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ABSTRACT. We establish a Taylor asymptotic expansion of the spectral ac-
tion functional on self-adjoint operators V 7→ τ( f (H + V)) with remainder
O(‖ f (n)‖∞‖V‖n) and derive an explicit representation for the remainder in
terms of spectral shift functions. For this expansion we assume only that H
has τ-compact resolvent and V is a bounded perturbation; in particular, nei-
ther summability of V nor of the resolvent of H is required.
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1. INTRODUCTION

LetM be a semifinite von Neumann algebra acting on a separable Hilbert
space H and let τ be a normal faithful semifinite trace on M. Let H be a self-
adjoint operator affiliated with M and assume its resolvent is τ-compact. Ex-
amples of such operators include differential operators on compact Riemannian
manifolds (see, e.g., Chapter 3, Section B of [2], Chapter 3, Section 6 of [8]). For f
a sufficiently smooth compactly supported function and V a self-adjoint element
inM, we consider a spectral action functional V 7→ τ( f (H + V)) that was intro-
duced in [3] to encompass different field actions in noncommutative geometry.
Applications of the spectral action functional and its expansions can be found in,
e.g., [5], [7], [13]; its conceptual advantages over particular quantum field actions
are discussed in [4]. We establish an alternative, Taylor asymptotic expansion of
the spectral action functional with an accurate estimate and description of the
remainder.

We prove the asymptotic expansion

τ( f (H + V)) =
n−1

∑
k=0

1
k!

τ
( dk

dsk f (H + sV)|s=0

)
+O(‖ f (n)‖∞ ‖V‖n),(1.1)
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for n ∈ N, f ∈ Cn+1
c (R), and derive an explicit upper bound forO(‖ f (n)‖∞ ‖V‖n)

in Theorem 4.1. This result is a counterpart of the estimateO(‖ f (n)‖∞ ‖V‖n
n) with

nth Schatten norm of V that was established in Theorem 2.1 of [9] in the case of
noncompact resolvents. The form of the approximating term in (1.1) improves the
previously derived one in the case of a noncompact resolvent. In Theorem 4.3, we
derive an explicit integral representation for the remainder of the above approx-
imation, which is analogous to the representation obtained in Theorem 1.1 of [9]
via spectral shift functions. The result of Theorem 4.3 for H having a compact
resolvent was previously known only in the case n=2 (see Theorem 3.10 of [10]).

The asymptotic expansion (1.1) provides a significant improvement of the
dependence on f in the bound for a remainder obtained in [10]. Namely, when
M is the algebra B(H) of bounded linear operators on H and τ is the canonical
trace Tr on the trace class ideal, it was proved in Theorem 3.2 and Remark 3.3 of
[10] that

Tr( f (H + V)) =
n−1

∑
k=0

1
k!

Tr
( dk

dsk f (H + sV)|s=0

)
+O f (‖V‖n),(1.2)

where, in the case f > 0 and f 2−1−blog2(n)c ∈ Cn+1
c (R),

O f (‖V‖n) = O
(

max
16m61+blog2(n)c

‖ 2m√
f ‖∞ max

06m61+blog2(n)c
16p6n

{1, ‖ 2m√
f ‖n

Gp
} ‖V‖n

)

and

‖g‖Gp =

√
2

p!
(‖g(p)‖2 + ‖g(p+1)‖2).(1.3)

We note that an asymptotic expansion of Tr( f (H + V)) without an estimate for
the remainder was derived in Theorem 18 and Corollary 19 of [12] under the
additional summability assumption Tr(e−tH2

) < ∞, with t > 0, for V satisfying
‖δ(V)‖ < ∞, ‖δ2(V)‖ < ∞, where δ(·) = [|H|, ·], and f a sufficiently nice even
function.

The structure of the paper is as follows: preliminaries are collected in Sec-
tion 2, our main technical estimate is established in Section 3, the asymptotic
expansion is proved in Section 4.

Throughout the paper, Cn
c (R) denotes the space of n times continuously dif-

ferentiable compactly supported functions and Cn
c ((a, b)) the subset of functions

in Cn
c (R) whose closed supports are subsets of the finite interval (a, b). We use

the notation AηM for an operator A affiliated with M, Msa for the subset of
self-adjoint elements ofM, and HηMsa for a closed densely defined self-adjoint
operator H affiliated with M. The symbol EH denotes the spectral measure of
HηMsa.
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2. PRELIMINARIES

Let µt(A) denote the tth generalized s-number ([6], Definition 2.1) of a τ-
measurable ([6], Definition 1.2) operator AηM. An operator A ∈ M is said to
be τ-compact if and only if lim

t→∞
µt(A) = 0. We will work with operators whose

resolvents are τ-compact. Note that if the resolvent of an operator is τ-compact
at one point, then it is τ-compact at all points of its domain.

PROPOSITION 2.1 ([1], Lemma 1.3). If HηMsa has τ-compact resolvent and
W ∈ Msa, then H + W also has τ-compact resolvent.

The next result follows from combining Lemmas 1.4 and 1.7 of [1].

PROPOSITION 2.2. Let HηMsa have τ-compact resolvent and let V ∈ Msa.
Then, for all a, b ∈ R, a < b, the projection EH+W((a, b)) is τ-finite and there exists a
constant Ωa,b,H,V such that

sup
t∈[0,1]

τ(EH+tV((a, b))) 6 Ωa,b,H,V(2.1)

and

µΩa,b,H,V ((1 + H2)−1) 6
1

(1 + max{a2, b2})(1 + ‖V‖+ ‖V‖2)
.

Let Lp, 1 6 p < ∞, denote the noncommutative Lp-space associated with
(M, τ), that is,

Lp = {AηM : ‖A‖p := (τ(|A|p))1/p < ∞}.

Let ‖ · ‖∞ denote the operator norm and let L∞ denote the algebraM.

PROPOSITION 2.3. Let HηMsa have τ-compact resolvent and let f ∈ Cc((a, b)).
Then, f (H) ∈ Lp, for every p ∈ N, and

‖ f (H)‖1 6 τ(EH((a, b))) ‖ f ‖∞.(2.2)

Proof. It follows from the spectral theorem that | f (H)| 6 ‖ f ‖∞ EH((a, b)).
Hence, f (H) ∈ Lp for every p ∈ N. Applying Proposition 2.2 completes the
proof.

Below we work with multilinear transformations whose symbols are di-
vided differences of smooth functions. Recall that the divided difference of or-
der p is an operation on functions f of one real variable defined recursively as
follows:

f [0](λ0) := f (λ0),

f [p](λ0, . . . , λp) :=


f [p−1](λ0,...,λp−2,λp−1)− f [p−1](λ0,...,λp−2,λp)

λp−1−λp
if λp−1 6= λp,

∂
∂t (λ0, . . . , λp−2, t) f [p−1]|t=λp−1 if λp−1 = λp.
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DEFINITION 2.4. Let HηMsa, n ∈ N, Wk ∈ Lαk , αk ∈ [1, ∞], k = 1, . . . , n.
Then, for f ∈ Cn+1

c (R),

TH,...,H
f [n]

(W1, . . . , Wn)

:= lim
m→∞

lim
N→∞

∑
|l0|,...,|ln |6N

f [n]
( l0

m
,

l1
m

, . . . ,
ln
m

)
EH,l0,mW1EH,l1,mW2 · · ·WnEH,ln ,m,(2.3)

where the limits are evaluated in the Lα-norm, 1
α = 1

α1
+ · · ·+ 1

αn
, and EH,lk ,m =

EH

([
lk
m , lk+1

m

))
, for k = 0, . . . , n. Existence of the limits in (2.3) is justified in

Lemma 3.5 of [9]. We call the multilinear transformation TH,...,H
f [n]

defined in (2.3)

a multiple operator integral and write Tf [n] when there is no ambiguity which
element H is used.

As a consequence of Theorem 2.8 in [10] adjusted to the context of a semifi-
nite von Neumann algebra, we have the following result.

PROPOSITION 2.5. Let HηMsa, n ∈ N, n > 2, Vk ∈ Lαk , αk ∈ [1, ∞], k =
1, . . . , n. Let α ∈ [1, ∞] be such that 1

α1
+ · · ·+ 1

αn
= 1

α . Then, for f ∈ Cn+1
c ((a, b)),

‖Tf [n](V1, . . . , Vn)‖α6‖ f ‖Gn

n

∏
k=1
‖Vk‖αk 6

√
2

n!
(b−a+1)3/2‖ f (n+1)‖∞

n

∏
k=1
‖Vk‖αk .

When all entries in (V1, . . . , Vn) belong to Lα, with n < α < ∞, the estimate
in Proposition 2.5 can be substantially improved. The following estimate is a
consequence of Theorem 5.3 in [9]. The case n = 1 is well known; it can be found
in, e.g., Theorem 2.9 of [10].

PROPOSITION 2.6. Let HηMsa, n ∈ N, Wk ∈ L2n, k = 1, . . . , n. Then, there
exists cn > 0, c1 = 1, such that

‖Tf [n](W1, . . . , Wn)‖2 6 cn ‖ f (n)‖∞

n

∏
k=1
‖Wk‖2n,(2.4)

for f ∈ Cn+1
c (R).

We need the following algebraic properties of a multiple operator integral
derived from Theorem 2.11 of [10] and Definition 2.4.

PROPOSITION 2.7. Let HηMsa, n ∈ N, Wk ∈ Lαk , with αk ∈ [1, ∞], k =
1, . . . , n. The following assertions hold:

(i) If f , ϕ ∈ Cn+1
c (R), then

T( f ϕ)[n](W1, . . . , Wn) =
n

∑
k=0

Tf [k](W1, . . . , Wk) · Tϕ[n−k](Wk+1, . . . , Wn),

where Tf [0] denotes f (H).
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(ii) Let f ∈ Cn+1
c (R) and ψ1, ψ2 : R 7→ C be bounded Borel functions. Then,

ψ1(H)Tf [n](W1, . . . , Wn)ψ2(H) = Tf [n](ψ1(H)W1, W2, . . . , Wn−1, Wnψ2(H)).

PROPOSITION 2.8. Let HηMsa, n ∈ N, Wk ∈ Lαk , with αk ∈ [1, ∞], k =
1, . . . , n, satisfying 1

α1
+ · · ·+ 1

αn
= 1. Assume that αj0 = 1 for some 1 6 j0 6 n. Then,

for f ∈ Cn+1
c (R),

τ(Tf [n](W1, . . . , Wn)) = τ(Tf [n](Wi, . . . , Wn, W1, W2, . . . , Wi−1)),

for every i ∈ {2, . . . , n}.
Proof. The result follows upon applying (2.3), continuity of the trace τ in the

L1-norm, and cyclicity τ(AB) = τ(BA) for A ∈ L1, B ∈ M.

3. MAIN ESTIMATE

Let a, b ∈ R, a < b, ε > 0 and denote

aε = a− ε, bε = b + ε.

Let ϕε be a smoothening of the indicator function of (a, b) satisfying the properties
4
√

ϕε ∈ C∞
c ((aε, bε)), ϕε|(a,b) ≡ 1, 0 6 ϕε 6 1. More precisely, let ϕε be defined by

ϕε(x) = (h1(x)− h2(x))4,(3.1)

where

h1(x) =

∫ x
aε

φ(t− aε)φ(a− t)dt∫ a
aε

φ(t− aε)φ(a− t)dt
, h2(x) =

∫ x
b φ(t− b)φ(bε − t)dt∫ bε

b φ(t− b)φ(bε − t)dt
,

φ(x) =

{
e−1/x if x > 0,
0 if x 6 0.

We utilize the function ϕε to create summable weights and make known results
for summable perturbations applicable in our unsummable setting.

THEOREM 3.1. Let HηMsa have τ-compact resolvent, n ∈ N, V1, . . . , Vn ∈ M.
Let a, b ∈ R, a < b, and ε > 0. Then, there exists Cn,a,b,ε,H > 0 such that

|τ(Tf [n](V1, . . . , Vn))| 6 Cn,a,b,ε,H ‖ f (n)‖∞

n

∏
k=1
‖Vk‖,(3.2)

for every f ∈ Cn+1
c ((a, b)), and

Cn,a,b,ε,H 6 (2n(n + 1) + cn) (b− a + 1)n (1 + τ(EH((a, b))))(3.3)

×
(

τ(EH((aε, bε))) +
√

2 (bε − aε + 1)3/2 max
16k6n

‖ϕ
(k+1)
ε ‖∞

k!

)
,

where cn satisfies (2.4) and ϕε is defined in (3.1).
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Proof. Define γn,1 and γn,0 recursively by

γ0,1 = 1, γ1,1 = 2,(3.4)

γm,1 =
m−1

∑
k=0

γk,1 +

√
2

m!
, γm,0 =

⌊m + 1
2

⌋ m−1

∑
k=0

γk,1 + cm, m = 2, . . . , n.

Note that for n > 2,

γn,1 = 2n−1
(3

2
+
√

2
n−1

∑
j=2

1
2j j!

+

√
2

2n−1 n!

)
6 2n−1

√
2

n−1

∑
j=0

1
2j j!

6 2n−1
√

2e.

Hence, for n ∈ N,

γn,0 6
⌊n + 1

2

⌋
γn,1 + cn 6 2n(n + 1) + cn.(3.5)

Denote

βε,n,H = max
{
‖ϕε(H)‖1, max

16k6n
‖T

ϕ
[k]
ε

:M×k 7→ M‖
}

,

where

‖T
ϕ
[k]
ε

:M×k 7→ M‖ = sup
V1,...,Vk∈M

‖T
ϕ
[k]
ε
(V1, . . . , Vk)‖.

By Proposition 2.3,

‖ϕε(H)‖1 6 τ(EH((aε, bε)))(3.6)

and by Proposition 2.5,

‖T
ϕ
[k]
ε

:M×k 7→ M‖ 6 ‖ϕε‖Gk ,(3.7)

where ‖ · ‖Gk is defined in (1.3). It follows from (3.6) and (3.7) that

βε,n,H 6max
{

τ(EH((aε, bε))),
√

2(bε−aε)
1/2 max

16k6n

‖ϕ
(k)
ε ‖∞+‖ϕ

(k+1)
ε ‖∞

k!

}
.(3.8)

Hence, to prove (3.2), it suffices to prove

|τ(Tf [n](V1, . . . , Vn))| 6 Θn,a,b,ε,H,0 ‖ f (n)‖∞

n

∏
k=1
‖Vk‖,(3.9)

where

Θn,a,b,ε,H,0 = γn,0 (b− a + 1)n (1 + τ(EH((a, b)))) βε,n,H .

Along with proving (3.9), we will also prove

‖Tf [n](V1, . . . , Vn)‖1 6 Θn,a,b,ε,H,1 ‖ f (n+1)‖∞

n

∏
k=1
‖Vk‖,(3.10)

where

Θn,a,b,ε,H,1 = γn,1 (b− a + 1)n+1 (1 + τ(EH((a, b)))) βε,n,H .
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Note that f = f ϕε, so f [k] = ( f ϕε)[k], for every k = 1, . . . , n, where ϕε is
defined in (3.1). We will prove (3.9) and (3.10) for n = 1 and then for every n > 2
by induction on n > 2.

Case 1. n = 1.
By Proposition 2.7(i),

Tf [1](V1) = f (H)T
ϕ
[1]
ε
(V1) + Tf [1](V1)ϕε(H).(3.11)

By Proposition 2.7(ii),

Tf [1](V1)ϕε(H) = Tf [1](V1
√

ϕε(H))
√

ϕε(H).(3.12)

Applying (3.11), (3.12), Hölder’s inequality and Propositions 2.3 and 2.6 implies

‖Tf [1](V1)‖1 6 ‖ f ‖∞ τ(EH((a, b))) ‖T
ϕ
[1]
ε
(V1)‖

+ ‖ f ′‖∞ ‖V1
√

ϕε(H)‖2 ‖
√

ϕε(H)‖2.(3.13)

Since

‖√ϕε(H)‖2
2 = ‖ϕε(H)‖1,(3.14)

combination of (3.13), (3.14), and Hölder’s inequality implies

‖Tf [1](V1)‖1 6 (b− a + 1) (1 + τ(EH((a, b)))) ‖ f ′‖∞ ‖V1 βε,1,H‖,(3.15)

ensuring (3.10) and (3.9) for n = 1.
Case 2. n = 2.
By Propositions 2.3 and 2.7 and Hölder’s inequality,

‖Tf [2](V1, V2)‖1 6 ‖ f ‖∞ τ(EH((a, b))) ‖T
ϕ
[2]
ε
(V1, V2)‖+ ‖Tf [1](V1)‖1 ‖Tϕ

[1]
ε
(V2)‖

+ ‖Tf [2](V1, V2)‖ ‖ϕε(H)‖1.(3.16)

By Proposition 2.5,

‖Tf [2](V1, V2)‖ 6
√

2
2

(b− a + 1)3/2 ‖ f ′′′‖∞ ‖V1‖ ‖V2‖.(3.17)

Combining (3.14)–(3.17) and (3.10) for n = 1 gives (3.10) for n = 2.
By Propositions 2.3 and 2.7(i) and Hölder’s inequality,

|τ(Tf [2](V1, V2))| 6 ‖ f ‖∞ τ(EH((a, b))) ‖T
ϕ
[2]
ε
(V1, V2)‖+ ‖Tf [1](V1)‖1 ‖Tϕ

[1]
ε
(V2)‖

+ |τ(Tf [2](V1, V2)ϕε(H))|.(3.18)

By Proposition 2.7(ii) and Hölder’s inequality,

|τ(Tf [2](V1, V2)ϕε(H))| = |τ(Tf [2](
4
√

ϕε(H)V1, V2 4
√

ϕε(H))
√

ϕε(H))|
6 ‖Tf [2](

4
√

ϕε(H)V1, V2 4
√

ϕε(H))‖2 ‖
√

ϕε(H)‖2.(3.19)

By Proposition 2.6 and Hölder’s inequality,

‖Tf [2](
4
√

ϕε(H)V1, V2 4
√

ϕε(H))‖2 6 c2 ‖ f ′′‖∞ ‖V1‖ ‖V2‖ ‖ 4
√

ϕε(H)‖2
4.
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Combining the latter with (3.19) gives

|τ(Tf [2](V1, V2)ϕε(H))| 6 c2 ‖ f ′′‖∞ ‖V1‖ ‖V2‖ ‖ϕε(H)‖1.(3.20)

Combining (3.18) and (3.20) with (3.15) gives (3.9) for n = 2.
Case 3. n > 3.
Assume that (3.10) and (3.9) hold for every n 6 p− 1. We demonstrate be-

low that in this case (3.10) and (3.9) also hold for n = p. Applying Proposition 2.7
and the inductive hypothesis implies

‖Tf [p](V1, . . . , Vp)‖1 6 Θp,a,b,ε,H,1 ‖ f (p)‖∞

p−1

∏
k=1
‖Vk‖

+ ‖Tf [p](V1, . . . , Vp)‖ ‖ϕε(H)‖1.(3.21)

By Proposition 2.5, Hölder’s inequality, and (3.14),

‖Tf [p](V1, . . . , Vp)‖ 6
√

2
p!

(b− a + 1)3/2 ‖ f (p+1)‖∞

p

∏
k=1
‖Vk‖.(3.22)

Combining (3.21) and (3.22) completes the proof of (3.10).
By Proposition 2.7 and the inductive hypothesis,

|τ(Tf [p](V1, . . . , Vp))| 6 Θp,a,b,ε,H,1 ‖ f (p)‖∞

p

∏
k=1
‖Vk‖

+ |τ(Tf [p](V1, . . . , Vp)ϕε(H))|.(3.23)

Denote

Ṽk = Vk
√

ϕε(H), k = 1, . . . , p.

By Propositions 2.7(ii) and 2.8,

|τ(Tf [p](V1, . . . , Vp)ϕε(H))| = |τ(Tf [p](V3, . . . , Vp−1, Ṽp, Ṽ∗1 , V2))|.(3.24)

Applying the reasoning like in (3.22) and (3.24) b(p + 1)/2c − 2 times more gives

|τ(Tf [p](V1, . . . , Vp))| 6 Θp,a,b,ε,H,1

(⌊ p + 1
2

⌋
− 1
)
‖ f (p)‖∞

p

∏
k=1
‖Vk‖+ Xp,(3.25)

where

Xp =

{
|τ(Tf [p](Vp−1, Ṽp, Ṽ∗1 , . . . , Ṽp−4, Ṽ∗p−3, Vp−2))| if p is even,

|τ(Tf [p](Ṽp, Ṽ∗1 , . . . , Ṽp−3, Ṽ∗p−2, Vp−1))| if p is odd.

If p is even, then arguing as above ensures

Xp 6 Θp,a,b,ε,H,1 ‖ f (p)‖∞

p

∏
k=1
‖Vk‖

+ |τ(Tf [p](
4
√

ϕε(H)Vp−1, Ṽp, Ṽ∗1 , . . . , Ṽp−4, Ṽ∗p−3, Vp−2 4
√

ϕε(H))
√

ϕε(H))|(3.26)
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and

|τ(Tf [p](
4
√

ϕε(H)Vp−1, Ṽp, Ṽ∗1 , . . . , Ṽp−4, Ṽ∗p−3, Vp−2 4
√

ϕε(H))
√

ϕε(H))|

6 cp ‖ f (p)‖∞

p

∏
k=1
‖Vk‖ ‖ 4

√
ϕε(H)‖2

2p ‖
√

ϕε(H)‖p−2
2p ‖

√
ϕε(H)‖2

6 cp ‖ f (p)‖∞ ‖ϕε(H)‖1

p

∏
k=1
‖Vk‖.(3.27)

If p is odd, then

Xp 6 Θp,a,b,ε,H,1 ‖ f (p)‖∞

p

∏
k=1
‖Vk‖

+ |τ(Tf [p](Ṽp, Ṽ∗1 , . . . , Ṽp−3, Ṽ∗p−2, Ṽp−1)
√

ϕε(H))|(3.28)

By Proposition 2.6 and Hölder’s inequality,

|τ(Tf [p](Ṽp, Ṽ∗1 , . . . , Ṽp−3, Ṽ∗p−2, Ṽp−1)
√

ϕε(H))|

6 cp ‖ f (p)‖∞

p

∏
k=1
‖Vk‖ ‖

√
ϕε(H)‖p

2p ‖
√

ϕε(H)‖2

6 cp ‖ f (p)‖∞ ‖ϕε(H)‖1

p

∏
k=1
‖Vk‖.(3.29)

Combining (3.25)–(3.29) completes the proof of (3.9).

4. ASYMPTOTIC EXPANSION

Given HηMsa, V ∈ Msa, n ∈ N, and f ∈ Cn+1
c (R), denote

RH, f ,n(V) = f (H + V)−
n−1

∑
k=0

1
k!
· dk

dsk f (H + sV)|s=0,(4.1)

where the Gâteaux derivatives are evaluated in the operator norm. It follows
from, e.g., Theorem 2.6 of [10] (see also references in [10]) that the above deriva-
tives exist and can be represented in the form

1
k!
· dk

dsk f (H + sV)|s=t = TH+tV,...,H+tV
f [k]

(V, . . . , V︸ ︷︷ ︸
k times

).(4.2)

It is proved in Theorem 3.2 of [10] that these derivatives are elements of L1 when-
ever H has τ-compact resolvent.

In the next theorem, we establish the bound (1.1) for the trace of (4.1).
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THEOREM 4.1. Let HηMsa have τ-compact resolvent, V ∈ Msa, n ∈ N, and
ε > 0. Then, for f ∈ Cn+1

c ((a, b)),

|τ(RH, f ,n(V))| 6 ‖ f (n)‖∞ ‖V‖n (2n(n + 1) + cn) (b− a + 1)n (1 + Ωa,b,H,V)

×
(

Ωaε ,bε ,H,V +
√

2 (bε − aε + 1)3/2 max
16k6n

‖ϕ
(k+1)
ε ‖∞

k!

)
,(4.3)

whereRH, f ,n(V) is defined in (4.1), Ωaε ,bε ,H,V satisfies (2.1), cn satisfies (2.4), and ϕε is
defined in (3.1).

Proof. It follows from, e.g., Theorem 2.7 of [10] that

RH, f ,n(V) =
1

(n− 1)!

1∫
0

(1− t)n−1 dn

dsn f (H + sV)|s=t dt,(4.4)

where the integral is evaluated in the strong operator topology. We note that by
Proposition 2.1, H + sV has τ-compact resolvent for every s ∈ [0, 1]. By (4.2) and
(3.2) in Theorem 3.1,

1
n!

∣∣∣τ( dn

dsn f (H + sV)|s=t

)∣∣∣ 6 Cn,a,b,ε,H+tV ‖ f (n)‖∞ ‖V‖n,(4.5)

where Cn,a,b,ε,H+tV satisfies (3.3). The estimate (4.3) follows from (4.4), (4.5), and
Proposition 2.2.

The spectral action functional has the following asymptotic expansion es-
tablished in two steps, for n = 1 and n > 2.

PROPOSITION 4.2 ([1], Theorem 2.5). Let HηMsa have τ-compact resolvent
and V ∈ Msa. Then, for f ∈ C3

c ((a, b)),

τ( f (H + V)) = τ( f (H)) +
∫
R

f ′(λ) τ(EH((a, λ])− EH+V((a, λ]))dλ.

THEOREM 4.3. Let HηMsa have τ-compact resolvent, V ∈ Msa, n ∈ N, n > 2,
and ε > 0. Then, there exists a unique real-valued locally integrable function ηn,H,V such
that

τ( f (H + V)) =
n−1

∑
k=0

1
k!

τ
( dk

dsk f (H + sV)|s=0

)
+
∫
R

f (n)(t) ηn,H,V(t)dt,(4.6)

for f ∈ Cn+1
c (R). The function ηn,H,V satisfies the bound∫

[a,b]

|ηn,H,V(t)|dt 6 ‖V‖n (2n(n + 1) + cn) (b− a + 1)n (1 + Ωa,b,H,V)

×
(

Ωaε ,bε ,H,V +
√

2 (bε − aε + 1)3/2 max
16k6n

‖ϕ
(k+1)
ε ‖∞

k!

)
where Ωaε ,bε ,H,V satisfies (2.1), cn satisfies (2.4), and ϕε is defined in (3.1).
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Proof. The result follows from Theorem 4.1, the Riesz representation theo-
rem for elements of (Cn+1

c (R))∗, estimate (4.5), and integration by parts. This
method is standard in derivation of trace formulas and can be found in, e.g., the
proof of Theorem 3.10 in [10].

Analogs of the trace formula (4.6) have a long history in perturbation theory,
and we refer the reader to [11] for details and references.
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