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ABSTRACT. An operator T : X → X is said to be hypercyclic if there exists a
vector x ∈ X, called hypercyclic for T, such that the orbit Orb(T, x) = {Tnx :
n ∈ N} is dense in X. T is hereditarily hypercyclic if and only if T ⊕ T is hy-
percyclic on X × X. We show that if T is a hereditarily hypercyclic operator
on a Banach space X, then there exist separated locally convex topologies on
X∗ for which every nonzero vector x∗ ∈ X∗ is hypercyclic for T∗, and thus
for which T∗ lacks nontrivial closed invariant subsets. We obtain in this way
a link between properties of these topologies and the structure of hypercyclic
vectors for T. In the same way, given that T∗ is hereditarily hypercyclic, we
can construct separated locally convex topologies on X where any nonzero
vector x ∈ X is hypercyclic for T. We introduce the notion of a nondegenerat-
ing hypercyclic vector manifold for an operator; such manifolds play a central
role here, but these structures are also of independent interest.
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1. INTRODUCTION

Let X denote a locally convex space. An operator, that is a linear but not nec-
essarily continuous map, T : X → X is said to be hypercyclic if there exists a vec-
tor x ∈ X, called hypercyclic for T, such that the orbit Orb(T, x) := {Tnx : n ∈ N}
is dense in X. We refer to [4], [17] for an overview of basic concepts and results
in the theory of hypercyclicity. Hypercyclicity relates to the invariant subspace
theory in the sense that T lacks nontrivial closed invariant subsets if (and only
if when T is continuous) every nonzero vector is hypercyclic. (The trivial invari-
ant subsets are {0} and X.) Recall that The invariant subset problem consists
in knowing whether there exists a continuous operator on a separable Hilbert
space without nontrivial closed invariant subsets. Read [25] was able to show
that there exist Banach spaces, e.g. `1, that support such operators. We should
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here also mention Grivaux’s result, from [14], that any normed space with count-
able infinite algebraic dimension (thus not a Banach space) supports a contin-
uous operator with all nonzero vectors hypercyclic. The constructions of these
continuous operators without nontrivial closed invariant subsets are quite com-
plicated. On the other hand, in a work [26] of Salas, the author constructed dis-
continuous operators, on Banach spaces, with all nonzero vectors hypercyclic,
see also [27] for a similar study. In this note we continue this line of investi-
gation, but our approach is somewhat different. Our operators are continuous
in the norm topology, and we instead consider alternative topologies for which
every nonzero vector is hypercyclic. More specifically, let T be a continuous op-
erator on a Banach space X. Given that T is hereditarily hypercyclic (see be-
low for the definition), we show how we can obtain separated locally convex
topologies on the dual X∗ for which every nonzero vector x∗ ∈ X∗ is hyper-
cyclic for the adjoint T∗. In the same way, provided that T∗ is hereditarily hyper-
cyclic, we can construct separated locally convex topologies on X so that every
nonzero vector x ∈ X is hypercyclic for T. All this may intuitively seem to be
wrong, especially if you consider the example of the classical hereditarily hyper-
cyclic backward shift operator 2B : (x1, x2, . . .) 7→ (2x2, 2x3, . . .), and its adjoint
2F : (x1, x2, . . .) 7→ (0, 2x1, 2x2, . . .), acting on `2 (' `∗2). How can every nonzero
vector x ∈ `2 possibly be hypercyclic for 2F? Here it is important to point out that
T∗ and, respectively, T may fail to be continuous for the constructed topologies.
The key, to obtain our topologies, is to work with hypercyclicity (of multipliers)
in the algebra of continuous operators, provided with a suitable topology. Chan
initiated the study of hypercyclity in operator algebras in [10], and his work has
been pursued in e.g. [8], [11], [24], [28], [29].

If nothing else is specified, X denotes a separable real or complex infinite
dimensional Banach space, and X∗ denotes the Banach space of continuous linear
forms on X. The set of continuous operators on X is denoted by L(X), that we
shall equip with different topologies.

DEFINITION 1.1 (Hypercyclicity criterion). An operator T ∈ L(X) is said to
satisfy the hypercyclicity criterion (HC) if there exist dense subsets Z, Y ⊆ X and
an increasing sequence (nk) ⊆ N such that:

(i) for any z ∈ Z we have that Tnk z→ 0;
(ii) for any y ∈ Y we have that Tnk xk → y, for some nullsequence (xk) ⊂ X.

Any operator T ∈ L(X) that satisfies the HC is hereditarily hypercyclic, i.e.,
there exists a sequence (nk) ⊆ N such that for every subsequence (mk) ⊆ (nk) we
have that {Tmk x : k ∈ N} is dense for some x ∈ X. Indeed, we recall the following
results from [5], [7].

PROPOSITION 1.2 (Bès, Peris, Bernal-González, Grosse-Erdmann). The fol-
lowing are equivalent for any operator T ∈ L(X):

(i) T satisfies the HC;
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(ii) T is hereditarily hypercyclic;
(iii) T ⊕ T ∈ L(X× X) is hypercyclic;

(iv)
n⊕
1

T ∈ L(Xn) is hypercyclic for all n > 1;

(v)
∞⊕
1

T ∈ L(XN) is hypercyclic.

Here, and below, product spaces are tacitly assumed to be provided with
the product topology, thus XN = X × X × · · · is for example a Fréchet space
(complete metrizable locally convex space).

The hypothesis that every hypercyclic operator T ∈ L(X) is in fact heredi-
tarily hypercyclic, was studied intensively. However, Read and De La Rosa an-
swered this question of Domingo Herrero, by providing an example of a contin-
uous hypercyclic operator on a Banach space that is not hereditarily hypercyclic
[13]. Most hypercyclic operators in L(X) are however hereditarily hypercyclic,
see e.g. [15], and another characterization of these operators is the following
proposition from [8].

PROPOSITION 1.3 (Bonet, Martínez-Giménez, Peris). Any of the equivalent
conditions (i)–(v) in Proposition 1.2 is equivalent to that the left-multiplier LT : S 7→ TS
is SOT-hypercyclic on L(X).

SOT refers here to the strong operator topology on L(X), i.e. the topology
generated by the seminorms ‖T‖x := ‖Tx‖, x ∈ X, and ”SOT-hypercyclic” means
of course hypercyclic with respect to this topology. Noteworthy is that L(X) is
not separable with respect to the operator norm topology, so there is no chance to
find any hypercyclic operator on L(X) for this topology. We shall also apply (and
pursue) the following proposition from [8].

PROPOSITION 1.4 (Bonet, Martínez-Giménez, Peris). If T∗ is hereditarily hy-
percyclic, where T∈L(X), the right-multiplier RT : S 7→ST is SOT-hypercyclic on L(X).

(The converse does not hold, RT may be SOT-hypercyclic even if the adjoint
of T ∈ L(X) is not hereditarily hypercyclic, see Remark 3.4 in [8] for an example.
Note that the condition that T∗ is (hereditarily) hypercyclic requires that X∗ is
separable, and X∗ beeing separable implies that X is separable.)

A key-idea in this note is to complement Proposition 1.3 with an analogous
statement but for a slightly different topology, that we introduce here.

DEFINITION 1.5. The dual strong operator topology on L(X) (DSOT) is the
topology generated by the seminorms ‖V‖∗x∗ := ‖V∗x∗‖, x∗ ∈ X∗. (‖ · ‖ denotes
here the dual norm on X∗.)

The DSOT on a product of L(X) is referring to the product topology with
respect to the DSOT (the same convention is used for other topologies on L(X)).
It follows that DSOT (and SOT) is a separated topology. Note also that, since
(L(X), DSOT) 3 T 7→ T∗x∗ ∈ (X∗, ‖ · ‖) is continuous and surjective for any
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x∗ 6= 0, it is necessary and (as we shall see in the proof of Theorem 3.1) sufficient
that X∗ (and thus X) is separable in order that L(X) is separable for the DSOT.
Noteworthy is also that if T ∈ L(X), then LT and RT are both continuous with
respect to the DSOT (as well as the SOT). We refer to Subsection 6.1 for some more
comments on the SOT and the DSOT.

Now, based on our ”DSOT-analogue” of Proposition 1.3, see Theorem 3.1
in Section 3, we can in Section 4 define separated locally convex topologies on
the dual X∗ for which every nonzero vector of X∗ is hypercyclic for T∗, pro-
vided T ∈ L(X) is hereditarily hypercyclic and X∗ is separable. We obtain in
this way an interesting link between the properties of these topologies and the
hypercyclic properties of T. In the same way, based on Proposition 1.4 we show
in Section 5 how we can obtain separated locally convex topologies on X where
every nonzero vector x ∈ X is hypercyclic for T, whenever T∗ is hereditarily
hypercyclic.

The paper is organized as follows. In Section 2 we establish some general
results, related to properties and the structure of hypercyclic vectors. In particular
we introduce the notion of a nondegenerating hypercyclic vector manifold for an
operator (Definition 2.3).

In Section 3 we study left- and right-multipliers, in particular we investigate
the structure of their hypercyclic vectors.

In Section 4 and 5, we apply the results in Section 3, and define topologies
on X∗ and X, respectively, for which every nonzero vector is hypercyclic for T∗

and T, respectively. The topologies are defined out of hypercyclic vectors for
multipliers. We pose several problems throughout our work, in particular in the
last section, Section 6.

2. PRELIMINARY RESULTS

Recall that a hypercyclic vector manifold for an operator T is an infinite
dimensional subspace of, except for zero, hypercyclic vectors (for T). By a result
of Bès and Bourdon, every continuous hypercyclic operator T on a locally convex
space admits a hypercyclic vector manifold, in fact, a dense and invariant such a
manifold (indeed, such a manifold is given by {p(T)x : p polynomial}, where x
is any given hypercyclic vector, see [6] and [9] for details).

PROPOSITION 2.1. An operator V ∈ L(X) is SOT-hypercyclic for LT (T ∈
L(X)) if and only if for all n > 1 and any linearly independent set {x1, . . . , xn} ⊂ X,

(Vx1, . . . , Vxn) is hypercyclic for
n⊕
1

T. In particular, any such V is one-to-one and

V := Im V forms a hypercyclic vector manifold for T such that, for all n > 1, every

linearly independent n-tuple from V is hypercyclic for
n⊕
1

T.
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Proof. A fundamental family of seminorms on L(X), with respect to the
SOT, is given by ‖T‖F ≡ ∑

i
‖Txi‖, where F = {xi} runs through all finite sub-

sets of X. We note first that an equivalent family of seminorms is obtained by
letting the sets F be formed by linearly independent vectors only. Indeed, if

F = {x0, x1, . . . , xn} is any finite set and x0 =
n
∑
1

αixi ∈ span{x1, . . . , xn}, then

‖T‖F 6 ∑ |αi|‖Txi‖+ ‖T‖F0 6 (1 + A)‖T‖F0 ,

where F0 := {x1, . . . , xn} and A := max |αi|. Hence, for some constant C and
linearly independent set G ⊆ F, ‖ · ‖F 6 C‖ · ‖G which proves our claim. The
topology on Xn is generated by the norm ‖(xi)‖n := ∑

i
‖xi‖.

Assume now that V is SOT-hypercyclic for LT , and let F = {xi}n
1 be any

linearly independent set. We must prove that (Vxi) is hypercyclic for
n⊕
1

T. So let

ε > 0 and (yi) ∈ Xn be arbitrary. Since F is linearly independent, we can find an
R ∈ L(X) such that Rxi = yi for all i. Consequently, for some m,

ε > ‖Lm
T (V)− R‖F = ∑ ‖TmVxi − Rxi‖ =

∥∥∥( n⊕
1

T
)m

(Vxi)− (yi)
∥∥∥

n
,

and so (Vxi) is hypercyclic for
n⊕
1

T. Conversely, assume (Vxi) is hypercyclic

for
n⊕
1

T for any linearly independent set F = {xi}n
1 . Pick R ∈ L(X) and ε > 0

arbitrarily. Put yi := Rxi. Then, for some m,

ε >
∥∥∥( n⊕

1

T
)m

(Vxi)− (yi)
∥∥∥

n
= ∑ ‖TmVxi − Rxi‖ = ‖Lm

T (V)− R‖F,

and so V is SOT-hypercyclic for LT .
The last part follows by the fact that if Vx1, . . . , Vxn are linearly independent

vectors in Im V, then x1, . . . , xn must be linearly independent.

Here one may reflect on the converse.

PROBLEM 2.2. Assume T ∈ L(X) is hereditarily hypercyclic. Is every hy-

percyclic vector for
∞⊕
1

T of the form (Vxi), where V is an SOT-hypercyclic vector

for LT?

Proposition 2.1 motivates the following definition.

DEFINITION 2.3. A nondegenerating hypercyclic vector manifold for an oper-
ator T on a locally convex space X is an infinite dimensional subspace V ⊆ X
such that for every n > 1, any linearly independent n-tuple (x1, . . . , xn) from V is

hypercyclic for
n⊕
1

T.
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Accordingly, by Propositions 1.3 and 2.1, any hereditarily hypercyclic op-
erator T ∈ L(X) supports a nondegenerating hypercyclic vector manifold. Of
course, any nondegenerating hypercyclic vector manifold is a hypercyclic vector
manifold, but the converse is not true, in fact we have the following proposition.

PROPOSITION 2.4. A nondegenerating hypercyclic vector manifold V for a con-
tinuous operator T on a locally convex space X cannot be invariant under T.

Proof. Assume, by way of contradiction, that V is invariant under T. Let x
be any nonzero vector of V . Then x is hypercyclic for T, and thus x and Tx are
linearly independent vectors of V . But (x, Tx) belongs to the graph of T, which
is a closed (T ⊕ T)-invariant proper subset of X × X ((x, x) ∈ X × X does not
belong to the graph). Thus (x, Tx) is not a hypercyclic vector for T ⊕ T, which
contradicts that V is a nondegenerating hypercyclic vector manifold.

In particular the proposition shows that the full space X is never a nonde-
generating hypercyclic vector manifold for some continuous operator, but it can
indeed be a hypercyclic vector manifold for an operator T ∈ L(X), in view of
Read’s examples. Moreover, we conclude that the construction {p(T)x : p poly-
nomial} cannot be a nondegenerating hypercyclic vector manifold.

From Proposition 1.2 we know that
∞⊕
1

T admits a hypercyclic vector when-

ever T ∈ L(X) is hereditarily hypercyclic. In fact, we can say a little bit more:

PROPOSITION 2.5. Assume T ∈ L(X) is hereditarily hypercyclic. Then we can

find a hypercyclic vector (xi) ∈ XN for
∞⊕
1

T such that {xn : n ∈ N} is dense in X.

Proof. Let {Gi : i ∈ N} be any countable open base for X. We must thus
find a hypercyclic vector (xi) such that {xi : i ∈ N}meets every Gi. But let (zi) be

any hypercyclic vector for
∞⊕
1

T, that is, (z1, . . . , zn) is hypercyclic for
n⊕
1

T for all n.

We claim that for any family {pn : n ∈ N} of nonzero one variable polynomials,

(xi := pi(T)zi) ∈ XN is another hypercyclic vector for
∞⊕
1

T. Indeed, just note that

for arbitrary n, p1(T)⊕ · · · ⊕ pn(T) ∈ L(Xn) has dense range (because Im pi(T)

is dense [6]), and
n⊕
1

pi(T) commutes with
n⊕
1

T. Since every zi is hypercyclic for

T, we can for each i find a monomial pi with pi(T)zi ∈ Gi, and we are done.

PROPOSITION 2.6. Let T be a continuous operator on a separated locally convex
space X. Any countable linearly independent subset {xi} of a nondegenerating hyper-

cyclic vector manifold V for T forms a hypercyclic vector V = (xi) for
∞⊕
1

T. Conversely,

any hypercyclic vector V for
∞⊕
1

T defines a nondegenerating hypercyclic vector manifold

for T by V := spanV.
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Proof. The first part is elementary, for we have that (xi) is hypercyclic for
∞⊕
1

T if and only if (x1, . . . , xn) is hypercyclic for
n⊕
1

T for all n > 1.

So assume now that V = (xi) is a hypercyclic vector for
∞⊕
1

T, and let

yi =
m

∑
j=1

αijxj, i = 1, . . . , n,

be any linearly independent family of vectors from spanV (note that m > n must

hold here). We must prove that (y1, . . . , yn) is a hypercyclic vector for
n⊕
1

T. Let

p be any continuous seminorm on X and let (z1, . . . , zn) be any n-tuple in Xn.
Since {yi} is a linearly independent set, we can find vectors u1, . . . , um (in fact, in
span{zi}) such that

zi =
m

∑
j=1

αijuj, i = 1, . . . , n.

By the fact that (x1, . . . , xm) is hypercyclic for
m⊕
1

T, there exists an r ∈ N so that

p(Trxi − ui) 6
1

max
{

∑m
j=1 |αkj|

}n
k=1

for all i = 1, . . . , m.

Hence

p(Tryi − zi) 6
m

∑
j=1
|αij|p(Trxj − uj) 6 1, i = 1, . . . , n,

and so (yi) is hypercyclic for
n⊕
1

T.

Finally we must prove that spanV is infinite dimensional, when V = (xi) is

a hypercyclic vector for
∞⊕
1

T. We prove that {xi} must be a linearly independent

set (cf. the proof of Proposition 2.4). Assume this is not the case, then

xm =
m−1

∑
1

αixi

for some m > 2 and constants αi. Consider now the proper subspace

M =
{
(y1, y2, . . . , ym) : ym =

m−1

∑
i=1

αiyi

}
of Xm. It follows that M is closed and invariant under

m⊕
1

T. Since (x1, . . . , xm) ∈

M, (x1, . . . , xm) cannot be hypercyclic for
m⊕
1

T. This contradicts that V = (xi) is a

hypercyclic vector for
∞⊕
1

T, so spanV is indeed infinite dimensional.
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Thus we know two different ways how to construct a nondegenerating hy-
percyclic vector manifold V for, say, a hereditarily hypercyclic operator T ∈ L(X):

(i) by the image V := Im V of any SOT-hypercyclic vector V∈L(X) for LT and

(ii) by V := spanV, where V = (xi) is any hypercyclic vector for
∞⊕
1

T.

In particular, by Proposition 2.5, Proposition 2.6 gives the next corollary.

COROLLARY 2.7. Every hereditarily hypercyclic operator T ∈ L(X) supports a
dense nondegenerating hypercyclic vector manifold.

Another consequence of Proposition 2.6 is the following.

COROLLARY 2.8. An operator T ∈ L(X) is hereditarily hypercyclic if and only if
it supports a nondegenerating hypercyclic vector manifold.

3. HYPERCYCLIC MULTIPLIERS

In this section we establish some hypercyclic properties of left-multipliers
LT : S 7→ ST and right-multipliers RT : S 7→ TS, acting on L(X).

THEOREM 3.1. Assume that T ∈ L(X) is hereditarily hypercyclic and that X∗ is

separable. Then LT is DSOT-hypercyclic on L(X), in fact,
∞⊕
1

LT (and thus any
n⊕
1

LT ,

n > 1) is hypercyclic with respect to the DSOT.
Further,

(i)
∞⊕
1

LT admits a DSOT-hypercyclic vector V = (Vi) ∈ L(X)N such that the set

{Vn : n ∈ N} is DSOT-dense in L(X);
(ii) LT supports a dense nondegenerating hypercyclic vector manifold V ⊆ L(X), all

this with respect to the DSOT.

Proof. Let A(X) denote the set of finite rank operators in L(X), and let
A0(X) denote the closure of A(X) in L(X) with respect to the operator norm
topology. Thus A0(X) is a Banach space, and we claim that A(X), and thus
A0(X), is DSOT-dense in L(X). Indeed, let x∗1 , . . . , x∗n be arbitrary linearly inde-
pendent vectors in X∗. Then we can find a biorthogonal system (xi) ⊂ X to (x∗i ).
Consider now the operator P = ∑〈·, x∗i 〉xi ∈ A(X). The adjoint P∗ = ∑〈xi, ·〉x∗i
is now a projector onto the span of {x∗i }. We conclude that PT ∈ A(X) and
(PT− T)∗=0 on span{x∗i }, which proves our claim since ‖PT−T‖∗x∗i =0 for all i.

Next we prove that LT is hypercyclic on A0(X) (note that A(X), and by con-
tinuity thus A0(X), is invariant under LT). In fact, we prove that this restriction
LT : A0(X) → A0(X) of LT satisfies the HC. In order to apply the HC, we must
ensure that A0(X) is separable. It suffices to prove that A(X) is separable. A
proof of this can be found in Theorem 2 of [11].
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Next, let Z, Y ⊆ X be dense subsets and (nk) a sequence in N for which
T satisfies (i) and (ii) in the HC (Definition 1.1). We may assume that Z and
Y are subspaces. Let Z0 denote the subset of A0(X) formed by the operators
S ∈ A(X) of the form S = ∑〈·, x∗i 〉zi, where x∗i ∈ X∗ and zi ∈ Z. In the same
way we define Y0 (the elements zi are replaced by elements yi in Y). It is a routine
work to show that Y0 and Z0 both are dense in A(X), and hence in A0(X). We
evidently have that Lnk

T → 0 pointwise on Z0. Moreover, if S = ∑〈·, x∗i 〉yi ∈ Y0

we can for each i find a nullsequence (xi
k) in X such that Tnk xi

k → yi (k → ∞).
Hence the elements Sk := ∑

i
〈·, x∗i 〉xi

k form a nullsequence (Sk) in A0(X) such that

Lnk
T (Sk) = Tnk Sk → S in A0(X).

Accordingly,
∞⊕
1

LT : A0(X)N → A0(X)N is hypercyclic (Proposition 1.2).

Consider now the simple, and often applied, comparison principle:

Comparison principle. If S, T are operators on Y and Z, respectively, and
Sϕ = ϕT for some continuous densely ranged map ϕ : Z → Y, then ϕ(x) is a
hypercyclic vector for S for any such vector x for T.

Applied to the imbedding ϕ : A0(X)N → L(X)N, we deduce that
∞⊕
1

LT is

DSOT-hypercyclic on the countable product L(X)N. In fact, any hypercyclic vec-

tor (Vi) for
∞⊕
1

LT : A0(X)N → A0(X)N is also hypercyclic for
∞⊕
1

LT : L(X)N →

L(X)N. In particular, by Proposition 2.5 we may find (Vi) so that {Vi} is dense
in A0(X), and thus DSOT-dense in L(X). Hence (i), and (ii) follows by Proposi-
tion 2.6.

REMARK 3.2. Note that A0(X) is formed by compact operators, and if X
has the approximation property, A0(X) is precisely the ideal K(X) of compact
operators, see Theorem 1.e.4 in [19]. Thus the proof shows that, in this case, LT is
hypercyclic on K(X) with respect to the operator norm topology, and this result
was also obtained in Theorem 2.1 of [8].

Note that the topologies SOT and DSOT are not comparable, which, in view
of Proposition 1.3, leads to the following problem.

PROBLEM 3.3. Are the SOT- and DSOT-hypercyclic vectors for LT the same,
when T ∈ L(X) is hereditarily hypercyclic and X∗ is separable?

It follows for example that any SOT-hypercyclic vector (and any DSOT-
hypercyclic vector) for LT , must be injective (see Remark 3.8 below). We may
here also point out that V ∈ L(X) is DSOT-hypercyclic for LT if and only if V∗

is SOT-hypercyclic for RT∗ . Just note that ‖Ln
T(V) − S‖∗x∗ = ‖Rn

T∗(V
∗) − S∗‖x∗ ,

and it is easily checked that the operators of the form S∗, S ∈ L(X), form an SOT-
dense set in L(X∗). See Remark 3.7 for more on this. In any case we have (see
also Theorem 6.3 and its remarks) the following corollary.
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COROLLARY 3.4. Assume T is a hereditarily hypercyclic operator on X, where
X∗ is separable. Then there exists a vector (Vi) ∈ L(X)N that is both SOT- and DSOT-

hypercyclic for
∞⊕
1

LT and where {Vn : n ∈ N} is dense in L(X) with respect to both the

SOT and the DSOT. In particular, there exists a vector manifold V ⊆ L(X) which is a
dense nondegenerating hypercyclic vector manifold for LT with respect to both the SOT
and the DSOT.

Proof. For the first part, just note that the imbedding A0(X) → L(X), and
thus A0(X)N → L(X)N, is continuous and has dense range when L(X) is pro-
vided with any of the topologies SOT and DSOT. From this point the arguments
in the last part of the proof of Theorem 3.1 give the statement. The last part fol-
lows now by Proposition 2.6.

Another problem, partially related to Problem 3.3, is the following one.

PROBLEM 3.5. Does DSOT-hypercyclicity of LT imply that T ∈ L(X) is
hereditarily hypercyclic?

Our next goal is to establish a similar result (Theorem 3.1) for right-multi-
pliers RT : L(X) → L(X), where L(X) is endowed with the SOT. We already
know from Proposition 1.4 that RT admits an SOT-hypercyclic vector V ∈ L(X)
whenever T∗ is hereditarily hypercyclic, but in view of our purposes we need the
following theorem.

THEOREM 3.6. Assume T∗ is hereditarily hypercyclic where T ∈ L(X). Then
∞⊕
1

RT (and hence any
n⊕
1

RT , n > 1) is hypercyclic with respect to the SOT. Further,

(i)
∞⊕
1

RT admits an SOT-hypercylic vector V = (Vi) ∈ L(X)N such that the set

{Vn : n ∈ N} is SOT-dense in L(X);
(ii) RT supports a dense nondegenerating hypercyclic vector manifold V ⊆ L(X), all

this with respect to the SOT.

Proof. The proof follows that of Theorem 3.1. That is, we prove that RT
defines a hereditarily hypercyclic operator on the Banach space A0(X) (note that
A(X), and thus A0(X), is invariant under RT). Recall that A0(X) is the closure in
L(X), with respect to the operator norm topology, of the space A(X) of finite rank
operators. Since X∗ is separable, by our hypothesis, X is separable. Hence, as in
the proof of Theorem 3.1, we conclude that A0(X) is separable. Moreover, A0(X)
is SOT-dense in L(X). Indeed, let x1, . . . , xn be any linearly independent family
of vectors in X. Then TP ∈ A(X) and TP− T vanishes on {x1, . . . , xn}, here P :=
∑〈·, x∗i 〉xi where (x∗1 , . . . , x∗n) is a biorthogonal n-tuple with respect to the ordered
set (x1, . . . , xn). By the comparison principle in the proof of Theorem 3.1, together
with Propositions 2.5 and 2.6, we only have to prove that RT : A0(X) → A0(X)
satisfies the HC.
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Let Z and Y denote dense subsets (we can assume subspaces) of X∗ so that
(i) and (ii) in the HC, see Definition 1.1, hold for T∗ and some sequence (nk).

Let Z0 be the space formed by all operators S ∈ A(X) of the form S =

∑〈·, z∗i 〉xi, where z∗i ∈ Z and xi ∈ X. Thus the range of any S∗, S ∈ Z0, is
contained in Z. In the same way, Y0 is formed by all finite rank operators S =

∑〈·, y∗i 〉xi, where y∗i ∈ Y and xi ∈ X. Hence Im S∗ ⊆ Y whenever S ∈ Y0. Note
that for any element S of Z0 or Y0, S∗ is a finite rank operator. It is straight-forward
to prove that Y0 and Z0 are dense in A(X), and therefore also in A0(X).

Let S = ∑〈·, z∗i 〉xi ∈ Z0. We prove that Rnk
T (S)→ 0 in A0(X). But

‖Rnk
T (S)‖ = ‖STnk‖ = ‖(STnk )∗‖ = ‖T∗nk S∗‖ =

∥∥∥∑〈xi, ·〉T∗nk z∗i
∥∥∥,

and since the sum is finite it follows that Rnk
T (S) → 0. We conclude that Rnk

T → 0
pointwise on Z0. Next, let S = ∑〈·, y∗i 〉xi ∈ Y0. By our assumptions, there exists
for every i a nullsequence (x∗ik) so that T∗nk x∗ik → y∗i when k→ ∞. Put

Sk := ∑
i
〈·, x∗ik〉xi,

it is then easily checked that (Sk) is a nullsequence and Rnk
T (Sk) → S as k → ∞.

We conclude that RT : A0(X)→ A0(X) satisfies the HC.

REMARK 3.7. Recall that it is not true that RT being SOT-hypercyclic implies
that T∗ is hereditarily hypercyclic (or equivalently, satisfies the HC). However, it
follows that RT is DSOT-hypercyclic if and only if T∗ is hereditarily hypercyclic.
Let us give some details for a proof of this. It is easy to prove that V ∈ L(X) is
DSOT-hypercyclic for RT if and only if V∗ is SOT-hypercyclic for LT∗ . Since LT∗

is SOT-hypercyclic if and only if T∗ is hereditarily hypercyclic, Proposition 1.3,
we only have to prove that if T∗ is hereditarily hypercyclic, then LT∗ admits an
SOT-hypercyclic vector of the form V∗, where V ∈ L(X). Consider now the
operator LT∗ : A0(X∗) → A0(X∗), where A0(X∗) is the closure of the set A(X∗)
of operators of the form ∑〈xi, ·〉x∗i , where {xi} and {x∗i } are finite sets of X and
X∗, respectively. With arguments as in the proof of Theorems 3.1 and 3.6 it follows
that LT∗ admits a hypercyclic vector U ∈ A0(X∗). By density, Un → U for some
sequence (Un) in A(X∗). But every operator in A(X∗) is the adjoint of some
operator in L(X). Hence Un = V∗n → U, Vn ∈ L(X). Finally we only have to
apply the fact that the map S → S∗ between L(X) and L(X∗) is continuous and
has closed range, in the operator norm topologies (‖S‖ = ‖S∗‖), and so U = V∗

for some V ∈ L(X). Thus, LT∗ admits an SOT-hypercyclic vector of the form V∗,
V ∈ L(X), when T∗ is hereditarily hypercyclic.

We have also pointed out that V is DSOT-hypercyclic for LT if and only if
V∗ is SOT-hypercyclic for RT∗ , and so we may summarize some conclusions in
the following way. If X∗, and thus X, is separable, then:

(i) T satisfies the HC⇒ LT is DSOT-hypercyclic⇒ RT∗ is SOT-hypercyclic;
(ii) T∗ satisfies the HC⇔ LT∗ is SOT-hypercyclic⇔ RT is DSOT-hypercyclic.
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We do not know if the implications in (i) in fact may be replaced by equiva-
lences. (Problem 3.5 concerns the converse of the first implication.)

REMARK 3.8. We know, from Proposition 2.1, that any SOT-hypercyclic vec-
tor V for LT must be one-to-one, in other words, V∗ must have weak* dense
range. It follows that any DSOT-hypercyclic vector V for LT also must be injec-
tive. Indeed, for any x∗ 6= 0 the map ux∗ : L(X) → X∗ defined by T 7→ T∗x∗

is surjective and continuous, where X∗ carries the norm topology and L(X) the
DSOT. Thus ux∗ Orb(LT , V) = V∗Orb(T∗, x∗) must be norm dense in X∗. Conse-
quently, Im V∗ must be weak* dense, which is equivalent to that V is injective.

A hypercyclic vector V for right-multipliers RT , for any of the topologies
SOT and DSOT, must have dense range (V∗ is injective). If, for example, V is
DSOT-hypercyclic for RT , then ux∗ Orb(RT , V) = {T∗nV∗x∗ : n ∈ N} is dense for
any x∗ 6= 0. Hence V∗x∗ 6= 0 for any nonzero x∗, so V∗ is injective (Im V is dense).
Similar arguments show that Im V must be dense for any SOT-hypercyclic vector
V for RT .

4. TOPOLOGIES ON X∗ WHERE ANY NONZERO VECTOR OF X∗ IS HYPERCYCLIC

For any operator V ∈ L(X) we define the seminorm ‖x∗‖∗V := ‖V∗x∗‖ on
X∗. Given a family V ⊆ L(X) of operators, we let J ∗V denote the topology on
X∗ that is generated by the seminorms ‖ · ‖∗V , V ∈ V . This means that J ∗V is
the weakest locally convex topology τ for which all the maps V∗ : (X∗, τ) →
(X∗, ‖ · ‖), V ∈ V are continuous. Note also that

‖x∗‖∗V = sup
x∈BX

|〈x, V∗x∗〉| = sup
x∈BX

|〈Vx, x∗〉| = sup
x∈V(BX)

|〈x, x∗〉|,

where BX denotes the closed unit ball in X. Hence, J ∗V can be described as the
(polar) topology of uniform convergence on the sets V(BX), V ∈ V , see for exam-
ple Chapter 3 in [18]. When V consists of one single operator V, we simply write
J ∗V for the corresponding topology.

THEOREM 4.1. Assume T ∈ L(X) is hereditarily hypercyclic and let V ∈ L(X)
be any DSOT-hypercyclic vector for LT . Then every nonzero vector x∗ ∈ X∗ is J ∗V -
hypercyclic for T∗, thus, T∗ lacks nontrivial J ∗V -closed invariant subsets.

Proof. Let x∗ ∈ X∗ be any nonzero vector and choose x ∈ X such that
〈x, x∗〉 = 1. Now, for any given y∗ ∈ X∗ we have

‖T∗nx∗ − y∗‖∗V = ‖Ln
T(V)− S‖x∗ ,

where
S := 〈·, V∗y∗〉x ∈ L(X)

because S∗x∗ = 〈x, x∗〉V∗y∗ = V∗y∗. Hence the theorem.
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REMARK 4.2. Note that ‖ · ‖∗V is a norm, and thus (X∗,J ∗V) a normed space,
if and only if V∗ is one-to-one. That is, if and only if V has dense range, and if
and only if (X∗,J ∗V) is separated (cf. Proposition 4.3). In particular we have that
J ∗V is equivalent to the norm topology on X∗ if and only if V is surjective (and
thus bijective, see Remark 3.8), for we recall that this is equivalent to ‖V∗x∗‖ >
c‖x∗‖ for some c > 0. We do not know if this is ever possible. (We know that
A0(X) in the proof of Theorem 3.1 contains ”many” hypercyclic vectors V for
LT , but none of them can be bijective, as A0(X) is formed by compact operators
only. We also recall that an SOT-hypercyclic vector V ∈ L(X) for LT cannot
be surjective, because then Im V = X would be a nondegenerating hypercyclic
vector manifold, which is not possible by Proposition 2.4.)

Note also that T∗ may fail to be continuous with respect to the topology J ∗V .
There are indeed examples where a DSOT-hypercyclic vector V ∈ L(X) for

LT fails to have dense range. Indeed, consider the operator λB : c0 → c0, where
|λ| > 1 and B is the backward shift (x1, x2, . . .) 7→ (x2, x3, . . .). It is well-known
that T := λB is hereditarily hypercyclic and thus, since c∗0 ' `1 is separable, LT
admits a DSOT-hypercyclic vector V0 (Theorem 3.1). But ker T = span{e0} is
complemented, c0 = [e0]⊕ [e1, e2, . . .], and so we can find a projector Π : c0 →
[e1, . . .] (:= span{e1, . . .}). It is now clear that V := ΠV0 is another hypercyclic
vector for LT , but V has evidently not a dense range. On the other hand, in gen-
eral, given any DSOT-hypercyclic vector V ∈ L(X) for LT , V +W is another (pos-
sibly densely ranged) DSOT-hypercyclic vector for LT provided Im W ⊆ ker Tn

for some n (in Example 4.7 below we apply a similar observation).

Thus to any DSOT-hypercyclic vector V for LT , we can associate a topology
J ∗V (not necessarily separated) for which every nonzero vector is hypercyclic for
T∗. The question is now if we can find families V of operators on X, to obtain sep-
arated topologies J ∗V for which every nonzero vector is hypercyclic for T∗. Before
we establish such constructions, we have the following general proposition.

PROPOSITION 4.3. Let V be any family of operators in L(X). Then
(i) (X∗,J ∗V ) is separated if and only if any of the following equivalent properties holds

true:
(a)

⋂
V∈V

ker V∗ = {0},

(b)
⋃

V∈V
Im V is total in X;

(ii) the dual of (X∗,J ∗V ) contains

span
⋃

V∈V
Im V∗∗(⊆ X∗∗),

and if (X∗,J ∗V ) is separated this is precisely the dual of (X∗,J ∗V ).
Proof. Since J ∗V is generated by the seminorms x∗ 7→ ‖V∗x∗‖, V ∈ V , it

is clear that J ∗V is separated if and only if
⋂
V

ker V∗ = {0}. But, for the duality
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between X and X∗, ⋂
V

ker V∗ =
(⋃
V

Im V
)⊥

and
(⋃
V

Im V
)⊥⊥

is the closed linear hull of
⋃
V

Im V, so (i) follows.

Next, it is easily checked that any element of Im V∗∗ is a continuous linear
form with respect to J ∗V whenever V∈V , and so span

⋃
V

Im V∗∗ is contained in the

dual of (X∗,JV ). The last part of (ii) follows by Proposition 3.14.5(a) in [18].

COROLLARY 4.4. (X∗,J ∗V ) is separated provided V is DSOT-dense in L(X).

Proof. Assume V is DSOT-dense but that
⋃

V∈V
Im V is not total. Then there

exists an x∗ 6= 0 that is orthogonal to any Vx, (x, V) ∈ X × V . But if IX∗ de-
notes the identity operator on X∗, there exists a net (Vα) in V such that V∗α x∗ →
I∗Xx∗ = x∗ in norm. Hence, for any x ∈ X we have 〈x, x∗〉 = lim

α
〈x, V∗α x∗〉 =

lim
α
〈Vαx, x∗〉 = 0, and thus a contradiction.

THEOREM 4.5. Assume T ∈ L(X) is hereditarily hypercyclic and let V be any
nondegenerating hypercyclic vector manifold for LT with respect to the DSOT (hence X∗

and X are separable in norm). Then J ∗V is a topology on X∗ for which every nonzero
vector x∗ ∈ X∗ is hypercyclic for T∗ (and thus for which T∗ lacks nontrivial closed
invariant subsets). In particular, if V is DSOT-dense (exists by Theorem 3.1), (X∗,J ∗V )
is separated.

Proof. Let U be any neighbourhood, with respect to J ∗V , for an arbitrary
point y∗ ∈ X∗. This means that there exist nonzero vectors V1, . . . , Vn ∈ V and
ε > 0 such that

{z∗ : ‖z∗ − y∗‖∗Vi
6 ε, i = 1, . . . , n} ⊆ U.

In fact, we may assume that V1, . . . , Vn are linearly independent. Indeed,

just note that if V1 ∈ span{V2, . . . , Vn}, then ‖ · ‖∗V1
6 C

n
∑
2
‖ · ‖∗Vi

for some constant

C > 0 (cf. the proof of Proposition 2.1). Thus (V1, . . . , Vn) is a DSOT-hypercyclic

vector for
n⊕
1

LT .

Let now x∗ be any nonzero vector of X∗.
Pick x ∈ X so that 〈x, x∗〉 = 1. Next we define Si := 〈·, V∗i y∗〉x ∈ L(X).

Then S∗i x∗ = V∗i y∗ and so

‖T∗mx∗ − y∗‖∗Vi
= ‖Lm

T (Vi)− Si‖∗x∗ .(4.1)

Since (V1, . . . , Vn) is DSOT-hypercyclic for
n⊕
1

LT , we can find an m so that these

expressions (4.1) are less than ε for all i, and thus T∗mx∗ ∈ U.
The last statement follows by Corollary 4.4.
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As in Remark 4.2 it is not necessarily true that T∗ is continuous with respect
to the topology J ∗V . Note also that if V is DSOT-dense, then XV :=span

⋃
V∈V

Im V∗∗

(⊆ X∗∗) is the dual of (X∗,J ∗V ) (Proposition 4.3). Thus the weak topology
σ(X∗, XV ) on X∗ is coarser or equal to J ∗V , and so every x∗ 6= 0 is σ(X∗, XV )-
hypercyclic for T∗ under the hypothesis of Theorem 4.5. This motivates a study
on describing XV , see Subsection 6.3 for more comments on this.

Another important class of sets V ⊆ L(X), in the context, is the following
theorem.

THEOREM 4.6. Assume T ∈ L(X) is hereditarily hypercyclic and let V = (Vi) ∈
L(X)N be any DSOT-hypercyclic vector for

∞⊕
1

LT (hence X∗ and X are separable in

norm). Then J ∗V is a topology for which every nonzero vector x∗ is hypercyclic for T∗.
In particular, if we take V so that {Vn : n ∈ N} is DSOT-dense in L(X) (exists by
Theorem 3.1), J ∗V is a metrizable locally convex topology on X∗.

Proof. For the first part, just note that if we take any n-tuple (Vm1 , . . . , Vmn)

of different vectors from {Vi}, (Vm1 , . . . , Vmn) is a hypercyclic vector for
n⊕
1

LT .

The proof of the fact that every nonzero vector is hypercyclic goes parallel to that
of Theorem 4.5.

Next, if {Vn : n ∈ N} is DSOT-dense in L(X), (X,J ∗V) is separated by Corol-
lary 4.4, and since the topology J ∗V is generated by a countable family of semi-
norms (‖ · ‖Vi ), it is metrizable, see e.g. Theorem 2.6.1 in [18].

More generally we have that J ∗V is metrizable once (X∗,J ∗V) is separated,
i.e., once the set

⋃
n>1

Im Vn is total (Proposition 4.3). We now show how we can

force this to happen by a ”small” perturbation of the given hypercyclic vector V
for

∞⊕
1

LT .

EXAMPLE 4.7. Let V = (Vi) ∈ L(X)N be any DSOT-hypercyclic vector for
∞⊕
1

LT . Assume T ∈ L(X) has dense generalized kernel
⋃

n>1
ker Tn (in particular

this applies to T = λB in Remark 4.2). We may thus find a countable dense
set {xn : n ∈ N} in X of vectors xn from

⋃
n>1

ker Tn. The open balls Bn with

centre at xn and radius 1/n, respectively, form an open base {Bn : n ∈ N} for
X. Choose for each n vectors x∗n ∈ X∗ and yn ∈ X so that ‖Vnyn‖ < 1/n and
〈yn, x∗n〉 = 1. Put Wn := 〈·, x∗n〉xn + Vn ∈ L(X) and W := (Wi). Clearly, W
is DSOT-hypercyclic for

∞⊕
1

LT . Indeed, for any m we have that TnWi = TnVi

for all i 6 m, if n is sufficiently large. Moreover,
⋃

n>1
Im Wn is dense, and thus

total, because it contains the vectors Wnyn = xn + Vnyn ∈ Bn. We conclude that
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J ∗W is metrizable. Summing up, if T has dense generalized kernel, then we can

perturbate any DSOT-hypercyclic vector V ∈ L(X)N for
∞⊕
1

LT by a sequence of

rank one operators to obtain a new DSOT-hypercyclic vector W such that J ∗W is
metrizable.

Note that since J ∗V is always coarser than the norm topology, the open map-
ping theorem gives that (X∗,J ∗V) is a Fréchet space if and only if J ∗V equals the
norm topology. Thus, in view of Remark 4.2, under the hypothesis that (X∗,J ∗V)
is separated and thus metrizable, (X∗,J ∗V) is most probably not complete (i.e. not
a Fréchet space).

Observe also that we never used that T is hereditarily hypercyclic in Theo-
rems 4.1, 4.5 and 4.6, thus these statements remain true once we can find a DSOT-
hypercyclic vector V, a nondegenerating DSOT-hypercyclic vector manifold V
and a DSOT-hypercyclic vector V, respectively. However, since hereditarily hy-
percyclicity of T implies the existence of these objects, we preferred to add this
hypothesis.

5. TOPOLOGIES ON X WHERE ANY NONZERO VECTOR OF X IS HYPERCYCLIC

For any operator V ∈ L(X) we define the seminorm ‖x‖V := ‖Vx‖ on
X. (Hence ‖ · ‖∗V = ‖ · ‖V∗ on X∗.) The topology on X that is generated by the
seminorms ‖ · ‖V , V ∈ V , where V ⊆ L(X), is denoted by JV . We write, for
simplicity, JV when V = {V}. The topology JV can also be described as the
weakest locally convex topology τ for which all the maps V : (X, τ)→ (X, ‖ · ‖),
V ∈ V , are continuous. Moreover, with similar computations as in the beginning
of Section 4 we deduce that ‖x‖V = sup

x∗∈V∗(BX∗ )
|〈x, x∗〉|, and so JV is the (polar)

topology of uniform convergence on the sets V∗(BX∗), V ∈ V . Here BX∗ denotes
the closed unit ball in X∗. We have the following analogue of Proposition 4.3.

PROPOSITION 5.1. Let V be any family of operators in L(X). Then
(i) (X,JV ) is separated if and only if any of the following two equivalent properties

holds true:
(a)

⋂
V∈V

ker V = {0},

(b)
⋃

V∈V
Im V∗ is weak* total in X∗;

(ii) the dual of (X,JV ) contains span
⋃

V∈V
Im V∗, and if (X,JV ) is separated this is

precisely the dual of (X,JV ).
Proof. Clearly, (X,JV ) is separated if and only if

⋂
V∈V

ker V = {0}. But

we have that
⋂

V∈V
ker V =

(⋃
V

Im V∗
)⊥

, where the orthogonal complement is
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taken with respect to the dual pair (X, X∗). Consequently,
( ⋂

V∈V
ker V

)⊥
is the

weak* closed linear hull of
⋃
V

Im V∗. This completes the proof of (i). The second

statement follows by Proposition 3.14.5(a) in [18].

From these arguments, as in the proof of Corollary 4.4, we obtain the fol-
lowing corollary.

COROLLARY 5.2. (X,JV ) is separated provided V is SOT-dense in L(X).

We know, from Theorem 3.6, that
∞⊕
1

RT admits an SOT-hypercyclic vector

(Vi) (respectively, a hypercyclic vector manifold V) where {Vi} (respectively, V)
is SOT-dense. And in this way we may obtain separated topologies on X where
all nonzero vectors are hypercyclic for T.

THEOREM 5.3. Assume T∗ is hereditarily hypercyclic, where T ∈ L(X). Then,
any nonzero vector x ∈ X is hypercyclic for T, for any of the following topologies on X:

(i) JV where V ∈ L(X) is an SOT-hypercyclic vector for RT ;

(ii) JV where V = (Vi) is an SOT-hypercyclic vector for
∞⊕
1

RT ;

(iii) JV where V is a nondegenerating SOT-hypercyclic vector manifold for RT .
In (ii) and (iii) we may take (Theorem 3.6) V and V as SOT-dense, respectively, so

that the corresponding topologies JV and JV are separated (Corollary 5.2).

Proof. Let V ∈ L(X) be an SOT-hypercyclic vector for RT . Let x be any
nonzero element, and y any element, of X. In order to prove the first statement,
we must show that for any given ε > 0 there is an n so that ‖Tnx− y‖V < ε. We
may find an x∗ ∈ X∗ so that 〈x, x∗〉 = 1. Consider the operator S := 〈·, x∗〉Vy in
L(X). Clearly Sx = Vy, and so

‖Tnx− y‖V = ‖V(Tnx− y)‖ = ‖VTnx− Sx‖ = ‖Rn
T(V)− S‖x.

Since V is SOT-hypercyclic for RT , ‖Rn
T(V)− S‖x is, for some n, smaller than any

given ε > 0. This completes the proof of the first part. The proofs of (ii) and (iii)
go similar to those of Theorems 4.6 and 4.5, respectively.

6. CONCLUDING REMARKS

6.1. With an additional assumption on the separable Banach space X, the state-
ments above remain true for a finer topology on L(X), i.e., finer than the SOT
and the DSOT. Indeed, by the ∗-strong operator topology (∗-SOT) we mean the
topology on L(X) that is generated by the seminorms

‖V‖x,x∗ := max(‖V‖x, ‖V‖∗x∗) = max(‖Vx‖, ‖V∗x∗‖),
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(x, x∗) ∈ X × X∗. Evidently, the ∗-SOT is finer or equal to the SOT as well as
to the DSOT. (The ∗-SOT is some sort of generalisation of the strong* topology
[12], that is defined by the seminorms V 7→ max(‖Vx‖, ‖V∗x‖), x ∈ X, where X
denotes a Hilbert space.) We have now the following lemma.

LEMMA 6.1. Assume X has a shrinking Schauder basis (en)n>1. Then the set
A(X) of finite rank operators is dense in L(X) with respect to the ∗-SOT.

Proof. Let (e∗n) ⊂ X∗ be the biorthogonal functionals relative to the basis
(en). By our hypothesis that (en) is shrinking, (e∗n) forms a basis of X∗ (recall that
this is the definition of (en) being shrinking [19]) and its biorthogonal system in

X∗∗ is the system (en) ⊂ X ⊆ X∗∗. Let now Pn :=
n
∑
1
〈·, e∗i 〉ei ∈ A(X), n = 1, 2, . . ..

Then Pn → I (n → ∞) uniformly on compact sets, where I = IX denotes the
identity operator on X, see e.g. [19] page 30. Thus, since P∗n is the analogue of Pn
relative to the basis (e∗n), we have in the same way that P∗n → IX∗ uniformly on
compact sets in X∗. From the identity PnTPn − T = (Pn − I)TPn + T(Pn − I) we
obtain for any x ∈ X:

‖PnTPn − T‖x 6 ‖Pn − I‖TPnx + ‖T‖‖Pn − I‖x.

If now {x1, . . . , xm} is a finite set of points in X, {TPixj : i > 0, j 6 m} is a
relatively compact set in X (because lim

i
TPixj exists for each j). Thus, for any

given ε>0 there is an N such that ‖PnTPn−T‖xi 6 ε for all i whenever n>N. By
symmetry, given points x∗1 , . . . , x∗r in X∗, there is an M such that ‖PnTPn−T‖∗x∗i 6 ε

for all i provided n > M. This shows that PnTPn → T with respect to the ∗-SOT,
and hence the theorem since PnTPn ∈ A(X).

REMARK 6.2. Recall that the canonical unit bases of c0 and `p (1 < p < ∞)
are shrinking, and further examples of Banach spaces with such bases are given
in [19].

It is now clear that, in the present setting, the proof of Theorem 3.1 applies
to the ∗-SOT, so we have the following theorem.

THEOREM 6.3. Assume T ∈ L(X) is hereditarily hypercyclic where X is a Banach

space with shrinking basis. Then
∞⊕
1

LT (and thus any
n⊕
1

LT : L(X)n → L(X)n) is ∗-

SOT-hypercyclic.

Further,
∞⊕
1

LT admits a ∗-SOT-hypercylic vector V = (Vi) ∈ L(X)N such that

{Vn : n ∈ N} is ∗-SOT-dense in L(X) and, accordingly, under the ∗-SOT LT supports
a dense nondegenerating hypercyclic vector manifold V ⊆ L(X).

In particular Theorem 6.3 applies when X is a separable Hilbert space, and
a weaker result for this setting was obtained in [29].
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Any ∗-SOT-hypercyclic vector V ∈ L(X) for LT must be both SOT and
DSOT-hypercyclic for LT . Thus, by Proposition 1.3, T ∈ L(X) is hereditarily
hypercyclic if and only if LT is ∗-SOT hypercyclic on L(X), when X is a Banach
space with shrinking basis.

With the hypothesis of Theorem 6.3 we know thus that, in Theorem 4.1, we
can take V as a ∗-SOT-hypercyclic vector for LT . In the same way, in Theorems 4.5
and 4.6 we can in fact take V and V to be a nondegenerating hypercyclic vector

manifold for LT and, respectively, a hypercyclic vector for
∞⊕
1

LT , with respect to

the ∗-SOT.

6.2. An interesting line of further investigation is to take into account results on
common hypercyclic vectors (see e.g. [1], [2], [3], [16]), in the context. Indeed,
consider for example a countable family {Tn ∈ L(X) : n ∈ N} of hereditar-
ily hypercyclic operators. From the proof of Theorem 3.1 we know that each
∞⊕
1

LTn : A0(X)N → A0(X)N (n ∈ N) is hypercyclic, and thus, see e.g. Proposition

8 in [16], these operators have a common hypercyclic vector V, which now forms

a common DSOT-hypercyclic vector for the operators
∞⊕
1

LTn : L(X)N → L(X)N,

n ∈ N. Accordingly, J ∗V is a topology such that every nonzero vector of X∗ is hy-
percyclic for every T∗n , n ∈ N, and so each T∗n lacks nontrivial J ∗V-closed invariant
subsets.

6.3. Any topology J ∗V , V ⊆ L(X), in Section 4, is in general coarser than the
norm topology on X∗ (see Remark 4.2). However, an interesting problem is how
such a topology J ∗V relates to the weak* topology σ(X∗, X) (and to the weak
topology σ(X∗, X∗∗)), where V is a suitable family of DSOT-hypercyclic vectors
for LT (operator families as in Theorems 4.1, 4.5 and 4.6 are, in the context, of spe-
cial interest). Assume

⋃
V∈V

Im V is total in X (this holds when V is DSOT-dense),

so that J ∗V is separated (Proposition 4.3). By Proposition 4.3 it then follows that
J ∗V is equal or finer than the weak* topology if and only if span

⋃
V

Im V∗∗ ⊇ X.

Thus, in particular, if Im V is dense then J ∗V > σ(X∗, X) if and only if Im V∗∗

contains X (⊆ X∗∗). This may happen even if V is not surjective. The following
problem is therefore relevant:

How/when can we find a DSOT-hypercyclic vector V ∈ L(X) for LT with Im V =
X and X ⊆ Im V∗∗?

Recall that V is weakly compact if and only if Im V∗∗⊆X, see Theorem 3.5.8
in [20] for a proof, and by the proof of Theorem 3.1 we can, under the hypoth-
esis there, find a DSOT-dense nondegenerating hypercyclic vector manifold V
of compact (hence weakly compact) operators. With the assumptions in Theo-
rem 3.1, there also exists a DSOT-dense hypercyclic vector V = V of (weakly)
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compact operators for
∞⊕
1

LT . For such families of operators we thus have that the

dual XV = span
⋃
V

Im V∗∗ of (X∗,J ∗V ) is contained in X.

In the same way we may ask how the topologiesJV ,JV ,JV, in Theorem 3.6,
relate to the weak topology σ(X, X∗). We know for example, from Proposition 5.1,

that if
∞⋃
1

Im V∗i is weak* total, then JV is equal or finer than σ(X, X∗) if and only

if span
∞⋃
1

Im V∗i = X∗. Here V = (Vi). This leads us to the problem:

How/when can we find an SOT-hypercyclic vector (Vi) for
∞⊕
1

RT so that the linear

hull of
∞⋃
1

Im V∗i is equal to X∗?

6.4. We have constructed topologies on Banach spaces X so that every nonzero
vector is hypercyclic for T ∈ L(X). We suggest a study on the following. Given
a suitable set M ⊆ X, how can we construct topologies so that every nonzero
element of M is hypercyclic for T? In particular, given an infinite dimensional
subspace M ⊆ X:

How/when can we define a topology on X so that M is a hypercyclic subspace for T?

We recall that a hypercyclic subspace for an operator is a closed infinite
dimensional subspace of, except for zero, hypercyclic vectors. Such subspaces
have been studied for example in [1], [8], [11], [21], [22], [23]. Note that we have
constructed topologies so that the full space X forms a hypercyclic subspace, but
this does not imply that any infinite dimensional subspace M ⊆ X is a hypercyclic
subspace for this topology.

6.5. We have pointed out that T (and T∗) may not be continuous for the topology
JV (respectively J ∗V ). We have thus questions like:

How/when can we find an SOT-hypercyclic vector (Vi) for
∞⊕
1

RT so that T is con-

tinuous for JV?

Note that if V is SOT-hypercyclic for RT , then so is any operator Vn = VTn.
It is evident that T is continuous for JV, where V = (Vn), but V cannot here be

an SOT-hypercyclic vector for
∞⊕
1

RT (see the proof of Proposition 2.4).

6.6. We have in this note introduced the concept nondegenerating hypercyclic vec-
tor manifold (Definition 2.3). We suggest a further study on this type of manifolds.
In particular, what can be said about closed nondegenerating hypercyclic vector
manifolds (see Subsection 6.4 above)?



TOPOLOGIES FOR WHICH EVERY NONZERO VECTOR IS HYPERCYCLIC 23

6.7. Based on the arguments in the proof of Theorem 3.1 in [8], some results in
this note remain presumably true if we replace X by a separable Fréchet space that
admits a continuous norm. The DSOT is here assumed to be taken with respect
to the strong topology on X∗, that is, the DSOT is generated by the seminorms

‖V‖B,x∗ := sup
x∈B
|〈x, V∗x∗〉| = sup

x∈B
|〈Vx, x∗〉|

where B ⊆ X is bounded and x∗ ∈ X∗. (Recall that Propositions 1.2 and 1.3
extend to separable Fréchet spaces with a continuous norm.)

Acknowledgements. I am grateful for the careful reading of the manuscript by the
referee, and his/her many useful comments.
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