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ABSTRACT. We present an abstract functional analytic formulation of the cel-
ebrated div-curl lemma found by F. Murat and L. Tartar. The viewpoint in
this note relies on sequences for operators in Hilbert spaces. Hence, we draw
the functional analytic relation of the div-curl lemma to differential forms
and other sequences such as the Grad grad-sequence discovered recently by
D. Pauly and W. Zulehner in connection with the biharmonic operator.
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1. INTRODUCTION

In the year 1978 a groundbreaking result in the theory of homogenisation
has been found by François Murat and Luc Tartar, the celebrated div-curl lemma
([11] or [19]).

THEOREM 1.1. Let Ω ⊆ Rd open, (un)n, (vn)n in L2(Ω)d weakly convergent.
Assume that

(div un)n =
( d

∑
j=1

∂jun

)
n
, (curl un)n = ((∂ju

(k)
n − ∂ku(j)

n )j,k)n

are relatively compact in H−1(Ω) and H−1(Ω)d×d, respectively.
Then (〈un, vn〉Cd)n converges in D′(Ω) and we have

lim
n→∞
〈un, vn〉Cd =

〈
lim

n→∞
un, lim

n→∞
vn

〉
Cd

.

Ever since people were trying to generalise the latter theorem in several di-
rections. For this we refer to [2], [6], [9] and [10], just to name a few. It has been
observed that the latter theorem has some relationship to the de Rham cohomol-
ogy, see [3], [19]. We shall also refer to [22], where the Helmholtz decomposition
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has been used for the proof of the div-curl lemma for the case of 3 space dimen-
sions. We will meet the abstract counterpart of the Helmholtz projection in our
abstract approach to the div-curl lemma. In any case, the sequence property of
the differential operators involved plays a crucial role in the derivation of the
div-curl lemma. Note that, however, there are results that try to weaken this
aspect, as well, see [5]. In this note, in operator-theoretic terms, we shall fur-
ther emphasise the intimate relation of the sequence property of operators from
vector analysis and the div-curl lemma. In particular, we will provide a purely
functional analytic proof of the div-curl lemma. More precisely, we relate the
so-called “global” form ([18]) of the div-curl lemma to functional analytic real-
isations of certain operators from vector analysis, that is, to compact sequences
of operators in Hilbert spaces. Moreover, having provided this perspective, we
will also obtain new variants of the div-curl lemma, where we apply our abstract
findings to the Pauly–Zulehner Grad grad-sequence, see [12] and [16]. With these
new results, we have paved the way to obtain homogenisation results for the bi-
harmonic operator with variable coefficients, which, however, will be postponed
to future research.

The next section contains the functional analytic prerequisites and our main
result itself — the operator-theoretic version of the div-curl lemma. The subse-
quent section is devoted to the proof of the div-curl lemma with the help of the
results obtained in Section 2. In the concluding section, we will apply the general
result to a sequence of operators obtained recently by [12].

2. AN ABSTRACT div-curl LEMMA

We start out with the definition of a (short) sequence of operators acting in
Hilbert spaces. Note that in other sources sequences are also called “complexes”.
We use the usual notation of domain, range, and kernel of a linear operator A,
that is, dom(A), ran(A), and ker(A). Occasionally, we will write dom(A) to
denote the domain of A endowed with the graph norm.

DEFINITION 2.1. Let Hj be Hilbert spaces, j ∈ {0, 1, 2}. Let A0 : dom(A0) ⊆
H0 → H1, and A1 : dom(A1) ⊆ H1 → H2 densely defined and closed. The pair
(A0, A1) is called a (short) sequence, if ran(A0) ⊆ ker(A1). We say that the se-
quence (A0, A1) is closed, if both ran(A0) ⊆ H1 and ran(A1) ⊆ H2 are closed. The
sequence (A0, A1) is called compact, if dom(A1) ∩ dom(A∗0) ↪→ H1 is compact.

We recall some well-known results for sequences of operators in Hilbert
spaces, we refer to [12] and the references therein for the respective proofs.

THEOREM 2.2. Let (A0, A1) be a sequence. Then the following statements hold:
(i) (A∗1 , A∗0) is a sequence;

(ii) (A0, A1) is closed if and only if (A∗1 , A∗0) is closed;
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(iii) (A0, A1) is compact if and only if (A∗1 , A∗0) is compact;
(iv) if (A0, A1) is compact, then (A0, A1) is closed;
(v) (A0, A1) is compact if and only if both dom(A0)∩ ker(A0)

⊥ ↪→ ker(A0)
⊥ and

dom(A∗1) ∩ ker(A∗1)
⊥ ↪→ ker(A∗1)

⊥ are compact and ker(A∗0) ∩ ker(A1) is finite-
dimensional.

Next, we need to introduce some notation.

DEFINITION 2.3. Let H0, H1 be Hilbert spaces, A : dom(A) ⊆ H0 → H1.
Then we define the canonical embeddings:

(i) ιran(A) : ran(A) ↪→ H1;
(ii) ιker(A) : ker(A) ↪→ H0;

(iii) πran(A) := ιran(A)ι
∗
ran(A);

(iv) πker(A) := ιker(A)ι
∗
ker(A).

If a densely defined closed linear operator has closed range, it is possible
to continuously invert this operator in an appropriate sense. For convenience
of the reader and since the operator to be defined in the next theorem plays an
important role in the following, we provide the results with the respective proofs.
Note that the results are known, as well, see for instance again [12].

THEOREM 2.4. Let H0, H1 Hilbert spaces, A : dom(A) ⊆ H0 → H1 densely
defined and closed. Assume that ran(A) ⊆ H1 is closed. Then the following statements
hold:

(i) B := ι∗ran(A)Aιran(A∗) is continuously invertible;
(ii) B∗ = ι∗ran(A∗)A∗ιran(A);

(iii) the operator Â∗ : H1 → dom(B)∗, φ 7→ (v 7→ 〈φ, Av〉H1) is continuous; and
B̂∗ := Â∗|ran(A) is an isomorphism that extends B∗.

Proof. We prove (i). Note that by the closed range theorem, we have that
ran(A∗) ⊆ H0 is closed. Moreover, since ker(A)⊥ = ran(A∗), we have that B
is injective and since ι∗ran(A) projects onto ran(A), we obtain that B is also onto.
Next, as A is closed, we infer that B is closed. Thus, B is continuously invertible
by the closed graph theorem.

For the proof of (ii), we observe that B∗ is continuously invertible, as well.
Moreover, it is easy to see that B∗ = A∗ on dom(A∗) ∩ ker(A∗)⊥, see also Lem-
ma 2.4 of [20]. Thus, the assertion follows.

In order to prove (iii), we note that Â∗ is continuous. Next, it is easy to see
that B̂∗ extends B∗. We show that B̂∗ is onto. For this, let ψ ∈ dom(B)∗. Then
there exists w ∈ dom(B) such that 〈w, v〉H0 + 〈Bw, Bv〉H1 = ψ(v) (v ∈ dom(B)).
Define φ := (B−1)∗w + Bw ∈ ran(A). Then we compute for all v ∈ dom(B)

(B̂∗φ)(v) = 〈φ, Bv〉H1 = 〈(B−1)∗w + Bw, Bv〉H1

= 〈w, B−1Bv〉H0 + 〈Bw, Bv〉H1 = ψ(v).
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Hence, B̂∗φ = ψ. We are left with showing that B̂∗ is injective. Let B̂∗φ = 0. Then,
for all v ∈ dom(B) we have

0 = 〈φ, Bv〉H1 .

Hence, φ ∈ dom(B∗) and B∗φ = 0. Thus, φ = 0, as B∗ is one-to-one. Hence, B̂∗ is
one-to-one.

REMARK 2.5. In the situation of the previous theorem, we remark here a
small pecularity in statement (iii): one could also define

Ã∗ : H1 → dom(A)∗, φ 7→ (v 7→ 〈φ, Av〉H1)

to obtain an extension of A∗. In the following, we will restrict our attention to the
consideration of Â∗. The reason for this is the following fact:

dom(A)∗ ⊇ ran(Ã∗) ∼= ran(Â∗) ⊆ dom(B)∗,

where the identification is given by

Â∗φ 7→ (Ã∗φ)|dom(B) (φ ∈ H1).

Indeed, let φ ∈ H1. Then

sup
v∈dom(A), ‖v‖dom(A)61

|(Ã∗φ)(v)| = sup
v∈dom(A), ‖v‖dom(A)61

|〈φ, Av〉H1 |

= sup
v∈dom(A)∩ker(A)⊥ , ‖v‖dom(A)61

|〈φ, Av〉H1 |

= sup
v∈dom(B), ‖v‖dom(B)61

|〈φ, Av〉H1 |

= sup
v∈dom(B), ‖v‖dom(B)61

|(Â∗φ)(v)|.

The latter remark justifies the formulation in the div-curl lemma, which we
state next.

THEOREM 2.6. Let (A0, A1) be a closed sequence. Let (un)n, (vn)n in H1 be
weakly convergent. Assume

(Â∗0un)n, (Â1vn)n

to be relatively compact in dom(A0)
∗ and dom(A∗1)

∗, respectively. Further, assume
that ker(A∗0) ∩ ker(A1) is finite dimensional. Then

lim
n→∞
〈un, vn〉H1 =

〈
lim

n→∞
un, lim

n→∞
vn

〉
H1

.

We emphasise that in this abstract version of the div-curl lemma no com-
pactness condition on the operators A0 and A1 is needed.

On the other hand, it is possible to formulate a statement of similar type
without the usage of (abstract) distribution spaces. For this, however, we have
to assume that (A0, A1) is a compact sequence. The author is indebted to Dirk
Pauly for a discussion on this theorem. It is noteworthy that the proof for both
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Theorem 2.6 and 2.7 follows a commonly known standard strategy to prove the
so-called “Maxwell compactness property”, see [1], [15], [21].

THEOREM 2.7. Let (A0, A1) be a compact sequence. Let (un)n, (vn)n be weakly
convergent sequences in dom(A∗0) and dom(A1), respectively. Then

lim
n→∞
〈un, vn〉H1 =

〈
lim

n→∞
un, lim

n→∞
vn

〉
H1

.

In order to prove Theorem 2.6 and 2.7 we formulate a corollary of Theo-
rem 2.4 first.

COROLLARY 2.8. Let H0, H1 be Hilbert spaces, A : dom(A) ⊆ H0 → H1
densely defined and closed. Assume that ran(A) ⊆ H1 is closed. Let B be as in Theorem
2.2. For (φn)n in H1 the following statements are equivalent:

(i) (Â∗φn)n is relatively compact in dom(B)∗;
(ii) (πran(A)φn)n is relatively compact in H1.

If (φn)n weakly converges to φ in H1, then either of the above conditions imply, in H1,

πran(A)φn → πran(A)φ.

Proof. From ran(A) = ker(A∗)⊥ and ker(Â∗) = ker(A∗), we deduce that
Â∗φ = Â∗πran(A)φ for all φ ∈ H1. Next, Â∗πran(A)φ = B̂∗ι∗ran(A)φ for all φ ∈ H1.

Thus, as B̂∗ is an isomorphism by Theorem 2.4, we obtain that (i) is equivalent to
(ι∗ran(A)φn)n being relatively compact in ran(A). The latter in turn is equivalent
to (ii), since (ι∗ran(A)φn)n being relatively compact is (trivially) equivalent to the
same property of (ιran(A)ι

∗
ran(A)φn)n = (πran(A)φn)n.

The last assertion follows from the fact that πran(A) is (weakly) continu-
ous. Indeed, weak convergence of (φn)n to φ implies weak convergence of the
sequence (πran(A)φn)n to πran(A)φ. This together with relative compactness im-
plies πran(A)φn → πran(A)φ with the help of a subsequence argument.

COROLLARY 2.9. Let H0, H1 be Hilbert spaces, A : dom(A) ⊆ H0 → H1

densely defined and closed. Assume dom(A) ∩ ker(A)⊥H0 ↪→ H0 compact. Let (φn)n
weakly converging to φ in dom(A∗). Then lim

n→∞
πran(A)φn = πran(A)φ in H1.

Proof. We note that, by a well-known contradiction argument, dom(A) ∩
ker(A)⊥H0 ↪→ H0 compact implies the Poincaré type inequality

∃ c > 0 ∀φ ∈ dom(A) ∩ ker(A)⊥ : ‖φ‖H0 6 c‖Aφ‖H1 .

The latter together with the closedness of A implies the closedness of ran(A) ⊆
H0. Thus, Theorem 2.4 is applicable. Let B as in Theorem 2.4.

We observe that the assertion is equivalent to lim
n→∞

ι∗ran(A)φn = ι∗ran(A)φ in

ran(A). We compute with the help Theorem 2.4 for n ∈ N

ι∗ran(A)φn = (B∗)−1B∗ι∗ran(A)φn = (B∗)−1ι∗ran(A∗)A∗ιran(A)ι
∗
ran(A)φn



100 MARCUS WAURICK

= (B∗)−1ι∗ran(A∗)A∗πran(A)φn = (B∗)−1ι∗ran(A∗)A∗φn.

By hypothesis, A∗φn ⇀ A∗φ in H0 and so ι∗ran(A∗)A∗φn ⇀ ι∗ran(A∗)A∗φ in ran(A∗)

as n → ∞ since ι∗ran(A∗) is (weakly) continuous. Next B−1 is compact by assump-

tion and thus so is (B∗)−1. Therefore (B∗)−1ι∗ran(A∗)A∗φn → (B∗)−1ι∗ran(A∗)A∗φ in

ιran(A). The assertion follows from (B∗)−1ι∗ran(A∗)A∗φ = ι∗ran(A)φ.

Proof of Theorem 2.6 and Theorem 2.7. By the sequence property, we deduce
that πran(A0)

6πker(A1)
and πran(A∗1)

6πker(A∗0)
. By Corollary 2.8 (Theorem 2.6) or

Corollary 2.9 (Theorem 2.7), we deduce that πran(A0)
un→πran(A0)

u and πran(A∗1)
vn

→ πran(A∗1)
v in H1. From ker(A1) ∩ ker(A∗0) being finite-dimensional (cf. Theo-

rem 2.2), we obtain

πker(A1)∩ker(A∗0)
un → πker(A1)∩ker(A∗0)

u

as πker(A1)∩ker(A∗0)
is compact. Thus, we obtain for n ∈ N

〈un, vn〉H1

= 〈(πran(A0)
+ πker(A∗0)∩ker(A1)

+ πker(A∗0)∩ran(A∗1)
)un, (πran(A∗1)

+ πker(A1)
)vn〉H1

= 〈un, πran(A∗1)
vn〉H1

+ 〈(πran(A0)
+ πker(A∗0)∩ker(A1)

+ πker(A∗0)∩ran(A∗1)
)un, πker(A1)

vn〉H1

= 〈un, πran(A∗1)
vn〉H1

+ 〈πran(A0)
un, πker(A1)

vn〉H1 + 〈πker(A∗0)∩ker(A1)
un, πker(A1)

vn〉H1

→
〈

lim
n→∞

un, lim
n→∞

vn

〉
H1

.

A closer look at the proof of our main result reveals the following converse
of Theorem 2.6.

THEOREM 2.10. Let (A0, A1) be a closed sequence. Assume that for all weakly
convergent sequences (un)n, (vn)n in dom(A∗0) and dom(A1), respectively, we obtain

lim
n→∞
〈un, vn〉H1 =

〈
lim

n→∞
un, lim

n→∞
vn

〉
H1

.

Then ker(A∗0) ∩ ker(A1) is finite-dimensional.

For the proof of the latter, we need the next proposition.

PROPOSITION 2.11. Let H be a Hilbert space. Then the following statements are
equivalent:

(i) H is infinite-dimensional;
(ii) there exists (un)n weakly convergent to 0 such that c := lim

n→∞
〈un, un〉 exists with

c 6= 0.
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Proof. Let H be infinite-dimensional. Without loss of generality, we may
assume that H = L2(0, 2π). Then un := sin(n·)→ 0 weakly as n→ ∞ and

2π∫
0

(sin(nx))2dx → 1
2π

2π∫
0

(sin(x))2dx > 0.

If H is finite-dimensional, then weak convergence and strong convergence coin-
cide, and the desired sequence cannot exist.

Proof of Theorem 2.10. Suppose that the space ker(A∗0) ∩ ker(A1) is infinite-
dimensional. Choose (un)n in ker(A∗0) ∩ ker(A1) as in Proposition 2.11. Then,
clearly, (un)n is weakly convergent in dom(A∗0) and dom(A1). Hence,

0 =
〈

lim
n→∞

un, lim
n→∞

un

〉
H1

= lim
n→∞
〈un, un〉H1 = c 6= 0.

We will need the next abstract results for the proof of the div-curl lemma in
the next section. Note that this is only needed for the formulation of the div-curl
lemma where the divergence and the curl operators are considered to map into
H−1. For this, we need some notation. Let A ∈ L(H0, H1). The dual operator
A′ ∈ L(H∗1 , H∗0 ) is given by

(A′φ)(ψ) := φ(Aψ).

We also define A� : H1 → H∗0 via A� := A′RH1 , where RH1 : H1 → H∗1 denotes
the Riesz isomorphism.

PROPOSITION 2.12. Let H0, H1, D Hilbert spaces, A : dom(A) ⊆ H0 → H1
densely defined and closed. Assume D ↪→ dom(A) continuously and ran(A|D) =

ran(A) ⊆ H1 closed. Define A : D → H1, φ 7→ Aφ. Then Â∗ = A�, that is, for every
v ∈ H1 we haveA�v can be uniquely extended to an element of dom(A)∗, the extension
is given by Â∗v, where Â∗ is given in Theorem 2.4.

Proof. Let v ∈ H1. Then for all φ ∈ D we have

(Â∗v)(φ) = 〈v, Aφ〉H1 = 〈v,Aφ〉H1 = RH1 v(Aφ) = (A′RH1 v)(φ) = (A�v)(φ).
Since A is continuous, it is densely defined and closed. We obtain that B :=
ι∗ran(A)Aιran(A∗) is a Hilbert space isomorphism from D ∩ ker(A)⊥D to ran(A) =
ran(A), by Theorem 2.4. Note that AB−1 = idran(A) = idran(A). For ψ ∈ dom(A)
and v ∈ H1, we define

(A�v)e(ψ) := (A�v)(B−1 Aψ).

Next, if ψ ∈ dom(A), then with the above computations, we obtain

(A�v)e(ψ) = (A�v)(B−1 Aψ) = 〈v,AB−1 Aψ〉H1 = 〈v, Aψ〉H1 = (Â∗v)(ψ).

Thus, (A�v)e indeed extends A�v and coincides with Â∗v. We infer also the
continuity property for A�v. The uniqueness property follows from ran(A) =
ran(A).
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From Proposition 2.12 it follows that ran(Â∗) = ran(A�). This is the actual
fact used in the following lemma.

LEMMA 2.13 ([12], Lemma 2.14). Let H0, H1, H2 be Hilbert spaces and let A ∈
L(H1, H2) be onto. Then ran(A�) ⊆ H∗1 is closed and (A�)−1 ∈ L(ran(A�), H2).

Proof. By the Riesz representation theorem A� and A′ are unitarily equiva-
lent. Thus, it suffices to prove the assertions for A′ instead of A�. By the closed
range theorem, ran(A′) is closed, since ran(A) = H2 is. Next, A is onto, hence
A′ ∈ L(H∗2 , H∗1 ) is one-to-one, and, thus, by the closed graph theorem, we obtain
that (A′)−1 maps continuously from ran(A′) into H∗2 .

COROLLARY 2.14. Let H0, H1 be Hilbert spaces, A : dom(A) ⊆ H0 → H1
densely defined and closed, C : dom(C) ⊆ H0 → H1 densely defined, closed. Assume
that ran(A) ⊆ H1 is closed, dom(C) ↪→ dom(A) continuous.

If

(2.1) ran(A) = {Aφ; φ ∈ dom(C)},

then ran(Â∗) = dom(B)∗ ⊆ dom(C)∗ is closed, where B is given in Theorem 2.4.

Proof. Since dom(C) ↪→ dom(A) continuously, we obtain that

A : dom(C)→ ran(A) = ran(B), φ 7→ Aφ

is continuous. Moreover, by (2.1), we infer thatA is onto. Hence, by Lemma 2.13,
we obtain that ran(A�) ⊆ dom(C)∗ is closed. Thus, we are left with showing that
ran(A�) = dom(B)∗. By Proposition 2.12, we realise that ran(A�) = ran(Â∗) =
ran(B̂∗). By Theorem 2.4, we get that B̂∗ maps onto dom(B)∗.

REMARK 2.15. Corollary 2.14 particularly applies to A = C.

3. THE CLASSICAL div-curl LEMMA

Before we formulate Theorem 3.3, the classical div-curl lemma, we need to
introduce some differential operators from vector calculus.

DEFINITION 3.1. Let Ω ⊆ Rd open. We define:

gradc : C∞
c (Ω) ⊆ L2(Ω)→ L2(Ω)d, φ 7→ (∂jφj)j∈{1,...,d};

divc : C∞
c (Ω) ⊆ L2(Ω)d → L2(Ω), (φj)j∈{1,...,d} 7→

d

∑
j=1

∂jφj;

Gradc : C∞
c (Ω)d ⊆ L2(Ω)d → L2(Ω)d×d, (φj)j∈{1,...,d} 7→ (∂kφj)j,k∈{1,...,d};

Divc : C∞
c (Ω)d×d⊆L2(Ω)d×d→L2(Ω)d, (φj,k)j,k∈{1,...,d} 7→

( d

∑
k=1

∂kφj,k

)
j∈{1,...,d}

;
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Curlc : C∞
c (Ω)d ⊆ L2(Ω)d → L2(Ω)d×d, (φj)j∈{1,...,d} 7→ (∂kφj − ∂jφk)j,k∈{1,...,d}

= Grad φ− (Grad φ)T.

Moreover, we set ˚grad := gradc and, similarly, ˚div, D̊iv, ˚Curl, ˚Grad. Furthermore,
we put div := − ˚grad

∗
, Div := − ˚Grad

∗
, grad := − ˚div

∗
, Grad := − D̊iv

∗
and

Curl := (2 D̊iv skew)∗, where skew A := 1
2 (A− AT) denotes the skew symmetric

part of a matrix A.

REMARK 3.2. It is an elementary computation to establish that the operators
just introduced with ˚ are restrictions of the ones without.

As usual, we define, H−1(Ω) := dom( ˚grad)∗. We may now formulate the
classical div-curl lemma. We slightly rephrase the lemma, though.

THEOREM 3.3 (div-curl lemma — global version). Let (un)n, (vn)n be weakly
convergent sequences in L2(B(0, 1))d, with⋃

n∈N
(spt un ∪ spt vn) ⊆ B(0, δ) = {x ∈ Rd; ‖x‖ 6 δ}

for some δ < 1. Assume
(div un)n, (Curl un)n

are relatively compact in H−1(B(0, 1)) and H−1(B(0, 1))d×d, respectively. Then

lim
n→∞
〈un, vn〉L2 =

〈
lim

n→∞
un, lim

n→∞
vn

〉
L2

.

We recall here that in [18], Theorem 3.3 is called “global div-curl lemma”.
We provide the connection to the classical, the “local” version of it, in the follow-
ing remark.

REMARK 3.4 (div-curl lemma — local version). We observe that the asser-
tions in Theorem 1.1 and in Theorem 3.3 are equivalent. For this, observe that
Theorem 1.1 implies Theorem 3.3. Indeed, for Ω = B(0, 1), the assumptions of
Theorem 3.3 imply the same of Theorem 1.1. Moreover, let φ ∈ C∞

c (B(0, 1)) be
such that φ = 1 on the compact set

⋃
n∈N

(spt un ∪ spt vn). Then, by Theorem 1.1

and putting u := lim
n→∞

un and v := lim
n→∞

vn, we obtain

〈un, vn〉L2 =
∫
Ω

φ〈un, vn〉 →
∫
Ω

φ〈u, v〉 = 〈u, v〉.

On the other hand, let the assumptions of Theorem 1.1 be satisfied. With the help
of Theorem 3.3, we have to prove that for all φ ∈ C∞

c (Ω) we get

(3.1)
∫
Ω

φ〈un, vn〉 →
∫
Ω

φ〈u, v〉.

To do so, we let ψ ∈ C∞
c (Ω) be such that ψ = 1 on spt φ. Then there exists

R > 0 such that spt ψ ⊆ B(0, R). By rescaling the arguments, the statement in
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(3.1) follows from Theorem 3.3, once we proved that

(div(ψun))n = (ψ div(un) + grad(ψ)un)n and

(Curl(ψvn))n = (2 skew((grad ψ)vT
n) + ψ Curl vn)n

are relatively compact in H−1(B(0, R + 1)) and H−1(B(0, R + 1))d×d. This, how-
ever, follows from the hypothesis and the compactness of the embedding

L2(B(0, 1)) ↪→ H−1(B(0, 1)),

which in turn follows from Rellich’s selection theorem.

The rest of this section is devoted to prove Theorem 3.3 by means of Theo-
rem 2.6. We will apply Theorem 2.6 to the following setting:

H0 = L2(B(0, 1)), H1 = L2(B(0, 1))d, A0 := ˚grad, A1 := ˚Curl .(3.2)

PROPOSITION 3.5. With the setting in (3.2), (A0, A1) is a sequence.

Proof. By Schwarz’s lemma, it follows for all φ ∈ C∞
c (B(0, 1)) that

˚Curl ˚grad φ = ˚Curl(∂jφ)j∈{1,...,d} = (∂k∂jφ− ∂j∂kφ)j,k∈{1,...,d} = 0.

Thus, ˚Curl ˚grad ⊆ 0.

Next, we address the compactness property.

THEOREM 3.6. With the setting in (3.2), (A0, A1) is compact.

For the proof of Theorem 3.6, we could use compactness embedding theo-
rems such as Weck’s selection theorem ([21]) or Picard’s selection theorem ([15]).
However, due to the simple geometric setting discussed here, it suffices to walk
along the classical path of showing compactness by proving Gaffney’s inequal-
ity and then using Rellich’s selection theorem. We emphasise, however, that
meanwhile there have been developed sophisticated tools detouring Gaffney’s
inequality, to obtain compactness results for very irregular Ω, which do not sat-
isfy Gaffney’s inequality. For convenience of the reader, we shall provide a proof
of Theorem 3.6 using the following regularity result for the Laplace operator, see
Theorems 10 and 14 of [8] or since we use the respective result for a d-dimensional
ball, only, see inequality (3,1,1,2) of [7]. For this, we denote the Dirichlet–Laplace
operator by ∆ := div ˚grad.

THEOREM 3.7. Let Ω ⊆ Rd open, bounded and convex. Then for all u ∈ dom(∆),
we have u ∈ dom(Grad ˚grad) and

‖Grad ˚grad u‖L2(Ω)d×d 6 ‖∆u‖L2(Ω).

Based on the latter estimate, we shall prove Friedrich’s inequality. For the
proof of which, we will follow the exposition of [17]. Since the exposition in
[17] is restricted to 2 or 3 spatial dimensions, only, we provide a proof for the
“multi-d”-case in the following theorem.
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THEOREM 3.8 ([17], Theorem 2.2). Let Ω ⊆ Rd be open, bounded, convex. Then
dom( ˚Curl) ∩ dom(div) ↪→ dom(Grad). Moreover, we have

‖Grad u‖2
L2(Ω)d 6

1
2
‖ ˚Curl u‖2

L2(Ω)d×d + ‖div u‖2
L2(Ω)

for all u ∈ dom( ˚Curl) ∩ dom(div).

LEMMA 3.9 ([17], Lemma 2.1). Let Ω ⊆ Rd be open, bounded. Denote

V := {φ; ∃ψ ∈ C∞
c (Ω)d : φ = ψ + ˚grad(−∆+ 1)−1 div ψ}.

Then V is dense in dom( ˚Curl) ∩ dom(div).

Proof. First of all note that V ⊆ X := dom( ˚Curl) ∩ dom(div). Indeed, for
φ = ψ + ˚grad(−∆+ 1)−1 div ψ for some ψ ∈ C∞

c (Ω), we get ˚Curl φ = ˚Curl ψ ∈
L2(Ω)d×d, by Proposition 3.5. Moreover, div φ = (−∆ + 1)−1 div ψ ∈ L2(Ω).
Thus, V ⊆ X. Next, we show the density property. For this, we endow X with
the scalar product

〈u, v〉X := 〈 ˚Curl u, ˚Curl v〉+ 〈div u, div v〉+ 〈u, v〉.
Let u ∈ V⊥X ⊆ X. We need to show that u = 0. For all ψ ∈ C∞

c (Ω) and
w := (−∆+ 1)−1 div ψ we have

0 = 〈u, ψ + ˚grad w〉X
= 〈 ˚Curl u, ˚Curl ψ〉+ 〈div u, div ψ〉+ 〈div u, div ˚grad w〉+ 〈u, ψ〉+ 〈u, ˚grad w〉

= 〈 ˚Curl u, ˚Curl ψ〉+ 〈div u, div ψ〉+ 〈div u, ∆w〉+ 〈u, ψ〉 − 〈div u, w〉

= 〈 ˚Curl u, ˚Curl ψ〉+ 〈u, ψ〉.

Thus, ( ˚Curl
∗ ˚Curl+1)u = 0, which yields u = 0.

Before we come to the proof of Theorem 3.8, we mention an elementary
formula to be used in the forthcoming proof: for all ψ ∈ C∞

c (Ω)d we have

−∆Id×dψ = −Div Grad ψ = −Div Curl ψ− grad div ψ.

Proof of Theorem 3.8. By Lemma 3.9 it suffices to show the inequality for u ∈
V. For this, let ψ ∈ C∞

c (Ω)d and put u := ψ + ˚grad w with w := (−∆+ 1)−1 div ψ.
We compute

‖Grad u‖2 = ‖Grad(ψ + ˚grad w)‖2

= 〈Grad ψ, Grad ψ〉+ 2<〈Grad ψ, Grad ˚grad w〉+ ‖Grad ˚grad w‖2.

We aim to discuss every term in the latter expression separately. We have

〈Grad ψ, Grad ψ〉 = −〈Div Grad ψ, ψ〉 = −〈Div Curl ψ, ψ〉 − 〈grad div ψ, ψ〉
= −〈Div skew Curl ψ, ψ〉+ 〈div ψ, div ψ〉

=
1
2
〈Curl ψ, Curl ψ〉+ 〈div ψ, div ψ〉.
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Next,

〈Grad ψ, Grad ˚grad w〉 = −〈Div Grad ψ, ˚grad w〉

= −〈Div Curl ψ, ˚grad w〉 − 〈grad div ψ, ˚grad w〉

= 〈div Div Curl ψ, w〉 − 〈grad div ψ, ˚grad w〉

= −〈grad div ψ, ˚grad w〉.

By Theorem 3.7, we estimate

‖Grad ˚grad w‖2 6 ‖∆w‖2 = ‖w− div ψ‖2 = ‖w‖2 − 2<〈w, div ψ〉+ ‖div ψ‖2.

Note that since div ψ ∈ C∞
c (Ω), we obtain from w = (−∆+ 1)−1 div ψ that

〈 ˚grad w, ˚grad div ψ〉+ 〈w, div ψ〉 = 〈div ψ, div ψ〉.

Thus, all together,

‖Grad u‖2

6
1
2
〈Curl ψ, Curl ψ〉+ 〈div ψ, div ψ〉 − 2<〈grad div ψ, ˚grad w〉

+ ‖w‖2 − 2<〈w, div ψ〉+ ‖div ψ‖2

=
1
2
〈Curl ψ, Curl ψ〉+ 〈div ψ, div ψ〉

+ 2<〈w, div ψ〉 − 2〈div ψ, div ψ〉+ ‖w‖2 − 2<〈w, div ψ〉+ ‖div ψ‖2

=
1
2
〈Curl ψ, Curl ψ〉+ ‖w‖2 =

1
2
‖Curl u‖2 + ‖div u‖2.

Proof of Theorem 3.6. By Theorem 3.8 as B(0, 1) is convex, we obtain that

dom(A1) ∩ dom(A∗0) = dom( ˚Curl) ∩ dom(div) ↪→ dom(Grad).

On the other hand dom(Grad) ↪→ L2(B(0, 1))d is compact by Rellich’s selection
theorem. This yields the assertion.

LEMMA 3.10. Assume the setting in (3.2). Then ker(div) ∩ ker( ˚Curl) = {0}.
The assertion follows from the connectedness of B(0, 1). See e.g. [4], [14].
For the next proposition, we closely follow a rationale given by Pauly and

Zulehner, see [13]. We also refer to [1] for a similar argument.

PROPOSITION 3.11. Assume the setting in (3.2). Then ran( ̂̊Curl) ⊆ H−1(Ω)d×d

is closed.

Proof. In this proof, we need to consider the differential operators on vari-
ous domains. To clarify this in the notation, we attach the underlying domain as
an index to the differential operators in question, that is, grad = gradΩ and when
the domains are considered we write dom(grad) = dom(grad, Ω) and similarly
for ran and ker. We apply Corollary 2.14 to A = ˚CurlB(0,1), C = ˚GradB(0,1). Note
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that ran(A) is closed by Theorem 3.6 and Theorem 2.2. Thus, we are left with
showing that

ran( ˚Curl, B(0, 1)) = { ˚CurlB(0,1) φ; φ ∈ dom( ˚Grad, B(0, 1))}.

From Proposition 3.5 and by Theorem 3.8, we infer

ran( ˚CurlB(0,1)) = { ˚CurlB(0,1) φ; φ ∈ ker(div, B(0, 1)) ∩ dom( ˚Curl, B(0, 1))}

= { ˚CurlB(0,1) φ; φ ∈ dom(Grad, B(0, 1)) ∩ dom( ˚Curl, B(0, 1))}.

So, let ψ = CurlB(0,1) φ for some φ ∈ dom( ˚Curl, B(0, 1)) ∩ dom(Grad, B(0, 1)).
Extend φ and ψ by zero to B(0, 2), we call the extensions φe and ψe. Note that φe ∈
dom( ˚Curl, B(0, 2)) and ˚CurlB(0,2) φe = ψe. By the above applied to Ω = B(0, 2),
we find φr ∈ dom( ˚Curl, B(0, 2)) ∩ dom(Grad, B(0, 2)) such that ˚CurlB(0,2) φr =

˚CurlB(0,2) φe = ψe. Thus,

φr − φe ∈ ker( ˚Curl, B(0, 2)) = ran( ˚grad, B(0, 2)),

by Lemma 3.10. Thus, we find u ∈ dom( ˚grad, B(0, 2)) with ˚gradB(0,2) u = φr−φe.

On B(0, 2) \ B(0, 1) we have

0 = φe = φr − gradB(0,2)\B(0,1)u.

Therefore, gradB(0,2)\B(0,1)u = φr on B(0, 2) \ B(0, 1). Hence,

u ∈ dom(Grad grad, B(0, 2) \ B(0, 1)) = H2(B(0, 2) \ B(0, 1)).

By Calderon’s extension theorem, there exists

ue ∈ dom(Grad grad, B(0, 2)) = H2(B(0, 2)) with ue = u on B(0, 2) \ B(0, 1).

Next, we observe that φr,0 := φr − gradB(0,2) ue ∈ dom(Grad, B(0, 2)) as well as
u− ue ∈ dom(grad, B(0, 2)) and

φr = φr,0 − gradB(0,2)(u− ue).

Moreover, on B(0, 2) \ B(0, 1), we have φr,0 = 0 as well as u − ue = 0. Thus,
φr,0 ∈ dom( ˚Grad, B(0, 1)) and u− ue ∈ dom( ˚grad, B(0, 1)). Thus,

ψ = CurlB(0,1) φ = CurlB(0,1) φr

= CurlB(0,1)(φr,0 − ˚gradB(0,1)(u− ue)) = ˚CurlB(0,1) φr,0.

Therefore,

ran( ˚Curl, B(0, 1)) = { ˚CurlB(0,1) φ; φ ∈ dom( ˚Grad, B(0, 1)) ∩ dom( ˚Curl, B(0, 1))}

= { ˚CurlB(0,1) φ; φ ∈ dom( ˚Grad, B(0, 1))}.

LEMMA 3.12. Let Ω ⊆ Rd be open, bounded, φ ∈ L2(Ω)d with spt φ ⊆ Ω. Then

dom(D̊iv skew)∗ 3 Curl φ = ˚Curl φ ∈ dom(Div skew)∗.
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Proof. We have dom(Div skew)∗ ↪→ dom(D̊iv skew)∗. Let η ∈ C∞
c (Ω) with

the property η = 1 on spt φ. Then for all ψ ∈ dom(Div skew) we have ηψ ∈
dom(D̊iv skew) and so,

〈 ˚Curl φ, ψ〉 = 〈φ, 2 Div skew ψ〉 = 〈φ, 2 Div skew ηψ〉 = 〈φ, 2 D̊iv skew ηψ〉
= 〈Curl φ, ηψ〉.

Thus, there is κ > 0 such that for all ψ ∈ dom(Div skew)

|( ˚Curl φ)(ψ)| = |(Curl(φ)(ψ))| = |(Curl(φ)(ηψ))| 6 κ‖ψ‖dom(Div skew).

This yields the assertion.

Finally, we can prove the div-curl lemma with operator-theoretic methods.
We shall also formulate a simpler version of the div-curl lemma, which needs
less technical preparations. In fact, the simpler version only uses Theorem 2.7
and Theorem 3.6.

Proof of Theorem 3.3. We apply Theorem 2.6 with the setting in (3.2). For this,

by Lemma 3.12, we note that Curl vn = ˚Curl vn = ̂̊Curl vn. With Theorem 2.6 at

hand, we need to establish that ( ̂̊Curl vn)n is relatively compact in dom( ˚Curl
∗
)∗.

By Corollary 2.14 applied to C = A = ˚Curl
∗
, the latter is the same as show-

ing that ( ̂̊Curl vn)n is relatively compact in ran( ̂̊Curl). On the other hand, by

Proposition 3.11, ran( ̂̊Curl) is closed in H−1(Ω)d×d. Thus, since ( ̂̊Curl vn)n is rel-

atively compact in H−1(Ω)d×d, we get that ( ̂̊Curlvn)n is relatively compact in
dom( ˚Curl

∗
)∗. This yields the assertion.

Theorem 2.7 with the setting in (3.2) reads as follows. Note that the assertion
follows from Theorem 3.6.

THEOREM 3.13. Let (un)n in dom(div) and (vn)n in dom( ˚Curl) be weakly
convergent sequences. Then

lim
n→∞
〈un, vn〉L2(Ω)d =

〈
lim

n→∞
un, lim

n→∞
vn

〉
L2(Ω)d

.

It is well-known that the sequence property and the compactness of the se-
quence is true also for submanifolds of Rd and the covariant derivative on tensor
fields of appropriate dimension and its adjoint. We conclude this exposition with
a less known sequence, the Pauly–Zulehner Grad grad-complex, see [12].

4. AN EXAMPLE — THE PAULY–ZULEHNER-Grad grad-COMPLEX

In the whole section, we let Ω ⊆ R3 to be a bounded Lipschitz domain. We
will denote by curl the usual 3-dimensional curl operator that maps vector fields
to vector fields. Some definitions are in order.
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DEFINITION 4.1. We define
◦

gradr grad : H̊2(Ω) ⊆ L2(Ω)→ L2
sym(Ω), φ 7→ gradr grad φ;

˚curlr,sym : dom( ˚curlr) ∩ L2
sym(Ω) ⊆ L2

sym(Ω)→ L2
dev(Ω), φ 7→ ˚curlr φ;

˚divr,dev : dom( ˚divr) ∩ L2
dev(Ω) ⊆ L2

sym(Ω)→ L2(Ω)d, φ 7→ Div φ;

div divr,sym : dom(div Divsym) ⊆ L2
sym(Ω)→ L2(Ω), φ 7→ div Div φ;

sym curlr,dev : dom(curlr) ∩ L2
dev(Ω) ⊆ L2

dev(Ω)→ L2
sym(Ω), φ 7→ sym curlr φ;

dev gradr : H1(Ω)3 ⊆ L2(Ω)3 → L2
dev(Ω), φ 7→ dev gradr φ.

The subscript “r” refers to row-wise application of the vector-analytic operators,
where it is attached. Moreover, as before, we have attached a “˚” above the dif-
ferential operators in question, if we consider the completion of smooth tensor
fields with compact support with appropriate norm. The operators dev and sym
are the projections on the deviatoric and symmetric parts of 3× 3-matrices, that is,
for a matrix A ∈ C3×3, we put

dev A := A− 1
3

tr(A)I3×3, sym A =
1
2
(A + AT).

Moreover, we define

L2
dev(Ω) := dev[L2(Ω)3×3] and L2

sym(Ω) := sym[L2(Ω)3×3].

Next, we gather some of the main results of Pauly–Zulehner.

THEOREM 4.2 ([12], Lemma 3.5, Remark 3.8, and Lemma 3.21). The pairs

(

◦

gradr grad, ˚curlr,sym), ( ˚curlr,sym, ˚divr,dev),

(−dev gradr, sym curlr,dev), (sym curlr,dev, div divr,sym)

are compact sequences. Moreover, we have
◦

gradr grad
∗

= div divr,sym, ˚curl
∗
r,sym =

sym curlr,dev, ˚div
∗
r,dev = −dev gradr.

We have now several theorems being consequences of our general observa-
tion in Theorem 2.6. We will formulate the versions for Theorem 2.6 only. The
analogues to Theorem 2.7 are straightforwardly written down, which we will
omit here.

THEOREM 4.3. (i) Let (un)n, (vn)n be weakly convergent in L2
sym(Ω). Assume

that

(div divr,sym un)n, ( ˚curlr,sym vn)n
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are relatively compact in dom(

◦

gradr grad)∗ and dom(sym curlr)∗. Then

lim
n→∞
〈un, vn〉 =

〈
lim

n→∞
un, lim

n→∞
vn

〉
.

(ii) Let (un)n, (vn)n be weakly convergent sequences in L2
dev(Ω). Assume that

(sym curlr,dev un)n, ( ˚divr,dev vn)n

are relatively compact in dom( ˚curlr,sym)∗ and dom(dev gradr)
∗. Then

lim
n→∞
〈un, vn〉 =

〈
lim

n→∞
un, lim

n→∞
vn

〉
.
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