j} \in Z\left(p_{j, \lambda}\right)} \mu_{j} I_{\alpha_{j}} ;
$$

(iii) if $(\lambda, \mu) \in Z\left(\boldsymbol{p}_{j}\right)$ and $\left.\frac{\partial p}{\partial w}\right|_{(\lambda, \mu)} \neq 0$, then

$$
\operatorname{dim} \operatorname{ker}(\Phi(\lambda)-\mu)=\alpha_{j}
$$

Proof. First note that, by equation (1.2, for all $\lambda \in \overline{\mathbb{D}}$

$$
\begin{equation*}
\boldsymbol{p}_{\lambda}(\Phi(\lambda))=\boldsymbol{p}(\lambda, \Phi(\lambda))=0 \tag{3.3}
\end{equation*}
$$

In particular, the spectrum, $\sigma(\Phi(\lambda))$, is a subset of $Z\left(\boldsymbol{p}_{\lambda}\right)$.
Note that $\operatorname{det}\left(w I_{m}-\Phi(z)\right)$ is a rational function whose denominator $d(z)$ (a polynomial in z alone) does not vanish in $\overline{\mathbb{D}}$. Let $q(z, w)=d(z) \operatorname{det}\left(w I_{m}-\Phi(z)\right)$, the numerator of $\operatorname{det}\left(w I_{m}-\Phi(z)\right)$. For fixed $z \in \mathbb{D}$, let

$$
q_{z}(w)=d(z) \operatorname{det}\left(w I_{m}-\Phi(z)\right)=\sum_{j=0}^{M} q_{j}(z) w^{j}
$$

By Cayley-Hamilton theorem, $q_{z}(\Phi(z))=\sum_{j=0}^{M} q_{j}(z) \Phi(z)^{j}=0$ and therefore $q(z, \Phi(z))=0$ for all $z \in \mathbb{D}$. Now for $\gamma \in \mathbb{C}^{M}$ and $\lambda \in \mathbb{D}$,

$$
q\left(M_{z}, M_{\Phi}(z)\right)^{*} \gamma s_{\lambda}=\overline{q(\lambda, \Phi(\lambda))} \gamma s_{\lambda}=0
$$

Therefore, $q\left(M_{z}, M_{\Phi}\right)=0$. Since p is the minimal polynomial for $\left(M_{z}, M_{\Phi}\right), \mathfrak{V}(\boldsymbol{p})$ is a subset of $Z(q)$. Hence there exist an $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{N}_{+}^{s}$ and a polynomial r such that \boldsymbol{p}_{j} does not divide r for each j and

$$
\begin{equation*}
d(z) \operatorname{det}(w-\Phi(z))=q(z, w)=p_{1}^{\alpha_{1}}(z, w) \cdots p_{s}^{\alpha_{s}}(z, w) r(z, w) \tag{3.4}
\end{equation*}
$$

For $(\lambda, \mu) \in \overline{\mathbb{D}} \times \overline{\mathbb{D}}, \mu$ is in the spectrum of $\Phi(\lambda)$ if and only if $q(\lambda, \mu)=0$. In particular, $q(z, w)$ is a polynomial whose zero set in $\mathbb{D} \times \mathbb{C}$ is the set $\{(z, w): z \in$ $\mathbb{D}, w \in \sigma(\Phi(z))\} \subseteq \mathfrak{V}(\boldsymbol{p})$. Observe $Z(r) \cap[\mathbb{D} \times \mathbb{C}] \subseteq Z(q) \cap[\mathbb{D} \times \mathbb{C}] \subseteq \mathfrak{V}(\boldsymbol{p})$. On the other hand, r can have only finitely many zeros in $\mathfrak{V}(\boldsymbol{p})$ as otherwise r has infinitely many zeros on some $\mathfrak{V}\left(\boldsymbol{p}_{j}\right)$ and, by Lemma 2.2 item (i) \boldsymbol{p}_{j} divides r. Hence $r(z, w)$ has only finitely many zeros in $\mathbb{H}=\mathbb{D} \times \mathbb{C}$. We conclude there are only finitely many $z \in \mathbb{D}$ such that $r_{z}(w)=r(z, w)$ has a zero and consequently r depends on z only so that $r(z, w)=r(z)$. Thus, for $\lambda \in \mathbb{D}$, the characteristic polynomial $f_{\lambda}(w)$ of $\Phi(\lambda)$ satisfies

$$
\begin{equation*}
f_{\lambda}(w)=\operatorname{det}(w-\Phi(\lambda))=c(\lambda) \boldsymbol{p}_{1, \lambda}^{\alpha_{1}}(w) \cdots \boldsymbol{p}_{s, \lambda}^{\alpha_{s}}(w) \tag{3.5}
\end{equation*}
$$

for a constant (in $w) c(\lambda)$.
Let Λ be the set of all $\lambda \in \mathbb{D}$ for which \boldsymbol{p}_{λ} has $\sum_{j=1}^{s} m_{j}$ distinct zeros. By Lemma 2.2 item (vi), $\Lambda \subseteq \mathbb{D}$ is cofinite. For $\lambda \in \Lambda$, the polynomial \boldsymbol{p}_{λ} has distinct zeros and by $3.3, p_{\lambda}(\Phi(\lambda))=0$. Hence, $\Phi(\lambda)$ is diagonalizable and, for given $\mu_{j} \in Z\left(\boldsymbol{p}_{j, \lambda}\right)$, the dimension of the eigenspace of $\Phi(\lambda)$ at μ_{j} is α_{j}. Thus $\Phi(\lambda)$ is similar to

$$
\bigoplus_{j=1}^{s} \bigoplus_{\mu_{j} \in Z\left(\boldsymbol{p}_{j, \lambda}\right)} \mu_{j} I_{\alpha_{j}} .
$$

Let $(\lambda, \mu) \in Z\left(\boldsymbol{p}_{j}\right)$ be such that $\left.\frac{\partial p}{\partial w}\right|_{(\lambda, \mu)} \neq 0$. The minimal polynomial for $\Phi(\lambda)$ has a zero of multiplicity 1 at μ, since it divides \boldsymbol{p}_{λ}. Hence $\Phi(\lambda)$ is similar to $\mu I_{\alpha_{j}} \oplus J$ where the spectrum of J does not contain μ. Therefore, the kernel of $\Phi(\lambda)-\mu$ has dimension α_{j}.

Proposition 3.5. Let $V=(S, T)$ be a pure p-isopair of finite bimultiplicity and suppose $\boldsymbol{p}=\boldsymbol{p}_{1} p_{2} \cdots \boldsymbol{p}_{s}$ a product of distinct irreducible factors. For each j and $(\lambda, \mu) \in \mathfrak{V}\left(\boldsymbol{p}_{j}\right)$ such that $\left.\frac{\partial p}{\partial w}\right|_{(\lambda, \mu)} \neq 0$, the dimension of the intersection of $\operatorname{ker}(S-\lambda)^{*}$ and $\operatorname{ker}(T-\mu)^{*}$ is a nonzero constant.

Proof. By the standard model theory for pure isopairs with finite bimultiplicity, there exists an $M \times M$ matrix-valued rational inner function Φ such that $V=(S, T)$ is unitarily equivalent to $\left(M_{z}, M_{\Phi}\right)$ on $H_{\mathbb{C}^{M}}^{2}$ and $p\left(M_{z}, M_{\Phi}\right)=0$. Let $(\lambda, \mu) \in \mathfrak{V}\left(\boldsymbol{p}_{j}\right)$ be a regular point for \boldsymbol{p}. Observe that for any $\gamma \in \operatorname{ker}(\Phi(\lambda)-\mu)^{*}$, both $(S-\lambda)^{*} s_{\lambda} \gamma=0$ and $(T-\mu)^{*} s_{\lambda} \gamma=0$. Hence $s_{\lambda} \gamma \in \operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-$ $\mu)^{*}$. Now suppose $f \in \operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*}$. Since $(S-\lambda)^{*} f=0$, there is a vector $\gamma \in \mathbb{C}^{N}$ such that $f=s_{\lambda} \gamma$. Thus, $0=(T-\mu)^{*} s_{\lambda} \gamma=s_{\lambda}\left(\Phi(\lambda)^{*}-\mu^{*}\right) \gamma$.

Hence

$$
s_{\lambda} \operatorname{ker}(\Phi(\lambda)-\mu)^{*}=\operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*}
$$

Since $\operatorname{dim} \operatorname{ker}(\Phi(\lambda)-\mu)^{*}=\operatorname{dim} \operatorname{ker}(\Phi(\lambda)-\mu)$, we have

$$
\begin{equation*}
\operatorname{dim}\left[\operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*}\right]=\operatorname{dim} \operatorname{ker}(\Phi(\lambda)-\mu) \tag{3.6}
\end{equation*}
$$

and hence by Proposition 3.4 item (iii), $\operatorname{dim}\left[\operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*}\right]=\alpha_{j}$.
Corollary 3.6. Let $V=(S, T)$ be a pure p-isopair of finite bimultiplicity and suppose $\boldsymbol{p}=p_{1} p_{2} \cdots \boldsymbol{p}_{s}$ a product of distinct irreducible factors. For each j and $(\lambda, \mu) \in \mathfrak{V}\left(\boldsymbol{p}_{j}\right)$ such that $\left.\frac{\partial p}{\partial z}\right|_{(\lambda, \mu)} \neq 0$, dimension of the intersection of $\operatorname{ker}(S-\lambda)^{*}$ and $\operatorname{ker}(T-\mu)^{*}$ is a nonzero constant.

The proof is immediate from the symmetry of S and T and Proposition 3.5
Proof of Proposition 1.2 Let $(\lambda, \mu) \in \mathfrak{V}\left(\boldsymbol{p}_{j}\right)$. If $\left.\frac{\partial p}{\partial w}\right|_{(\lambda, \mu)} \neq 0$, then by Proposition 3.5, there exists a non zero constant $\alpha_{j} \in \mathbb{N}^{+}$such that

$$
\operatorname{dim}\left(\operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*}\right)=\alpha_{j}
$$

If $\left.\frac{\partial p}{\partial z}\right|_{(\lambda, \mu)} \neq 0$, then by Corollary 3.6 , there exists a non zero constant $\beta_{j} \in \mathbb{N}^{+}$ such that

$$
\operatorname{dim}\left(\operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*}\right)=\beta_{j}
$$

Note that, since \boldsymbol{p} is square free, so is \boldsymbol{p}_{j} and hence there are infinitely many points in $\mathfrak{V}\left(\boldsymbol{p}_{j}\right)$ such that both partial derivatives $\left.\frac{\partial p}{\partial z}\right|_{\left(z_{0}, w_{0}\right)}$ and $\left.\frac{\partial p}{\partial w}\right|_{\left(z_{0}, w_{0}\right)}$ do not vanish. If (λ, μ) is a regular point for p such that $\left.\frac{\partial p}{\partial z}\right|_{(\lambda, \mu)} \neq 0$ and $\left.\frac{\partial p}{\partial w}\right|_{(\lambda, \mu)} \neq 0$, then $\alpha_{j}=\beta_{j}$. Therefore, if $(\lambda, \mu) \in \mathfrak{V}\left(\boldsymbol{p}_{j}\right)$ is a regular point for \boldsymbol{p}, then the dimension of the intersection of $\operatorname{ker}(S-\lambda)^{*}$ and $\operatorname{ker}(T-\mu)^{*}$ is a nonzero constant.

COROLLARY 3.7. If (S, T) is a pure \boldsymbol{p}-isopair of finite bimultiplicity (M, N) with $\operatorname{rank} \alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{N}_{+}^{s}$, then

$$
\begin{equation*}
M=\sum_{j=1}^{s} m_{j} \alpha_{j} \quad \text { and } \quad N=\sum_{j=1}^{s} n_{j} \alpha_{j} \tag{3.7}
\end{equation*}
$$

Proof. First, view (S, T) as $\left(M_{z}, M_{\Phi}\right)$ where $\Phi(z)$ is an $M \times M$ matrix-valued rational inner function. By Proposition 3.4 item (i), for $\lambda \in \mathbb{D}$,

$$
\operatorname{det}(w-\Phi(\lambda))=c(\lambda) \boldsymbol{p}_{1, \lambda}^{\alpha_{1}}(w) \cdots \boldsymbol{p}_{s, \lambda}^{\alpha_{S}}(w)
$$

for a constant (in $w) c(\lambda)$. Comparing the degree in w on the left and the right, for all but finitely many λ, we have

$$
M=\sum_{j=1}^{s} \alpha_{j} m_{j} .
$$

To see the relation on N, view \boldsymbol{p} as $\boldsymbol{p}(w, z)$ a polynomial of bidegree (m, n). Note that each factor $\boldsymbol{p}_{j}=\boldsymbol{p}_{j}(w, z)$ has bidegree $\left(m_{j}, n_{j}\right)$. Moreover $\boldsymbol{p}(T, S)=0$
and (T, S) has bimultiplicity (N, M). $\operatorname{Model}(T, S)$ as $\left(M_{w}, M_{\Psi(w)}\right)$, where $\Psi(w)$ is an $N \times N$ matrix valued ration inner function. By Proposition 3.4, item (i), there exists $\left(\beta_{1}, \beta_{2}, \ldots, \beta_{s}\right) \in \mathbb{N}_{+}^{s}$ such that for $\mu \in \mathbb{D}$,

$$
\begin{equation*}
\operatorname{det}(z-\Psi(\mu))=c^{\prime}(\mu) \boldsymbol{p}_{1, \mu}^{\beta_{1}}(z) \cdots \boldsymbol{p}_{s, \mu}^{\beta_{s}}(z) \tag{3.8}
\end{equation*}
$$

for a constant (inz) $c^{\prime}(\mu)$. By Proposition 3.4 item (iii), for $(\mu, \lambda) \in Z\left(\boldsymbol{p}_{j}\right)$ that is a regular point for p,

$$
\operatorname{dim} \operatorname{ker}(\Psi(\mu)-\lambda)=\beta_{j}
$$

Now by equation (3.6),

$$
\operatorname{dim}\left[\operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*}\right]=\beta_{j}
$$

Since (S, T) has rank α, we get $\beta_{j}=\alpha_{j}$ for $j=1, \ldots, s$ and by comparing the degree in z on the left and the right of (3.8), for all but finitely many μ, we have

$$
N=\sum_{j=1}^{s} \alpha_{j} n_{j}
$$

Proposition 3.8. If $V=(S, T)$ is a finite bimultiplicity k-cyclic pure p-isopair acting on the Hilbert space K, then for each $(\lambda, \mu) \in \mathfrak{V}(\boldsymbol{p})$,

$$
\operatorname{dim}\left(\operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*}\right) \leqslant k
$$

In particular, if \boldsymbol{p} is the minimal polynomial for V and if V has rank α, then $k \geqslant$ $\max \left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$.

Proof. Let $\left\{f_{1}, \ldots, f_{k}\right\}$ be a cyclic set for (S, T). For any $q(z, w) \in \mathbb{C}[z, w]$, $f \in \operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*}$ and $1 \leqslant j \leqslant k$,

$$
\left\langle q(S, T) f_{j}, f\right\rangle=\left\langle f_{j}, q(S, T)^{*} f\right\rangle=\left\langle f_{j}, q(\lambda, \mu)^{*} f\right\rangle=q(\lambda, \mu)\left\langle f_{j}, f\right\rangle .
$$

If $\operatorname{dim}\left(\operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*}\right)>k$, then there exists a non zero vector $f \in$ $\operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*}$ perpendicular to f_{j} for all j. Thus $\left\langle q(S, T) f_{j}, f\right\rangle=0$ for all j and for any q, and hence $\langle g, f\rangle=0$ for any $g \in\left\{\sum_{j=1}^{k} q_{j}(S, T) f_{j}: q_{j} \in\right.$ $\mathbb{C}[z, w]\}$, a contradiction. Therefore, $\operatorname{dim}\left(\operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*}\right) \leqslant k$. The last statement of the proposition follows from the definition of the rank.

Proposition 3.9. Suppose $V=(S, T)$ is a finite bimultiplicity pure p-isopair with minimal polynomial \boldsymbol{p} and with rank $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{N}_{+}^{s}$ acting on a Hilbert space K. If H is a finite codimension V-invariant subspace of K, then $W=\left.V\right|_{H}$ has rank a too.

Proof. Write $W=\left.V\right|_{H}=\left(S_{0}, T_{0}\right)$. Let $F=K \ominus H$. Thus F has finite dimension and $K=H \oplus F$. With respect to this decomposition, write

$$
S^{*}=\left(\begin{array}{cc}
S_{0}^{*} & 0 \\
X^{*} & A^{*}
\end{array}\right), \quad T^{*}=\left(\begin{array}{cc}
T_{0}^{*} & 0 \\
Y^{*} & B^{*}
\end{array}\right) .
$$

Observe that $\sigma(A) \times \sigma(B)$ is a finite set since A and B act on a finite dimensional space. Fix $1 \leqslant j \leqslant s$. Let Γ be the set of all $(\lambda, \mu) \in \mathfrak{V}\left(\boldsymbol{p}_{j}\right)$ such that the dimension of $\operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*}$ is α_{j} and $(\lambda, \mu) \notin \sigma(A) \times \sigma(B)$. Hence by Proposition 1.2, Γ contains the cofinite set of all regular points. Since also the set $\sigma(A) \times \sigma(B)$ is finite, Γ is a cofinite subset of $\mathfrak{V}\left(\boldsymbol{p}_{j}\right)$. Fix $(\lambda, \mu) \in \Gamma$ and let

$$
L=\operatorname{ker}(S-\lambda)^{*} \cap \operatorname{ker}(T-\mu)^{*} \quad \text { and } \quad L_{0}=\operatorname{ker}\left(S_{0}-\lambda\right)^{*} \cap \operatorname{ker}\left(T_{0}-\mu\right)^{*}
$$

Let $\mathcal{P} \subseteq H$ be the projection of L onto H. Given $f \in L$, write $f=f_{1} \oplus f_{2}$, where $f_{1} \in H$ and $f_{2} \in F$. Since $f \in L$, the kernel of $\left(S_{0}-\lambda\right)^{*}$ contains f_{1}. Likewise the kernel of $\left(T_{0}-\lambda\right)^{*}$ contains f_{1}. Therefore, $\mathcal{P} \subseteq L_{0}$. If $\operatorname{dim}\left(L_{0}\right)<\alpha_{j}$, then, since $\operatorname{dim}(L)=\alpha_{j}$, there exists a non zero vector of the form $0 \oplus v$ in L and hence $\operatorname{ker}(A-\lambda)^{*} \cap \operatorname{ker}(B-\mu)^{*}$ is non-empty. But, $\operatorname{ker}(A-\lambda)^{*} \cap \operatorname{ker}(B-\mu)^{*}$ is empty by the choice of (λ, μ). Thus $\operatorname{dim}\left(L_{0}\right)=\alpha_{j}$ for almost all (λ, μ) in $\mathfrak{V}\left(\boldsymbol{p}_{j}\right)$. Therefore W also has rank α.

Corollary 3.10. Suppose $V=(S, T)$ is a finite bimultiplicity pure p-isopair with minimal polynomial p and with rank $\alpha=\left(\alpha_{1}, \ldots, \alpha_{s}\right) \in \mathbb{N}_{+}^{s}$ acting on a Hilbert space K. If H is a finite codimension V-invariant subspace of K, then $W=\left.V\right|_{H}$ is at least $\beta=\max \left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$-cyclic. Hence V is at least nearly β-cyclic.

Proof. By Proposition 3.9, W has rank α. By Proposition 3.8. W is at least β cyclic. Thus, each restriction of V to a finite codimension invariant subspace is at least β-cyclic and hence V is at least nearly β-cyclic.

4. THE CASE \boldsymbol{p} IS IRREDUCIBLE

In this section p is an irreducible square free inner toral polynomial of bidegree (n, m).

A rank α-admissible kernel \mathcal{K} over $\mathfrak{V}(\boldsymbol{p})$ consists of an $\alpha \times m \alpha$ matrix polynomial Q and an $\alpha \times n \alpha$ matrix polynomial P such that

$$
\frac{Q(z, w) Q(\zeta, \eta)^{*}}{1-z \zeta^{*}}=\mathcal{K}((z, w),(\zeta, \eta))=\frac{P(z, w) P(\zeta, \eta)^{*}}{1-w \eta^{*}}, \quad(z, w),(\zeta, \eta) \in \mathfrak{V}(\boldsymbol{p})
$$

where Q and P have full rank α at some point in $\mathfrak{V}(\boldsymbol{p})$. In particular, at some point $x \in \mathfrak{V}(\boldsymbol{p})$ the matrix $\mathcal{K}(x, x)$ has full rank α [8]. An $\alpha \times \alpha$ matrix-valued kernel on a set Ω has full rank at $x \in \Omega$, if $\mathcal{K}(x, x)$ has full rank α. We refer to (\mathcal{K}, P, Q) as an α-admissible triple.

Let $H^{2}(\mathcal{K})$ denote the Hilbert space associated to the rank α admissible kernel \mathcal{K}. For a point $y \in \mathfrak{V}(p)$, denote by \mathcal{K}_{y} the $\alpha \times \alpha$ matrix function on $\mathfrak{V}(\boldsymbol{p})$ defined by $\mathcal{K}_{y}(x)=\mathcal{K}(x, y)$. Elements of $H^{2}(\mathcal{K})$ are \mathbb{C}^{α} vector-valued functions on $\mathfrak{V}(\boldsymbol{p})$ and the linear span of $\left\{\mathcal{K}_{y} \gamma: y \in \mathfrak{V}(\boldsymbol{p}), \gamma \in \mathbb{C}^{\alpha}\right\}$ is dense in $H^{2}(\mathcal{K})$. Note that the operators X and Y determined densely on $H^{2}(\mathcal{K})$ by
$X \mathcal{K}_{(\lambda, \mu)} \gamma=\lambda^{*} \mathcal{K}_{(\lambda, \mu)} \gamma$ and $Y \mathcal{K}_{(\lambda, \mu)} \gamma=\mu^{*} \mathcal{K}_{(\lambda, \mu)} \gamma$ are contractions. By Theorem 4.1 item (i) below, X^{*} is a bounded operator on $H^{2}(\mathcal{K})$. Further for $f \in$ $H^{2}(\mathcal{K}),\left\langle X^{*} f, \mathcal{K}_{\lambda, \mu} \gamma\right\rangle=\lambda\langle f(\lambda, \mu), \gamma\rangle$. Hence X^{*} is the operator of multiplication by z on $H^{2}(\mathcal{K})$. Likewise, Y^{*} is a bounded operator on $H^{2}(\mathcal{K})$ and it is the multiplication by w on $H^{2}(\mathcal{K})$.

Theorem 4.1. If \mathcal{K} is a rank α-admissible kernel over $\mathfrak{V}(\boldsymbol{p})$, then
(i) X is bounded on the linear span of $\left\{\mathcal{K}_{y} \gamma: y \in \mathfrak{V}(\boldsymbol{p}), \gamma \in \mathbb{C}^{\alpha}\right\}$;
(ii) for each $1 \leqslant j \leqslant m \alpha$ and each positive integer n, the vector $z^{n} Q e_{j}$ ($Q e_{j}$ is the j-th column of Q) lies in $H^{2}(\mathcal{K})$;
(iii) the span of $\left\{s_{\lambda} Q(\lambda, \mu)^{*} \gamma:(\lambda, \mu) \in \mathfrak{V}(\boldsymbol{p}), \gamma \in \mathbb{C}^{\alpha}\right\}$ is dense in $H_{\mathbb{C}^{m a x}}^{2}$;
(iv) the set $\mathscr{B}=\left\{z^{n} Q e_{j}: n \in \mathbb{N}, 1 \leqslant j \leqslant m \alpha\right\}$ is an orthonormal basis for $H^{2}(\mathcal{K})$; and
(v) the operators S and T densely defined on \mathscr{B} by $S f=z f$ and $T f=w f$ extend to a pair of pure isometries on $H^{2}(\mathcal{K})$.

Proof. For a finite set of points $\left(\lambda_{1}, \mu_{1}\right), \ldots,\left(\lambda_{n}, \mu_{n}\right) \in \mathfrak{V}(\boldsymbol{p})$, and $\gamma_{1}, \ldots, \gamma_{n} \in$ \mathbb{C}^{α}, observe that

$$
\begin{aligned}
\left\langle\left(I-X^{*} X\right) \sum_{j=1}^{n} \mathcal{K}_{\left(\lambda_{j}, \mu_{j}\right)} \gamma_{j}, \sum_{k=1}^{n} \mathcal{K}_{\left(\lambda_{k}, \mu_{k}\right)} \gamma_{k}\right\rangle & =\sum_{j, k=1}^{n}\left\langle\left(1-\lambda_{k} \bar{\lambda}_{j}\right) \mathcal{K}_{\left(\lambda_{j}, \mu_{j}\right)}\left(\lambda_{k}, \mu_{k}\right) \gamma_{j}, \gamma_{k}\right\rangle \\
& =\sum_{j, k=1}^{n}\left\langle Q\left(\lambda_{k}, \mu_{k}\right) Q^{*}\left(\lambda_{j}, \mu_{j}\right) \gamma_{j}, \gamma_{k}\right\rangle \\
& =\left\langle\sum_{j=1}^{n} Q^{*}\left(\lambda_{j}, \mu_{j}\right) \gamma_{j}, \sum_{k=1}^{n} Q^{*}\left(\lambda_{k}, \mu_{k}\right) \gamma_{k}\right\rangle \geqslant 0 .
\end{aligned}
$$

Therefore, X is bounded on the linear span of $\left\{\mathcal{K}_{y} \gamma: y \in \mathfrak{V}(\boldsymbol{p}), \gamma \in \mathbb{C}^{\alpha}\right\}$.
To prove item (ii), note that by Theorem 4.15 of [12], if f is a \mathbb{C}^{α} valued function defined on $\mathfrak{V}(\boldsymbol{p})$ and if $\mathcal{K}((z, w),(\zeta, \eta))-f(z, w) f(\zeta, \eta)^{*}$ is a (positive semidefinite) kernel function then $f \in H^{2}(\mathcal{K})$. Since

$$
\begin{aligned}
\mathcal{K}((z, w),(\zeta, \eta)) & -\left(z \zeta^{*}\right)^{n} Q(z, w) Q^{*}(\zeta, \eta) \\
& =\sum_{j=1}^{n-1}\left(z \zeta^{*}\right)^{j} Q(z, w) Q^{*}(\zeta, \eta)+\left(z \zeta^{*}\right)^{n+1} \mathcal{K}((z, w),(\zeta, \eta))
\end{aligned}
$$

is positive semidefinite, it follows that $z^{n} Q e_{j} \in H^{2}(\mathcal{K})$.
By a result in Lemma 4.1 of [8$]$, there exists a cofinite subset $\Lambda \subset \mathbb{D}$ such that for each $\lambda \in \Lambda$ there exist distinct points $\mu_{1}, \ldots, \mu_{m} \in \mathbb{D}$ such that $\left(\lambda, \mu_{j}\right) \in \mathfrak{V}(\boldsymbol{p})$ and the $m \alpha \times m \alpha$ matrix,

$$
R(\lambda):=\left(\begin{array}{lll}
Q\left(\lambda, \mu_{1}\right)^{*} & \cdots & Q\left(\lambda, \mu_{m}\right)^{*}
\end{array}\right)
$$

has full rank. Define a map U from $H^{2}(\mathcal{K})$ to $H_{\mathbb{C}^{m \alpha}}^{2}$ by

$$
U \mathcal{K}_{(\lambda, \mu)}(z, w) \gamma=s_{\lambda}(z) Q(\lambda, \mu)^{*} \gamma .
$$

Observe that for $\left(\lambda_{1}, \mu_{1}\right),\left(\lambda_{2}, \mu_{2}\right) \in \mathbb{D}^{2}$ and $\gamma, \delta \in \mathbb{C}^{\alpha}$,

$$
\begin{aligned}
\left\langle U \mathcal{K}_{\left(\lambda_{1}, \mu_{1}\right)}(z, w) \gamma, U \mathcal{K}_{\left(\lambda_{2}, \mu_{2}\right)}(z, w) \delta\right\rangle & =\left\langle s_{\lambda_{1}}(z) Q\left(\lambda_{2}, \mu_{2}\right) Q^{*}\left(\lambda_{1}, \mu_{1}\right) \gamma, s_{\lambda_{2}}(z) \delta\right\rangle \\
& =\delta^{*} Q\left(\lambda_{2}, \mu_{2}\right) Q^{*}\left(\lambda_{1}, \mu_{1}\right) \gamma\left\langle s_{\lambda_{1}}(z), s_{\lambda_{2}}(z)\right\rangle \\
& =\frac{\delta^{*} Q\left(\lambda_{2}, \mu_{2}\right) Q^{*}\left(\lambda_{1}, \mu_{1}\right) \gamma}{1-\bar{\lambda}_{1} \lambda_{2}} \\
& =\delta^{*} \mathcal{K}\left(\left(\lambda_{2}, \mu_{2}\right),\left(\lambda_{1}, \mu_{1}\right)\right) \gamma \\
& =\left\langle\mathcal{K}_{\left(\lambda_{1}, \mu_{1}\right)}(z, w) \gamma, \mathcal{K}_{\left(\lambda_{2}, \mu_{2}\right)}(z, w) \delta\right\rangle .
\end{aligned}
$$

Therefore, U is an isometry and hence a unitary onto its range. Given $\lambda \in \mathbb{D}$, the span of

$$
\left\{U \mathcal{K}_{\left(\lambda, \mu_{j}\right)} \gamma: \mu_{j} \in Z\left(\boldsymbol{p}_{\lambda}\right), \gamma \in \mathbb{C}^{\alpha}\right\}
$$

is equal to s_{λ} times the span of

$$
\left\{Q\left(\lambda, \mu_{j}\right)^{*} e_{k}: 1 \leqslant j \leqslant m, 1 \leqslant k \leqslant \alpha\right\} \subseteq \mathbb{C}^{m \alpha}
$$

If $\lambda \in \Lambda$, then $R(\lambda)$ has full rank. Thus for such λ, the span of $\left\{Q(\lambda, \mu)^{*} \gamma\right.$: μ such that $\left.(\lambda, \mu) \in \Gamma, \gamma \in \mathbb{C}^{\alpha}\right\}$ is all of $\mathbb{C}^{m \alpha}$. Since $\Lambda \subseteq \mathbb{D}$ is cofinite, $\left\{s_{\lambda} \mathbb{C}^{m \alpha}\right.$: $\lambda \in \Lambda\}$ is dense in $H_{\mathbb{C}^{m \alpha}}^{2}$. Since,

$$
\left\{s_{\lambda} \mathbb{C}^{m \alpha}: \lambda \in \Lambda\right\} \subseteq \operatorname{span}\left\{s_{\lambda} Q(\lambda, \mu)^{*} \gamma:(\lambda, \mu) \in \mathfrak{V}(\boldsymbol{p}), \gamma \in \mathbb{C}^{\alpha}\right\}
$$

the span of $\left\{s_{\lambda} Q(\lambda, \mu)^{*} \gamma:(\lambda, \mu) \in \mathfrak{V}(\boldsymbol{p}), \gamma \in \mathbb{C}^{\alpha}\right\}$ is also dense in $H_{\mathbb{C}^{m \alpha}}^{2}$, proving item (iii). Moreover, it proves that U is onto and hence unitary.

Let q_{k} denote the k-th column of Q. Thus $q_{k}=Q e_{k}$. Note that, for any $a \in \mathbb{N}$ and $1 \leqslant j \leqslant m \alpha$,

$$
\begin{aligned}
\left\langle U^{*} z^{a} e_{j}(\zeta, \eta), e_{k}\right\rangle & =\left\langle U^{*} z^{a} e_{j}, \mathcal{K}_{(\zeta, \eta)} e_{k}\right\rangle=\left\langle z^{a} e_{j}, U \mathcal{K}_{(\zeta, \eta)} e_{k}\right\rangle \\
& =\sum_{i=1}^{m \alpha}\left\langle z^{a} e_{j},\left(s_{\zeta} q_{i}^{*}(\zeta, \eta) e_{k}\right) e_{i}\right\rangle=\left\langle q_{j}(\zeta, \eta) \zeta^{a}, e_{k}\right\rangle=\left\langle\left(z^{a} q_{j}\right)(\zeta, \eta), e_{k}\right\rangle
\end{aligned}
$$

and hence it follows that $U^{*} z^{a} e_{j}=z^{a} q_{j}$ and $U z^{a} q_{j}=z^{a} e_{j}$. In particular, $\left\{z^{a} q_{j}\right.$: $a \in \mathbb{N}, 1 \leqslant j \leqslant m \alpha\}$ is an orthonormal basis for $H^{2}(\mathcal{K})$ completing the proof of item (iv).

To prove item (v), observe that $M_{z} U=U S$ on \mathscr{B} and then extending to $H^{2}(\mathcal{K})$, it is true on $H^{2}(\mathcal{K})$ too. It is now evident that S is a pure isometry of multiplicity $m \alpha$ with wandering subspace $\left\{Q \gamma: \gamma \in \mathbb{C}^{m \alpha}\right\}$ (the span of the columns of Q). Likewise for T by symmetry.

Proposition 4.2 ([3]). Suppose Φ is an $M \times M$ matrix-valued rational inner function and the pair $\left(M_{z}, M_{\Phi}\right)$ of multiplication operators on $H_{\mathbb{C}^{M}}^{2}$. If the rank of the projection $I-M_{\Phi} M_{\Phi}^{*}$ is N, then there exists a unitary matrix U of size $(M+N) \times$ $(M+N)$,

$$
\left.U=\begin{array}{cc}
M & N \\
A & B \\
C & D
\end{array}\right) \quad \begin{gathered}
M \\
N
\end{gathered}
$$

such that

$$
\Phi(z)=A+z B(I-z D)^{-1} C .
$$

Proposition 4.3. If $V=(S, T)$ is a finite bimultiplicity (M, N) pure p-isopair of rank α, modeled as $\left(M_{z}, M_{\Phi}\right)$ on $H_{\mathbb{C}^{M}}^{2}$, where Φ is an $M \times M$ matrix-valued rational inner function, then $M=m \alpha$ and
(i) there exists an $\alpha \times m \alpha$ matrix polynomial Q such that $Q(z, w)$ has full rank at almost all points of $\mathfrak{V}(\boldsymbol{p})$;
(ii) for $(z, w) \in \mathfrak{V}(\boldsymbol{p})$

$$
Q(z, w)(\Phi(z)-w)=0 ;
$$

(iii) there exists an $\alpha \times n \alpha$ matrix polynomial P such that $P(z, w)$ has full rank at almost all points of $\mathfrak{V}(\boldsymbol{p})$ and an α-admissible kernel \mathcal{K} such that

$$
\frac{Q(z, w) Q(\zeta, \eta)^{*}}{1-z \zeta^{*}}=\mathcal{K}((z, w),(\zeta, \eta))=\frac{P(z, w) P(\zeta, \eta)^{*}}{1-w \eta^{*}} \quad \text { on } \mathfrak{V}(\boldsymbol{p}) \times \mathfrak{V}(\boldsymbol{p}) .
$$

REmARK 4.4. The triple (\mathcal{K}, P, Q) in Proposition 4.3 is a rank α-admissible triple.

Proof. Applying Corollary 3.7 to irreducible p gives $M=m \alpha$. Let Λ denote the set of $\lambda \in \mathbb{D}$ such that p_{λ} has m distinct zeros. By Lemma 2.2 item (vi) Λ is cofinite. Let

$$
\Gamma=\left\{(\lambda, \mu): \lambda \in \Lambda, \mu \in Z\left(\boldsymbol{p}_{\lambda}\right)\right\} .
$$

By Proposition 3.4 item (ii), for each $(\lambda, \mu) \in \Gamma$, the matrix $\Phi(\lambda)$ is diagonalizable and $\Phi(\lambda)-\mu$ has an α dimensional kernel. Now fix $\left(\lambda_{0}, \mu_{0}\right) \in \Gamma$. Hence there exist unitary matrices Π and Π_{*} such that

$$
\Pi_{*}\left(\Phi\left(\lambda_{0}\right)-\mu_{0}\right) \Pi=\left(\begin{array}{cc}
0_{\alpha} & 0 \\
0 & A
\end{array}\right)
$$

where A is $(m-1) \alpha \times(m-1) \alpha$ and invertible. Let

$$
\Sigma(z, w)=\Pi_{*}(\Phi(z)-w) \Pi
$$

For $(\lambda, \mu) \in \Gamma$, the matrix $\Sigma(z, w)$ has an α dimensional kernel. Write,

$$
\Sigma(z, w)=\left(\begin{array}{cc}
E(z)-w & G(z) \\
H(z) & L(z)-w
\end{array}\right)
$$

where E is $\alpha \times \alpha$ and L is of size $(m-1) \alpha \times(m-1) \alpha$. By construction $L(z)-w$ is invertible at $\left(\lambda_{0}, \mu_{0}\right)$ and the other entries are 0 there. In particular, $L(\lambda)-\mu$ is invertible for almost all points $(\lambda, \mu) \in \mathfrak{V}(\boldsymbol{p})$. Moreover, if $L(z)-w$ is invertible, then

$$
\Sigma(z, w)=\left(\begin{array}{cc}
I & G(z) \\
0 & L(z)-w
\end{array}\right)\left(\begin{array}{cc}
\Psi(z, w) & 0 \\
0 & I
\end{array}\right)\left(\begin{array}{cc}
I & 0 \\
(L(z)-w)^{-1} H(z) & I
\end{array}\right)
$$

where

$$
\Psi(z, w)=E(z)-w-G(z)(L(z)-w)^{-1} H(z)
$$

Thus, on the cofinite subset of $\mathfrak{V}(\boldsymbol{p})$ where $L(\lambda)-\mu$ is invertible and $\Sigma(\lambda, \mu)$ has an α dimensional kernel, $\Psi(\lambda, \mu)=0$ and moreover,

$$
\left(I_{\alpha} \quad-G(\lambda)(L(\lambda)-\mu)^{-1}\right) \Pi_{*}(\Phi(\lambda)-\mu)=0
$$

Let

$$
\mathcal{Q}(z, w)=\left(\begin{array}{ll}
I_{\alpha} & \left.-G(z)(L(z)-w)^{-1}\right) \Pi_{*} .
\end{array}\right.
$$

It follows that

$$
\mathcal{Q}(z, w)(\Phi(z)-w)=0
$$

for almost all points in $\mathfrak{V}(\boldsymbol{p})$. After multiplying \mathcal{Q} by an appropriate scalar polynomial we obtain an $\alpha \times m \alpha$ matrix polynomial $Q(z, w)$ that has full rank at almost all points of $\mathfrak{V}(\boldsymbol{p})$ and satisfies

$$
Q(z, w)(\Phi(z)-w)=0
$$

for all $(z, w) \in \mathfrak{V}(p)$.
Since T has multiplicity N, the operator M_{Φ} also has multiplicity N and hence the projection $I-M_{\Phi} M_{\Phi}^{*}$ has rank N. By Theorem 4.2, there exists a unitary matrix U of size $(M+N) \times(M+N)$,

$$
U=\left(\begin{array}{cc}
M & N \\
A & B \\
C & D
\end{array}\right) \quad \begin{gathered}
M \\
N
\end{gathered}
$$

such that

$$
\Phi(z)=A+z B(I-z D)^{-1} C .
$$

Define P by $P(z, w)=Q(z, w) B(I-z D)^{-1}$ and verify, for $(z, w) \in \mathfrak{V}(\boldsymbol{p})$,

$$
\left(\begin{array}{ll}
Q & z P
\end{array}\right)\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)=\left(\begin{array}{ll}
w Q & P
\end{array}\right) \quad \text { on } \mathfrak{V}(\boldsymbol{p})
$$

It follows that, for $(\zeta, \eta) \in \mathfrak{V}(p)$,

$$
Q(z, w) Q(\zeta, \eta)^{*}+z \zeta^{*} P(z, w) P(\zeta, \eta)^{*}=w \eta^{*} Q(z, w) Q(\zeta, \eta)^{*}+P(z, w) P(\zeta, \eta)^{*}
$$

Rearranging gives

$$
\frac{Q(z, w) Q(\zeta, \eta)^{*}}{1-z \zeta^{*}}=\mathcal{K}((z, w),(\zeta, \eta))=\frac{P(z, w) P(\zeta, \eta)^{*}}{1-w \eta^{*}} \quad \text { on } \mathfrak{V}(p) \times \mathfrak{V}(\boldsymbol{p})
$$

Finally, if $(\zeta, \eta) \in \mathfrak{V}(\boldsymbol{p})$ is such that $Q(\zeta, \eta)$ has full rank α, then $P(\zeta, \eta) P(\zeta, \eta)^{*}$ also has full rank α. Therefore, $P(\zeta, \eta)$ also has full rank α and hence \mathcal{K} is a rank α-admissible kernel.

THEOREM 4.5. If $V=(S, T)$ is a finite bimultiplicity (M, N) pure p-isopair with rank α, then there exists a rank α-admissible triple (\mathcal{K}, P, Q) such that V is unitarily equivalent to the operators of multiplication by z and w on $H^{2}(\mathcal{K})$.

Proof. Note that (S, T) is unitarily equivalent to $\left(M_{z}, M_{\Phi}\right)$ on $H_{\mathbb{C} M}^{2}$, where Φ is an $M \times M$ matrix-valued rational inner function. By Proposition4.3, there exists a rank α-admissible triple (\mathcal{K}, P, Q) such that

$$
\begin{equation*}
Q(z, w)(\Phi(z)-w)=0 \tag{4.1}
\end{equation*}
$$

for all $(z, w) \in \mathfrak{V}(\boldsymbol{p})$. Define

$$
U: H_{\mathbb{C}^{M}}^{2} \rightarrow H^{2}(\mathcal{K})
$$

on the span of

$$
\mathcal{B}=\left\{s_{\zeta} Q^{*}(\zeta, \eta) \gamma:(\zeta, \eta) \in \mathfrak{V}(\boldsymbol{p}), \gamma \in \mathbb{C}^{\alpha}\right\} \subseteq H_{\mathbb{C}^{M}}^{2}
$$

by

$$
U s_{\zeta}(z) Q^{*}(\zeta, \eta) \gamma=\mathcal{K}_{(\zeta, \eta)}(z, w) \gamma
$$

For $(\zeta, \eta) \in \mathfrak{V}(\boldsymbol{p})$ and $\gamma_{j} \in \mathbb{C}^{\alpha}$ for $1 \leqslant j \leqslant 2$,

$$
\begin{aligned}
\left\langle U s_{\zeta_{1}}(z) Q^{*}\left(\zeta_{1}, \eta_{1}\right) \gamma_{1}, U s_{\zeta_{2}}(z)\right. & \left.Q^{*}\left(\zeta_{2}, \eta_{2}\right) \gamma_{2}\right\rangle \\
& =\left\langle\mathcal{K}_{\left(\zeta_{1}, \eta_{1}\right)}(z, w) \gamma_{1}, \mathcal{K}_{\left(\zeta_{2}, \eta_{2}\right)}(z, w) \gamma_{2}\right\rangle \\
& =\left\langle\mathcal{K}_{\left(\zeta_{1}, \eta_{1}\right)}\left(\zeta_{2}, \eta_{2}\right) \gamma_{1}, \gamma_{2}\right\rangle \\
& =\left\langle s_{\zeta_{1}}\left(\zeta_{2}\right) Q\left(\zeta_{2}, \eta_{2}\right) Q^{*}\left(\zeta_{1}, \eta_{1}\right) \gamma_{1}, \gamma_{2}\right\rangle \\
& =\left\langle s_{\zeta_{1}}(z) Q^{*}\left(\zeta_{1}, \eta_{1}\right) \gamma_{1}, s_{\zeta_{2}}(z) Q^{*}\left(\zeta_{2}, \eta_{2}\right) \gamma_{2}\right\rangle .
\end{aligned}
$$

Hence U is an isometry. By Theorem 4.1 item (iii) the span of \mathcal{B} is dense in $H_{\mathbb{C}^{M}}^{2}$. Moreover, the range of U is dense in $H^{2}(\mathcal{K})$. Thus, U is a unitary. Rewrite 4.1) as

$$
\begin{equation*}
w^{*} Q^{*}(z, w)=\Phi^{*}(z) Q^{*}(z, w) \tag{4.2}
\end{equation*}
$$

Let \widetilde{M}_{z} and \widetilde{M}_{w} be the operators of multipliction by z and w on $H^{2}(\mathcal{K})$, respectively. For $(\zeta, \eta) \in \mathfrak{V}(\boldsymbol{p})$ and $\gamma \in \mathbb{C}^{\alpha}$, using (4.2), observe that

$$
\begin{aligned}
\tilde{M}_{w}^{*} U\left(s_{\zeta}(z) Q^{*}(\zeta, \eta) \gamma\right) & =\tilde{M}_{w}^{*}\left(\mathcal{K}_{(\zeta, \eta)}(z, w) \gamma\right)=\bar{\eta} \mathcal{K}_{(\zeta, \eta)}(z, w) \gamma \\
& =\bar{\eta} U\left(s_{\zeta} Q^{*}(\zeta, \eta) \gamma\right)=U\left(s_{\zeta}(z) \bar{\eta} Q^{*}(\zeta, \eta) \gamma\right) \\
& =U\left(s_{\zeta}(z) \Phi(\zeta)^{*} Q^{*}(\zeta, \eta) \gamma\right)=U M_{\Phi}^{*}\left(s_{\zeta}(z) Q^{*}(\zeta, \eta) \gamma\right)
\end{aligned}
$$

Similarly,

$$
\tilde{M}_{z}^{*} U\left(s_{\zeta}(z) Q^{*}(\zeta, \eta) \gamma\right)=U M_{z}^{*}\left(s_{\zeta}(z) Q^{*}(\zeta, \eta) \gamma\right)
$$

Therefore, $U M_{z}^{*}=\widetilde{M}_{z}^{*} U$ and $U M_{\Phi}^{*}=\widetilde{M}_{w}^{*} U$ on the span of \mathcal{B}, and hence on $H_{\mathbb{C}^{M}}^{2}$. Thus our original (S, T) is unitarily equivalent to $\left(\widetilde{M}_{w}, \tilde{M}_{w}\right)$ on $H^{2}(\mathcal{K})$.

DEfinition 4.6. If \mathcal{B} is a subspace of vector space \mathcal{X}, then the codimension of \mathcal{B} in \mathcal{X} is the dimension of the quotient space $\mathcal{X} / \mathcal{B}$.

Lemma 4.7. Suppose \mathcal{X} is a vector space (over \mathbb{C}) and \mathcal{Q} and \mathcal{B} are subspaces of \mathcal{X}. If $\mathcal{Q} \subset \mathcal{B}$ and \mathcal{Q} has finite codimension in \mathcal{X}, then \mathcal{Q} has finite codimension in \mathcal{B}.

Lemma 4.8. Suppose K is a Hilbert space and $\mathcal{Q} \subset \mathcal{B} \subset K$ are linear subspaces (thus not necessarily closed) and let $\overline{\mathcal{Q}}$ denote the closure of \mathcal{Q}. If \mathcal{Q} has finite codimension in \mathcal{B} and if \mathcal{B} is dense in K, then there exists a finite dimensional subspace \mathcal{D} of K such that $K=\overline{\mathcal{Q}} \oplus \mathcal{D}$.

THEOREM 4.9. If \mathcal{K} is a rank α admissible kernel function defined on $\mathfrak{V}(\boldsymbol{p})$ and $S=M_{z}, T=M_{w}$ are the operators of multiplication by z and w, respectively on $H^{2}(\mathcal{K})$, then the pair (S, T) is nearly α-cyclic.

Proof. Since \mathcal{K} is a rank α admissible kernel, there exist matrix polynomials Q and P of size $\alpha \times m \alpha$ and $\alpha \times n \alpha$ respectively, such that

$$
\mathcal{K}((z, w),(\zeta, \eta))=\frac{Q(z, w) Q^{*}(\zeta, \eta)}{1-z \bar{\zeta}}=\frac{P(z, w) P^{*}(\zeta, \eta)}{1-w \bar{\eta}}, \quad(z, w),(\zeta, \eta) \in \mathfrak{V}(\boldsymbol{p})
$$

and Q and P have full rank α at some point in $\mathfrak{V}(\boldsymbol{p})$. Fix $(\zeta, \eta) \in \mathfrak{V}(\boldsymbol{p})$ so that $Q(\zeta, \eta)$ has full rank α. By the definition of \mathcal{K} and Lemma 3.3 of [8], $\mathcal{K}((z, w),(\zeta, \eta))$ has full rank α at almost all points in $\mathfrak{V}(\boldsymbol{p})$. Let

$$
Q_{0}=Q_{0}(z, w)=Q(z, w) Q^{*}(\zeta, \eta)
$$

Then $Q_{0} e_{j}=(1-S \bar{\zeta}) \mathcal{K}_{(\zeta, \eta)} e_{j}$. By Theorem 4.1 item (ii), $Q_{0} e_{j}$, the j-th column of Q_{0}, is also in $H^{2}(\mathcal{K})$. Letting $\widetilde{q}=\widetilde{q}(z, w)$ to be the determinant of Q_{0}, since $\mathcal{K}((z, w),(\zeta, \eta))$ has full rank α at almost all points in $\mathfrak{V}(p), \widetilde{q}$ is nonzero except for finitely many points in $\mathfrak{V}(\boldsymbol{p})$. Thus, \boldsymbol{p} and \widetilde{q} have only finitely many common zeros in $\mathfrak{V}(\boldsymbol{p})$. By Lemma 2.2 item (iii), \boldsymbol{p} and q are relatively prime. Let I be the ideal generated by p and \widetilde{q}. By Proposition 2.1 item (ii), $\mathbb{C}[z, w] / I$ is finite dimensional. Observe that

$$
\widetilde{q}_{j}=\widetilde{q} e_{j}=Q_{0} \operatorname{Adj}\left(Q_{0}\right) e_{j}=\sum_{k=1}^{\alpha} b_{k j} Q_{0} e_{k} \in H^{2}(\mathcal{K})
$$

where $b_{k j}$ is the (k, j)-entry of $\operatorname{Adj}\left(Q_{0}\right)$. If \vec{r} is an $\alpha \times 1$ matrix polynomial with entries r_{j}, then

$$
\begin{equation*}
\vec{r} \tilde{q}=\sum_{j=1}^{\alpha} r_{j} \operatorname{Adj}\left(Q_{0}\right) Q_{0} e_{j} \in H^{2}(\mathcal{K}) \tag{4.3}
\end{equation*}
$$

Since $\mathbb{C}[z, w] / I$ is finite dimensional, there is a finite dimensional subspace $\mathscr{S} \subseteq$ $\mathbb{C}[z, w]$ such that

$$
\{r \widetilde{q}+s p+t: r, s \in \mathbb{C}[z, w], t \in \mathscr{S}\}=\mathbb{C}[z, w]
$$

Therefore

$$
\left\{\vec{r} \widetilde{q}+\vec{s} \boldsymbol{p}+\vec{t}: \vec{r}, \vec{s} \text { are vector polynomials }, \vec{t} \in \bigoplus_{1}^{\alpha} \mathscr{S}\right\}=\bigoplus_{1}^{\alpha} \mathbb{C}[z, w]
$$

and hence the span \mathcal{Q} of $\left\{r_{1} \widetilde{q}_{1}, \ldots, r_{\alpha} \widetilde{q}_{\alpha}: r_{1}, \ldots, r_{\alpha} \in \mathbb{C}[z, w]\right\}$ is of finite codimension in ${\underset{1}{\mid}}_{\alpha}^{\mathbb{C}}[z, w]$.

Let $\mathcal{B}=\bigvee\left\{z^{n} Q e_{j}: n \in \mathbb{N}, 1 \leqslant j \leqslant m \alpha\right\} \subseteq \bigoplus_{1}^{\infty} \mathbb{C}[z, w]$. By equation 4.3 . $\mathcal{Q} \subset \mathcal{B}$. By Lemma 4.7, \mathcal{Q} has finite codimension in $\bigoplus_{1}^{\propto} \mathbb{C}[z, w]$. Moreover, \mathcal{B} is dense in $H^{2}(\mathcal{K})$ by Theorem 4.1 item (iv). Hence by Lemma 4.8 , the closure of \mathcal{Q} in $H^{2}(\mathcal{K})$ has finite codimension in $H^{2}(\mathcal{K})$. Equivalently, the closure of $\left\{\sum_{j=1}^{\alpha} r_{j}(S, T) \widetilde{q}_{j}: r_{j} \in \mathbb{C}[z, w]\right\}$ is of finite codimension in $H^{2}(\mathcal{K})$. Thus (S, T) is α-cyclic on $\overline{\mathcal{Q}}$ and hence at most nearly α-cyclic in $H^{2}(\mathcal{K})$.

Moreover, by Corollary 3.10. (S, T) has rank at most α. For $(\zeta, \eta) \in \mathfrak{V}(\boldsymbol{p})$ and for $\gamma \in \mathbb{C}^{\alpha}$, note that

$$
\mathcal{K}_{(\zeta, \eta)} \gamma \in \operatorname{ker}\left(M_{z}-\zeta\right)^{*} \cap \operatorname{ker}\left(M_{w}-\eta\right)^{*}
$$

Hence, if $(\zeta, \eta) \in \mathfrak{V}(\boldsymbol{p})$ is such that $\mathcal{K}_{(\zeta, \eta)}$ has full rank α, then $\operatorname{ker}\left(M_{z}-\zeta\right)^{*} \cap$ $\operatorname{ker}\left(M_{w}-\eta\right)^{*}$ has dimension at least α. Therefore, (S, T) has rank at least α. Thus (S, T) has rank α. By Corollary 3.10 . (S, T) is at least nearly α-cyclic and hence (S, T) is nearly α-cyclic on $H^{2}(\mathcal{K})$.

Proposition 4.10. If $V=(S, T)$ is a finite bimultiplicity pure \boldsymbol{p}-isopair of rank α acting on the Hilbert space K, then there exists a finite codimension V invariant subspace H of K such that the restriction of V to H is α-cyclic.

For the proof combine Theorems 4.5 and 4.9

5. DECOMPOSITION OF FINITE RANK ISOPAIRS

Proposition 5.1. Suppose $p_{1}, p_{2} \in \mathbb{C}[z, w]$ are relatively prime square free inner toral polynomials, but not necessarily irreducible. If $V_{j}=\left(S_{j}, T_{j}\right)$ are β_{j}-cyclic p_{j}-pure isopairs, then $V=V_{1} \oplus V_{2}$ is a $p_{1} p_{2}$-isopair and is at most nearly $\max \left\{\beta_{1}, \beta_{2}\right\}$ cyclic.

Proof. Clearly,
$p_{1} p_{2}(V)=\left(p_{1}\left(V_{1}\right) \oplus p_{1}\left(V_{2}\right)\right)\left(p_{2}\left(V_{1}\right) \oplus p_{2}\left(V_{2}\right)\right)=\left(0 \oplus p_{1}\left(V_{2}\right)\right)\left(p_{2}\left(V_{1}\right) \oplus 0\right)=0$.
Let I be the ideal generated by p_{1} and p_{2}. By Proposition 2.1 item (ii), I has finite codimension in $\mathbb{C}[z, w]$. Hence there exists a finite dimension subspace \mathcal{R} of $\mathbb{C}[z, w]$ such that, for each $\psi \in \mathbb{C}[z, w]$, there exist $s_{1}, s_{2} \in \mathbb{C}[z, w]$ and $r \in \mathcal{R}$ such that

$$
\psi=s_{1} p_{1}+s_{2} p_{2}+r .
$$

Let K denote the Hilbert space that V acts upon. Let $\beta=\max \left\{\beta_{1}, \beta_{2}\right\}$ and suppose without loss of generality $\beta_{1}=\beta_{2}=\beta$. For $j=1,2$, choose cyclic sets $\Gamma_{j}=\left\{\gamma_{j, 1}, \ldots, \gamma_{j, \beta}\right\}$ for V_{j}. (In the case where $\beta_{1}<\beta_{2}$ we can set Γ_{1} to be $\left\{\gamma_{1,1}, \ldots, \gamma_{1, \beta_{1}}, 0,0, \ldots, 0\right\}$, so that this new Γ_{1} has $\beta=\beta_{2}$ vectors.) Let $K_{0}=$ $\left\{\psi_{1}\left(V_{1}\right) \gamma_{1, k} \oplus \psi_{2}\left(V_{2}\right) \gamma_{2, k}: 1 \leqslant k \leqslant \beta, \psi_{j} \in \mathbb{C}[z, w]\right\}$. By the hypothesis, K_{0} is
dense in K. For given polynomials $\psi_{1}, \psi_{2} \in \mathbb{C}[z, w]$, there exist $s_{1}, s_{2} \in \mathbb{C}[z, w]$ and $r \in \mathcal{R}$ such that

$$
\psi_{1}-\psi_{2}=-s_{1} p_{1}+s_{2} p_{2}+r
$$

Rearranging gives,

$$
\psi_{1}+s_{1} p_{1}=\psi_{2}+s_{2} p_{2}+r .
$$

Let $\varphi=\psi_{1}+s_{1} p_{1}$. It follows that

$$
\varphi=\psi_{2}+s_{2} p_{2}+r
$$

Consequently,
$\varphi(V)\left[\gamma_{1, k} \oplus \gamma_{2, k}\right]=\varphi\left(V_{1}\right) \gamma_{1, k} \oplus \varphi\left(V_{2}\right) \gamma_{2, k}=\psi_{1}\left(V_{1}\right) \gamma_{1, k} \oplus\left(\psi_{2}\left(V_{2}\right) \gamma_{2, k}+r\left(V_{2}\right) \gamma_{2, k}\right)$.
Let H_{0} denote the span of $\left\{\varphi(V)\left[\gamma_{1, k} \oplus \gamma_{2, k}\right]: 1 \leqslant k \leqslant \beta, \psi \in \mathbb{C}[z, w]\right\}$ and H be the closure of H_{0}. Let \mathcal{L} denote the span of $\left\{0 \oplus r\left(V_{2}\right) \gamma_{2, k}: 1 \leqslant k \leqslant \beta, r \in \mathcal{R}\right\}$. Note that \mathcal{L} is finite dimensional since \mathcal{R} is and hence \mathcal{L} is closed. Moreover,

$$
K_{0}=H_{0}+\mathcal{L} .
$$

Hence H_{0} has finite codimension in K_{0}. By Lemma 4.8. H has finite codimension in K. Evidently H is V invariant and the restriction of V to H is at most β-cyclic. Therefore, V is at most nearly β-cyclic.

Proposition 5.2. If $V_{j}=\left(S_{j}, T_{j}\right)$ are finite bimultiplicity pure \boldsymbol{p}_{j}-isopairs with rank α_{j} acting on Hilbert spaces K_{j}, where \boldsymbol{p}_{j} are irreducible and relatively prime inner toral polynomials for $1 \leqslant j \leqslant s$, then $\bigoplus_{j=1}^{s} V_{j}$ is nearly $\max \left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right\}$-cyclic on $\bigoplus_{j=1}^{s} K_{j}$.

Proof. First suppose $s=2$. By Proposition 4.10, each V_{j} is α_{j}-cyclic on some finite codimensional invariant subspace H_{j} of K_{j}. By Proposition 5.1, $\left.V_{1}\right|_{H_{1}} \oplus$ $\left.V_{2}\right|_{H_{2}}$ is at most nearly $\max \left\{\alpha_{1}, \alpha_{2}\right\}$-cyclic on $H_{1} \oplus H_{2}$. Since each H_{j} has finite codimension in K_{j}, it follows that $V=V_{1} \oplus V_{2}$ is at most nearly $\max \left\{\alpha_{1}, \alpha_{2}\right\}$ cyclic on $K_{1} \oplus K_{2}$. On the other hand, V has rank $\left(\alpha_{1}, \alpha_{2}\right)$ and hence, by Corollary 3.10, is at least $\max \left\{\alpha_{1}, \alpha_{2}\right\}$-cyclic. Thus V is nearly $\max \left\{\alpha_{1}, \alpha_{2}\right\}$-cyclic.

Arguing by induction, suppose the result is true for $0 \leqslant j-1<s$. Thus $V^{\prime}=V_{1} \oplus \cdots \oplus V_{j-1}$ is nearly $\beta=\max \left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{j-1}\right\}$-cyclic on $K^{\prime}=K_{1} \oplus K_{2} \oplus$ $\cdots \oplus K_{j-1}$. Hence there exists a finite codimensional invariant subspace H^{\prime} of K^{\prime} such that the restriction of V^{\prime} to H^{\prime} is β-cyclic. Since V_{j} is a finite bimultiplicity p_{j} isopair with rank α_{j}, by Proposition 4.10, there exists a finite codimensional invariant subspace H_{j} of K_{j} such that $V_{j} H_{j}$ is α_{j}-cyclic. Note that $\boldsymbol{p}_{1} \cdots \boldsymbol{p}_{j-1}$ and \boldsymbol{p}_{j} are relatively prime. Applying Proposition 5.1 to $\left.V^{\prime}\right|_{H^{\prime}}$ and $\left.V_{j}\right|_{H_{j}}$, it follows that $\left.\left.V^{\prime}\right|_{H^{\prime}} \oplus V_{j}\right|_{H_{j}}$ is at most nearly $\gamma=\max \left\{\beta, \alpha_{j}\right\}$-cyclic on $H^{\prime} \oplus H_{j}$. Since H^{\prime} and H_{j} have finite codimension in K^{\prime} and K_{j} respectively, $W=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{j}$ is at most nearly γ-cyclic on $K_{1} \oplus K_{2} \oplus \cdots \oplus K_{j}$. On the other hand, W has rank
$\left(\alpha_{1}, \ldots, \alpha_{j}\right)$ and is therefore at least nearly γ-cyclic by Corollary 3.10. Thus W is nearly $\gamma=\max \left\{\alpha_{1}, \ldots, \alpha_{j}\right\}$-cyclic.

Proof of Theorem 1.4 By Theorem 2.1 of [2], there exist a finite codimension subspace H of K that is invariant for V and pure \boldsymbol{p}_{j}-isopairs V_{j} such that

$$
W=\left.V\right|_{H}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{s} .
$$

By Proposition 3.9. W has rank α. Hence V_{j} has rank α_{j}. By Proposition 5.2, there is a finite codimension invariant subspace L of H such that the restriction of W to L is $\beta=\max \left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right\}$-cyclic. Thus L is a finite codimensional subspace of K such that $\left.V\right|_{L}$ is β-cyclic. Hence V is at most nearly β-cyclic. By Corollary 3.10 . V is at least nearly β-cyclic. Therefore, V is nearly $\max \left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right\}$ cyclic.

Corollary 5.3. Suppose $V=(S, T)$ is a pure \boldsymbol{p}-isopair of finite bimultiplicity with minimal polynomial \boldsymbol{p} and write $\boldsymbol{p}=\boldsymbol{p}_{1} \boldsymbol{p}_{2} \cdots \boldsymbol{p}_{s}$ as a product of distinct irreducible factors. If V has rank α and $\beta=\max \left\{\alpha_{1}, \ldots, \alpha_{s}\right\}$, then
(i) there exists a finite codimension invariant subspace H for V such that the restriction of V to H is β-cyclic;
(ii) V is not k-cyclic for any $k<\beta$; and
(iii) there exists a β-cyclic pure p-isopair V^{\prime} and an invariant subspace K for V^{\prime} such that V is the restriction of V^{\prime} to K.

Proof. Proofs of items (i) and (ii) follow from Theorem 1.4 and the definition of nearly k-cyclic isopairs. The proof of item (iii) is an application of item (i) and Corollary 3.3 I

5.1. EXAMPLE. In this section we discuss an example of pure p-isopairs of finite

 rank to illustrate the connection of the rank of a pure p-isopair to nearly cyclicity and to the representation as direct sums.Consider the irreducible, square free inner toral polynomial, $\boldsymbol{p}=z^{3}-w^{2}$. The distinguished variety, \mathcal{V}, defines by p is called Neil parabola [8]. The triple ($\mathcal{K}_{1}, Q_{1}, P_{1}$) given by

$$
Q_{1}(z, w)=\left(\begin{array}{ll}
1 & w
\end{array}\right), \quad P_{1}(z, w)=\left(\begin{array}{lll}
1 & z & z^{2}
\end{array}\right)
$$

and the corresponding kernel function

$$
\frac{1+w \bar{\eta}}{1-z \bar{\zeta}}=\mathcal{K}_{1}((z, w),(\zeta, \eta))=\frac{1+z \bar{\zeta}+z^{2} \bar{\zeta}^{2}}{1-w \bar{\eta}}
$$

is a 1-admissible triple. Likewise for the choice of

$$
Q_{2}(z, w)=\left(\begin{array}{ll}
z & w
\end{array}\right), \quad P_{2}(z, w)=\left(\begin{array}{lll}
w & z & z^{2}
\end{array}\right)
$$

and the corresponding kernel function

$$
\frac{z \bar{\zeta}+w \bar{\eta}}{1-z \bar{\zeta}}=\mathcal{K}_{2}((z, w),(\zeta, \eta))=\frac{w \bar{\eta}+z \bar{\zeta}+z^{2} \bar{\zeta}^{2}}{1-w \bar{\eta}}
$$

the triple $\left(\mathcal{K}_{2}, Q_{2}, P_{2}\right)$ is also a 1-admissible triple. For $j=1,2$, let V_{j} be the pair $\left(M_{z}, M_{w}\right)$ defined on $H^{2}\left(\mathcal{K}_{j}\right)$. Now each V_{j} is a pure p-isopair or rank 1 and each V_{j} is nearly 1-cyclic.

Let $Q=Q_{1} \oplus Q_{2}, P=P_{1} \oplus P_{2}$ and $\mathcal{K}=\mathcal{K}_{1} \oplus \mathcal{K}_{2}$. Observe that the triple (\mathcal{K}, Q, P) is a 2-admissible triple and $V=\left(M_{z}, M_{w}\right)$ defined on $H^{2}(\mathcal{K})$ is a pure p-isopair and nearly 2 -cyclic. In fact V is a pure p-isopair of rank 2 that can be written as a direct sum of two pure p-isopairs, V_{1} and V_{2}.

However this is not true in general. In other words, there exist pure p isopairs of finite rank (say $\alpha \in \mathbb{N}$), that cannot be expressed as a direct sum of α number of pure p-isopairs. For instance, let

$$
H^{\prime}=\left\{f \in H^{2}(\mathcal{K}):\left\langle f,(1-z)^{\top}\right\rangle=0\right\}
$$

and $V^{\prime}=\left.V\right|_{H^{\prime}}$. Observe that H^{\prime} is a finite codimensional subspace of $H^{2}(\mathcal{K})$ and H^{\prime} is invariant under V. By the stability of the rank V^{\prime} has rank 2 and hence nearly 2-cyclic.

Moreover, the collection of vectors of the form:

$$
\binom{1 / \sqrt{2}}{z / \sqrt{2}},\binom{z^{n}}{0}_{n \geqslant 1},\binom{w z^{n}}{0}_{n \geqslant 0},\binom{0}{z^{n}}_{n \geqslant 2},\binom{0}{w z^{n}}_{n \geqslant 0},
$$

forms an orthonormal basis for H^{\prime}. Hence the reproducing kernel, $\widetilde{\mathcal{K}}$, for H^{\prime} has the form

$$
\widetilde{\mathcal{K}}((z, w),(\zeta, \eta))=\left(\begin{array}{cc}
\frac{1}{2}+\frac{z \bar{\zeta}+w \bar{\eta}}{1-z \bar{\zeta}} & \frac{\bar{\zeta}}{2} \\
\frac{z}{2} & z \bar{\zeta}\left(\frac{1}{2}+\frac{z \bar{\zeta}+w \bar{\eta}}{1-z \bar{\zeta}}\right)
\end{array}\right)
$$

Since $\widetilde{\mathcal{K}}((z, w),(0,0))$ is not diagonalizable, $\widetilde{\mathcal{K}}$ is not diagonalizable. Consequently, H^{\prime} and V^{\prime} are not direct sums. In otherwords, V^{\prime} is a pure p-isopair of rank 2 that cannot be expressed as a direct sum of two other pure p-isopairs.

Acknowledgements. I am very grateful to my adviser, Scott McCullough, for his valuable guidance and insights that greatly improved the content of this paper.

REFERENCES

[1] M.B. Abrahamse, R.G. Douglas, A class of subnormal operators related to multiply-connected domains, Adv. Math 19(1976), 106-148.
[2] J. Agler, G. Knese, J.E. McCarthy, Algebraic pairs of isometries, J. Operator Theory 67(2012), 215-236.
[3] J. Agler, J.E. McCarthy, Pick Interpolation and Hilbert Function Spaces, Grad. Stud. Math., vol. 44, Amer. Math. Soc., Providence, RI 2002.
[4] J. Agler, J.E. McCarthy, Distinguished varieties, Acta Math. 194(2005), 133-153.
[5] J. Agler, J.E. McCarthy, Parametrizing distinguished varieties, in Recent Advances in Operator-related Function Theory, Contemp. Math., vol. 393, Amer. Math. Soc., Providence, RI 2006, pp. 29-34.
[6] J. Agler, J. McCarthy, M. Stankus, Toral algebraic sets and function theory on polydisks, J. Geom. Anal. 16(2006), 551-562.
[7] D.A. Cox, Introduction to Grobner bases, in Applications of Computational Algebraic Geometry (San Diego, CA, 1997), Proc. Sympos. Appl. Math., vol. 53, Amer. Math. Soc., Providence, RI 1998, pp. 1-24,
[8] M.T. Jury, G. Knese, S. McCullough, Nevalinna-Pick interpolation on distinguished varieties in the bidisk, J. Funct. Anal. 262(2012), 3812-3838.
[9] G. Knese, Polynomials defining distinguished varieties, Trans. Amer. Math. Soc. 362(2010), 5635-5655.
[10] J.E. MCCARTHY, Shining a Hilbertian lamp on the bidisk, in Topics in Complex Analysis and Operator Theory, Contemp. Math., vol. 561, Amer. Math. Soc., Providence, RI 2012, pp. 49-65.
[11] S. Pal, O.M. Shalit, Spectral sets and distinguished varieties in the symmetrized bidisc, J. Funct. Anal. 266(2014), 5779-5800.
[12] V.I. Paulsen, M. Raghupathi, An Introduction to the Theory of Reproducing Kernel Hilbert Spaces, Cambridge Stud. Adv. Math, vol. 152, Cambridge Univ. Press, Cambridge 2016.
[13] W. Rudin, Pairs of inner functions on finite Riemann surfaces, Trans. Amer. Math. Soc. 140(1969), 423-434.

[^0]Received May 12, 2017; revised November 14, 2017 and March 13, 2018.

[^0]: UDENI D. WIJESOORIYA, Department of Mathematics, Univ. of Florida, Gainesville, 32611, U.S.A.

 E-mail address: wudeni.pera06@ufl.edu

