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ABSTRACT. We investigate the set of maximally mixed states of a C∗-algebra,
extending previous work by Alberti on von Neumann algebras. We show that,
unlike for von Neumann algebras, the set of maximally mixed states of a C∗-
algebra may fail to be weak* closed. We obtain, however, a concrete descrip-
tion of the weak* closure of this set, in terms of tracial states and states which
factor through simple traceless quotients. For C∗-algebras with the Dixmier
property or with Hausdorff primitive spectrum we are able to advance our
investigations further. We pose several questions.
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1. INTRODUCTION

Investigations into the entropy and irreversibility of the states of a physical
system lead to the consideration of the “more mixed than” or “more chaotic than”
pre-order on the space of states of a C∗-algebra. This pre-order, first introduced by
Uhlmann, has been investigated for the state spaces of matrix algebras and, more
generally, of von Neumann algebras, by Alberti, Uhlmann, Wehrl, and others ([2],
[3], [12], [13]). Uhlmann also introduced a distinguished collection of states: the
maximally mixed states. These are the maximal elements in the “more mixed
than” pre-order. In Theorem 5.2 of [1], Alberti gave a complete description of the
maximally mixed states of a von Neumann algebra. In this paper we undertake
the study of the maximally mixed states of a C∗-algebra. In particular, we probe
the extent to which Alberti’s theorem can be extended to arbitrary C∗-algebras.

Let us be more specific. Let A be a C∗-algebra. Given two states ϕ and ψ
on A, let us say that ψ is more (unitarily) mixed than ϕ if ψ belongs to the weak*
closure of the convex hull of the unitary conjugates of ϕ. A state ϕ is maximally
(unitarily) mixed if whenever ψ is more mixed than ϕ then ϕ is also more mixed
than ψ. Maximally mixed states are guaranteed to exist by weak* compactness
and Zorn’s lemma (in fact, given any state ϕ there exist maximally mixed states
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that are more mixed than ϕ). We denote the set of maximally mixed states of A
by S∞(A).

The main question that we address here is “can the set S∞(A) be described
more concretely?”. The tracial states on A are obviously maximally mixed. An-
other source of maximally mixed states on A is the quotients A/M that are simple
and have no bounded traces. The states (on A) that factor through these quotients
are also maximally mixed. Alberti showed that if A is a von Neumann algebra
then S∞(A) is the weak* closure of the convex hull of the tracial states and the
states that factor through simple traceless quotients (see [1], though it is not quite
stated this way). We demonstrate below with natural examples that the set S∞(A)
need not always be weak* closed. It is the case, however, that the weak* closure
of S∞(A) is precisely the weak* closure of the convex hull of the tracial states and
the states factoring through simple traceless quotients (Theorem 3.10). We leave
open the question of the convexity of S∞(A).

For C∗-algebras with the Dixmier property we are able to advance our un-
derstanding of S∞(A) further. Recall that A is said to have the Dixmier property
if for every a ∈ A the norm closure of the convex hull of the unitary conjugates
of a intersects the centre of A. Von Neumann algebras have the Dixmier prop-
erty (by Dixmier’s approximation theorem), but the class of C∗-algebras with the
Dixmier property is much larger (see [5]). We show that if A has the Dixmier
property then S∞(A) is convex and weakly closed. Further, we obtain a neces-
sary and sufficient condition (involving the primitive spectrum) for S∞(A) to be
weak* closed (Theorem 4.7).

The paper is organized as follows: in Section 2 we introduce notation.
In Section 3 we embark on the investigation of the maximally mixed states

of an arbitrary C∗-algebra.
In Section 4 we consider C∗-algebras with the Dixmier property.
In Section 5 we rely on the results from the previous sections to obtain a

concrete description of the set of maximally mixed states of a C∗-algebra with
Hausdorff primitive spectrum.

2. PRELIMINARIES ON DIXMIER SETS

Let A be a C∗-algebra. We denote by Asa the set of self-adjoint elements of
A and by A+ the set of positive elements of A. If A is unital we denote by U(A)
the group of unitary elements of A.

We denote by A∼ the minimal unitization of A, i.e., A itself if A is unital
and the unitization A +C1 if A is non-unital.

Let A∗ denote the dual of A. We denote by A∗sa the set of self-adjoint func-
tionals in A∗ and by A∗+ the set of positive functionals in A∗.

We denote the convex hull of a set S (in an affine space) by co(S).
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2.1. DIXMIER SETS IN A AND A∗ . We call a set C ⊆ A a Dixmier set if it is con-
vex, norm-closed, and invariant under unitary conjugation. The latter means that
uCu∗ ⊆ C for all unitaries u ∈ U(A∼). We will largely work with singly gener-
ated Dixmier sets. Given a ∈ A we denote by DA(a) the smallest Dixmier set
containing a.

We let A, and more generally M(A) (the multiplier algebra of A), act on A∗

in the usual way: if a ∈ M(A) and ϕ ∈ A∗ then

(aϕ)(x) := ϕ(ax), (ϕa)(x) := ϕ(xa) (x ∈ A).

A set C ⊆ A∗ is called a Dixmier set if it is convex, weak* closed, and invariant
under unitary conjugation. The latter condition means that uCu∗ ⊆ C for all uni-
taries u ∈ U(A∼). Given ϕ ∈ A∗ we denote by DA(ϕ) the Dixmier set generated
by ϕ, i.e., the smallest Dixmier set containing ϕ. Since DA(ϕ) is weak* closed and
bounded, it is weak* compact.

We shall make frequent use of the standard fact that A is the dual of A∗

when the latter is endowed with the weak* topology. This, combined with the
Hahn–Banach theorem, implies that elements of A separate disjoint weak* com-
pact convex sets in A∗.

Let V be a subgroup of the unitary group U(M(A)) of M(A). On some
occasions we will need more general versions of the sets defined above where
the unitaries range through V rather than U(A∼). Thus, given a ∈ A we de-
fine DA(a,V) as the smallest norm-closed convex subset of A containing a and
invariant under conjugation by unitaries in V . Similarly, given ϕ ∈ A∗ we de-
fine DA(ϕ,V) as the smallest weak* closed convex subset of A∗ containing ϕ and
invariant under conjugation by unitaries in V .

2.2. MIXING OPERATORS. Let V be a subgroup of the unitary group U(M(A)) of
M(A). We call a linear operator T : A → A a V-mixing operator if it is defined
by an equation of the form

Ta =
n

∑
j=1

λjujau∗j (a ∈ A),

where n ∈ N, λj > 0, uj ∈ V (1 6 j 6 n), and
n
∑

j=1
λj = 1. Elementary properties

of such operators are described in 2.2 of [4]. We denote by Mix(A,V) the set of
V-mixing operators on A. If V = U(A∼) we simply write Mix(A). Notice that

DA(a,V) = {Ta : T ∈ Mix(A,V)} ‖·‖.

We also call an operator T : A∗ → A∗ a V-mixing operator if it is the adjoint
of a V-mixing operator on A. In this case T has the form

Tϕ =
n

∑
j=1

λjuj ϕu∗j (ϕ ∈ A∗),
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where n ∈ N, λj > 0, uj ∈ V (1 6 j 6 n), and
n
∑

j=1
λj = 1. Observe that T is

positive (Tϕ > 0 for all ϕ > 0) and contractive. We denote the set of V-mixing
operators on A∗ by Mix(A∗,V) or simply by Mix(A∗) if V = U(A∼). Notice that

DA(ϕ,V) = {Tϕ : T ∈ Mix(A∗,V)}weak∗
.

LEMMA 2.1. Let a ∈ A and ϕ ∈ A∗. Then

(2.1) DA(ϕ,V)(a) = ϕ(DA(a,V)).
Proof. Since DA(ϕ,V) is weak∗ compact, DA(ϕ,V)(a) is a closed subset of

C. To prove the lemma it suffices to show that ϕ(DA(a,V)) is a dense subset
of DA(ϕ,V)(a). Let T ∈ Mix(A,V). Then (T∗ϕ)(a) = ϕ(Ta). Letting T range
through all Mix(A,V) the left side is dense in DA(ϕ,V)(a) while the right side is
dense in ϕ(DA(a,V)).

We will find it convenient to work with more general unitary mixing op-
erators on A∗. We let Mix(A∗,V) denote the closure of Mix(A∗,V) in the point-
weak∗ topology on B(A∗) (the bounded linear operators on A∗). If V = U(A∼)
we simply write Mix(A∗). Since a limit in the point-weak∗ topology of positive
contractions is again a positive contraction, all T ∈ Mix(A∗,V) are positive con-
tractions. Since the unit ball of B(A∗) is compact in the point-weak∗ topology,
Mix(A∗,V) is a compact set in this topology.

LEMMA 2.2. Let ϕ ∈ A∗. Then DA(ϕ,V) = {Tϕ : T ∈ Mix(A∗,V)}.
Proof. Clearly, Tϕ ∈ DA(ϕ,V) for all T ∈ Mix(A∗,V). Suppose that ψ ∈

DA(ϕ,V). Then Ti ϕ → ψ in the weak* topology for some net of V-mixing op-
erators (Ti)i on A∗. Passing to a subnet of (Ti)i convergent in the point-weak*
topology we get that ψ = Tϕ for some T ∈ Mix(A∗,V).

3. MAXIMALLY MIXED FUNCTIONALS

Let ϕ ∈ A∗. If ψ ∈ DA(ϕ) we say that ψ is more unitarily mixed than ϕ. We
say that ϕ is maximally (unitarily) mixed if DA(ϕ) is minimal with respect to the
order by inclusion in the lattice of weak∗ compact Dixmier subsets of A∗. Thus ϕ
is maximally mixed if and only if for all ψ ∈ DA(ϕ) we have DA(ψ) = DA(ϕ).

It follows from Zorn’s lemma that any weak* compact Dixmier set contains
a maximally mixed functional. In particular, DA(ϕ) contains a maximally mixed
functional for all ϕ ∈ A∗. Note also that (i) the zero functional is maximally
mixed, (ii) if ϕ is tracial then DA(ϕ) = {ϕ} and hence ϕ is maximally mixed, and
(iii) if ϕ is maximally mixed and λ ∈ C then λϕ is maximally mixed.
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THEOREM 3.1. Let A be a C∗-algebra and let ϕ ∈ A∗ be maximally mixed. Then
the self-adjoint and skew-adjoint parts of ϕ are maximally mixed. If ϕ is self-adjoint, then
its positive and negative parts are maximally mixed.

Proof. Let ϕsa denote the self-adjoint part of ϕ. Let ψ ∈ DA(ϕsa). Then ψ =
Tϕsa for some T ∈ Mix(A∗) (Lemma 2.2). Mixing operators in Mix(A∗) preserve
the self-adjoint part. So ψ is the self-adjoint part of Tϕ. Since ϕ is maximally
mixed and Tϕ ∈ DA(ϕ), there exists S ∈ Mix(A∗) such that STϕ = ϕ. Taking
self-adjoint parts we get Sψ = ϕsa. Thus, ϕsa ∈ DA(ψ), as desired. The same
argument applies to the skew-adjoint part.

Suppose now that ϕ is self-adjoint (and maximally mixed). Let us show
first that (Tϕ)+ = Tϕ+ and (Tϕ)− = Tϕ− for any T ∈ Mix(A∗). Observe that
‖ψ‖ 6 ‖ϕ‖ for all ψ ∈ DA(ϕ). But, since ϕ is maximally mixed, we must have
that ‖ψ‖ = ‖ϕ‖ for all ψ ∈ DA(ϕ). That is, all the functionals in DA(ϕ) have the
same norm. Applying T on both sides of ϕ = ϕ+ − ϕ− we get Tϕ = Tϕ+ − Tϕ−.
Then,

‖Tϕ+‖+ ‖Tϕ−‖ 6 ‖ϕ+‖+ ‖ϕ−‖ = ‖ϕ‖ = ‖Tϕ‖.
It follows that Tϕ+ and Tϕ− are orthogonal ([11], Lemma 3.2.3). By the unique-
ness of the Jordan decomposition ([11], Theorem 3.2.5), (Tϕ)+ = Tϕ+ and (Tϕ)−
= Tϕ−.

That ϕ+ and ϕ− are maximally mixed is now straightforward. For suppose
that ψ ∈ DA(ϕ+). By Lemma 2.2, there exists T ∈ Mix(A∗) such that ψ = Tϕ+.
Further, since ϕ is maximally mixed, there exists S ∈ Mix(A∗) such that STϕ = ϕ.
Then Sψ = STϕ+ = (STϕ)+ = ϕ+. Thus, ϕ+ is maximally mixed. The same
argument shows that ϕ− is maximally mixed.

Due in part to the previous theorem, in the sequel our focus will be on the
positive maximally mixed functionals. We warn however that it is not true that a
self-adjoint functional whose positive and negative parts are maximally mixed is
itself maximally mixed; see Example 4.10.

THEOREM 3.2. Let A be a C∗-algebra. The set of maximally mixed functionals is
a norm-closed subset of A∗.

Proof. Let ϕ ∈ A∗ be in the norm-closure of the set of maximally mixed
functionals. Let ψ ∈ DA(ϕ). By Lemma 2.2, there exists T ∈ Mix(A∗) such that
ψ = Tϕ. Let ε > 0. Then there exists a maximally mixed ϕ̃ such that ‖ϕ− ϕ̃‖ < ε.
Since T is a contraction,

‖ψ− T ϕ̃‖ = ‖Tϕ− T ϕ̃‖ 6 ‖ϕ− ϕ̃‖ < ε.

Since ϕ̃ is maximally mixed, there exists S ∈ Mix(A∗) such that ST ϕ̃ = ϕ̃. Then,

‖Sψ− ϕ̃‖ = ‖Sψ− ST ϕ̃‖ 6 ‖ψ− T ϕ̃‖ < ε.

So ‖ϕ− Sψ‖ < 2ε. Since DA(ψ) is norm-closed, we have ϕ ∈ DA(ψ) and hence
DA(ψ) = DA(ϕ). Thus, ϕ is maximally mixed.
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We will show in Examples 3.16 and 3.17 that the set of maximally mixed
functionals is not always weak* closed. We do have the following proposition.

PROPOSITION 3.3. Let A be a unital C∗-algebra and let ϕ ∈ A∗+.
(i) Suppose that for every a ∈ Asa and ε > 0 there exists a maximally mixed ϕ′ ∈ A∗+

such that ϕ′ 6 ϕ and |ϕ(a)− ϕ′(a)| < ε. Then ϕ is maximally mixed.
(ii) Suppose that for every a ∈ Asa and ε > 0 there exists a maximally mixed ϕ′ ∈ A∗+

such that ϕ′ > ϕ and |ϕ(a)− ϕ′(a)| < ε. Then ϕ is maximally mixed.
(iii) Suppose that (ϕi)i is a norm-bounded net of maximally mixed functionals in A∗+

which is either upward directed or downward directed relative to the order in A∗+. Then
the net is convergent and the limit is maximally mixed.

Proof. (i) Let ψ ∈ DA(ϕ) and suppose that ψ = Tϕ, where T ∈ Mix(A∗).
Suppose, towards a contradiction, that ϕ /∈ DA(ψ). Then by the Hahn–Banach
theorem there exist a ∈ Asa, t ∈ R and ε > 0 such that ρ(a) 6 t for all ρ ∈ DA(ψ)
but ϕ(a) > t + ε. Replacing a by a + ‖a‖1 and t by t + ‖a‖‖ϕ‖, we may assume
that a > 0.

By hypothesis, there exists a maximally mixed functional ϕ′∈A∗+ such that
ϕ′6ϕ and ϕ′(a)> t+ε/2. Let ψ′=Tϕ′. Note that, since T is positive, ψ′6ψ. Since
ϕ′ is maximally mixed, ϕ′∈DA(ψ

′). Thus, there exists S∈Mix(A∗) such that Sψ′=
ϕ′. Let ρ=Sψ. Then ϕ′6ρ and so ϕ′(a)6ρ(a)6 t since a>0. This contradicts the
fact that ϕ′(a)> t+ε/2. Thus ϕ∈DA(ψ) and hence DA(ψ)=DA(ϕ).

(ii) This is similar to (i).
(iii) The convergence of the net follows from weak∗ compactness, mono-

tonicity and the fact that A is the linear span of A+. The limit is maximally mixed
by (i) and (ii).

Next we prepare to examine the relation of the maximally mixed function-
als of A with those of its ideals and quotients. Theorem 3.6 will tell us that, given
an ideal J of A, maximal mixedness of a functional can be read off by its de-
composition with respect to A/J and J. Part (i) of the following proposition is
a classical key result used to prove permanence of the Dixmier property under
suitable extensions; we use part (ii) in an analogous way to handle Dixmier sets
of functionals.

PROPOSITION 3.4. Let A be a C∗-algebra, let a ∈ A and let ϕ ∈ A∗. The follow-
ing are true:

(i) DA(a) is equal to the norm-closure of co{eihae−ih : h ∈ Asa};
(ii) DA(ϕ) is equal to the weak* closure of co{eih ϕe−ih : h ∈ Asa}.

Proof. (i) For unital A, the result is given in Proposition 2.4 of [4]. For non-
unital A, we apply this result to A∼ and use the fact that if h ∈ Asa and t ∈ R
then ei(h+t1) = eiteih.

(ii) This follows from (i) and the Hahn–Banach theorem. Indeed, if (ii) fails
to hold then there is a unitary conjugate of ϕ which does not belong to the weak*
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closure of co{eih ϕe−ih : h ∈ Asa}. Since A∗ with the weak∗ topology has dual
space A, it follows by the Hahn–Banach separation theorem that there exists u ∈
U(A∼), a ∈ A and t ∈ R such that

Re(ϕ(uau∗)) > t and Re(ϕ(eihae−ih)) 6 t for all h ∈ Asa.

It follows from the last inequality and part (i) that Re(ϕ(x)) 6 t for all x ∈ DA(a).
This contradicts the fact that Re(ϕ(uau∗)) > t.

In the proofs of the next two results we make use of the fact that a posi-
tive linear functional on an ideal of a C∗-algebra has a unique norm-preserving
positive linear extension to the whole algebra ([11], 3.1.6).

PROPOSITION 3.5. Let J be a proper, closed two-sided ideal of a unital C∗-algebra
A. Let ι J : J → A and qJ : A→ A/J denote the inclusion and quotient maps.

(i) The adjoint map ι∗J : A∗ → J∗ maps DA(ϕ) onto DJ(ϕ|J) for all ϕ ∈ A∗+.
(ii) We have DA(ϕ) = DA(ϕ, U(J +C1)) for all ϕ ∈ A∗+ such that ‖ϕ‖ = ‖ϕ|J‖.

(iii) The adjoint map q∗J : (A/J)∗ → A∗ maps DA/J(ϕ) bijectively to DA(ϕ ◦ qJ) for
all ϕ ∈ (A/J)∗+.

Proof. If the ideal J is a unital C∗-algebra then A ∼= J ⊕ A/J and all three
results (i)–(iii) have a straightforward proof. We thus assume that J is non-unital.
Note then that J +C1 may be regarded as the unitization of J.

(i) Let us first show that ρ
ι∗J7−→ ρ|J maps DA(ϕ) into DJ(ϕ|J). Let ψ ∈ DA(ϕ)

and suppose that ψ|J /∈ DJ(ϕ|J). Then, by the Hahn–Banach theorem, there exist
a ∈ Jsa and t ∈ R such that ψ(a) > t and ρ(a) 6 t for all ρ ∈ DJ(ϕ|J). It follows
from Lemma 2.1 applied to ϕ|J and a that ϕ(b) 6 t for all b ∈ DJ(a). But, by
Remark 2.6 of [4], DJ(a) = DA(a) (since a ∈ J). Hence ϕ(b) 6 t for all b ∈ DA(a).
Lemma 2.1, applied now to ϕ and a, implies that ρ(a) 6 t for all ρ ∈ DA(ϕ). Since
ψ ∈ DA(ϕ), we obtain that ψ(a) 6 t which gives a contradiction. Thus ι∗J maps
DA(ϕ) into DJ(ϕ|J).

Let us prove surjectivity. Since ι∗J is weak∗-continuous, the image of DA(ϕ)

is a weak∗ compact convex subset of DJ(ϕ|J). For every T ∈ Mix(A, U(J +C1))
we have (ϕ ◦ T)|J = ϕ|J ◦ T|J . Clearly, every mixing operator in Mix(J) has
the form T|J for some T ∈ Mix(A, U(J + C1)). Thus, letting T range through
Mix(A, U(J + C1)) the functionals ϕ|J ◦ T|J range through a dense subset of
DJ(ϕ|J). This shows that the image of DA(ϕ) by ι∗J is also dense in DJ(ϕ|J).

(ii) Clearly DA(ϕ, U(J +C1)) ⊆ DA(ϕ). To prove the opposite inclusion it
suffices to show that

uϕu∗ ∈ DA(ϕ, U(J +C1)) for all u ∈ U(A).

Let u ∈ U(A) and set ψ = uϕu∗. By (i), ψ|J ∈ DJ(ϕ|J), so there exists a net of
mixing operators (Ti)i in Mix(A, U(J +C1)) such that

(ϕ ◦ Ti)|J = (ϕ|J) ◦ (Ti|J)
weak∗−→ ψ|J .
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Passing to a subnet if necessary, we may assume that ϕ ◦ Ti → ψ′ ∈ DA(ϕ, U(J +
C1)). Then ψ′|J = ψ|J . Moreover, ‖ψ′‖ 6 ‖ϕ‖ = ‖ϕ|J‖ = ‖ψ|J‖. By the unique-
ness of the norm-preserving positive extension of a positive functional, we get
that ψ′ = ψ. Thus, ψ ∈ DA(ϕ, U(J +C1)).

(iii) The image of DA/J(ϕ) by q∗J is the set {ρ ◦ qJ : ρ ∈ DA/J(ϕ)}. This
set is convex, weak* compact, and contains ϕ ◦ qJ . Moreover, for u ∈U(A) and
ρ∈DA/J(ϕ) we have u(ρ ◦ qJ)u∗=(vρv∗) ◦ qJ , where v= qJ(u)∈U(A/J). Hence
{ρ ◦ qJ : ρ∈DA/J(ϕ)} is invariant under unitary conjugations. It follows that

DA(ϕ ◦ qJ) ⊆ {ρ ◦ qJ : ρ ∈ DA/J(ϕ)}.

To prove the reverse inclusion it suffices to show that the left side is dense in the
right side (since the left side is weak* compact). By Proposition 3.4(ii) (applied
in A/J), it suffices to show that eik ϕe−ik ◦ qJ belongs to DA(ϕ ◦ qJ) for all k ∈
(A/J)sa. But if k ∈ (A/J)sa then we may find h ∈ Asa such that qJ(h) = k, from
which we have the following, as desired:

(eik ϕe−ik) ◦ qJ = eih(ϕ ◦ qJ)e−ih ∈ DA(ϕ ◦ qJ).

We have shown that q∗J maps DA/J(ϕ) onto DA(ϕ ◦ qJ). Since q∗J is also
injective, the result follows.

Let J ⊆ A be as above a proper closed two-sided ideal of A. Let (A∗+)J

denote the set of functionals ϕ ∈ A∗+ such that ‖ϕ‖ = ‖ϕ|J‖. Let (A∗+)J denote
the functionals ϕ ∈ A∗+ such that ϕ(J) = {0}. Recall then that every ϕ ∈ A∗+ can
be expressed in the form ϕ = ϕ1 + ϕ2, with ϕ1 ∈ (A∗+)J and ϕ2 ∈ (A∗+)J and that
this decomposition is unique (see, for example, 2.11.7 of [6]).

THEOREM 3.6. Let A be a unital C∗-algebra and let J be a proper closed ideal of
A. Let ϕ ∈ A∗+ and write ϕ = ϕ1 + ϕ2, where ϕ1, ϕ2 ∈ A∗+ are such that ϕ1 ∈ (A∗+)J

and ϕ2 ∈ (A∗+)J .
(i) ϕ1 is maximally mixed if and only if ϕ1|J ∈ J∗+ is maximally mixed.

(ii) ϕ2 is maximally mixed if and only if the functional that it induces on A/J is
maximally mixed.

(iii) ϕ is maximally mixed if and only if both ϕ1 and ϕ2 are maximally mixed. More-
over, in this case DA(ϕ) = DA(ϕ1) + DA(ϕ2).

Proof. (i) Suppose first that ϕ1 is maximally mixed. Let ψ′ ∈ DJ(ϕ1|J). By
Proposition 3.5(i), there exists ψ ∈ DA(ϕ1) such that ψ|J = ψ′. Since ϕ1 is max-
imally mixed, ϕ1 ∈ DA(ψ). Then, again by Proposition 3.5(i), ϕ1|J ∈ DJ(ψ

′).
Thus, ϕ1|J is maximally mixed.

Let us prove the converse. Let ψ ∈ DA(ϕ1). Then ψ|J ∈ DJ(ϕ1|J) by Propo-
sition 3.5(i). Since ϕ1|J is maximally mixed, ϕ1|J ∈ DJ(ψ|J). By Proposition 3.5(i),
there exists ϕ′1 ∈ DA(ψ) such that ϕ′1|J = ϕ1|J . Moreover, ‖ϕ′1‖ 6 ‖ψ‖ 6 ‖ϕ1‖.
By the uniqueness of the norm-preserving extension of a positive functional,
ϕ′1 = ϕ1. So ϕ1 ∈ DA(ψ), as desired.
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(ii) This is a rather straightforward consequence of Proposition 3.5(iii). Let
ϕ̃ ∈ (A/J)∗ be such that ϕ = ϕ̃ ◦ qJ . Suppose that ϕ̃ is maximally mixed. By
Proposition 3.5(iii), if ψ ∈ DA(ϕ) then ψ = ψ̃ ◦ qJ for some ψ̃ ∈ DA/J(ϕ̃). Since ϕ̃

is maximally mixed, ϕ̃ ∈ DA/J(ψ̃). Again by Proposition 3.5(iii), ϕ ∈ DA(ψ)

as desired. Suppose on the other hand that ϕ is maximally mixed. Let ψ̃ ∈
DA/J(ϕ̃). Then ψ̃ ◦ qJ ∈ DA(ϕ). Hence, ϕ ∈ DA(ψ̃ ◦ qJ). By Proposition 3.5(iii),
ϕ̃ ∈ DA/J(ψ̃) as desired.

(iii) Suppose that ϕ is maximally mixed. Let T ∈ Mix(A∗). Let us show
first that Tϕ1 ∈ (A∗+)J and Tϕ2 ∈ (A∗+)J . It is clear that Tϕ2 ∈ (A∗+)J , since
ϕ2 ∈ (A∗+)J and (A∗+)J is a Dixmier set. Thus, restricting to J in Tϕ = Tϕ1 + Tϕ2
we obtain that (Tϕ)|J = (Tϕ1)|J . Since ϕ is maximally mixed, ϕ ∈ DA(Tϕ), and
therefore ϕ|J ∈ DJ((Tϕ)|J) by Proposition 3.5(i). Hence,

‖ϕ1‖ = ‖ϕ|J‖ 6 ‖(Tϕ)|J‖ = ‖(Tϕ1)|J‖.

So
‖Tϕ1‖ 6 ‖ϕ1‖ 6 ‖(Tϕ1)|J‖,

which shows that Tϕ1 ∈ (A∗+)J (by the definition of (A∗+)J).
To prove that ϕ1 and ϕ2 are maximally mixed we proceed as follows: since

ϕ is maximally mixed, there exists S ∈ Mix(A∗) such that STϕ = ϕ. We thus have
that ϕ = STϕ1 + STϕ2. Using the last paragraph with ST in place of T, we have
that STϕ2 ∈ (A∗+)J and STϕ1 ∈ (A∗+)J . By the uniqueness of the decomposition
of ϕ into a functional in (A∗+)J and one in (A∗+)J we conclude that STϕ1 = ϕ1
and STϕ2 = ϕ2. Thus, for any T ∈ Mix(A∗) there exists S ∈ Mix(A∗) such that
STϕ1 = ϕ1 and STϕ2 = ϕ2. In view of Lemma 2.2, this shows that ϕ1 and ϕ2 are
maximally mixed.

Suppose now that both ϕ1 and ϕ2 are maximally mixed. Let us show first
that DA(ϕ) = DA(ϕ1) + DA(ϕ2). The inclusion DA(ϕ) ⊆ DA(ϕ1) + DA(ϕ2) is
clear, for if T ∈ Mix(A∗) then Tϕ = Tϕ1 + Tϕ2, which belongs to DA(ϕ1) +
DA(ϕ2), and by Lemma 2.2 Tϕ ranges through all of DA(ϕ). Let ϕ′1 ∈ DA(ϕ1)

and ϕ′2 ∈ DA(ϕ2) and let us show that ϕ′1 + ϕ′2 ∈ DA(ϕ). Choose T ∈ Mix(A∗)
such that Tϕ2 = ϕ′2, so that Tϕ = Tϕ1 + ϕ′2. Recall that, as shown above,
operators in Mix(A∗) preserve the decomposition of a maximally mixed func-
tional into functionals in (A∗+)J and (A∗+)J . Hence, Tϕ1 ∈ (A∗+)J . Since ϕ1 is
maximally mixed, we have ϕ′1 ∈ DA(ϕ1) = DA(Tϕ1), and hence there exists
S ∈ Mix(A∗) such that STϕ1 = ϕ′1. Moreover, by Proposition 3.5(ii), we can
choose S ∈ Mix(A∗, U(J +C1)). Observe then that Sϕ′2 = ϕ′2 (since ϕ′2 vanishes
on J). Hence, STϕ = ϕ′1 + ϕ′2, as desired.

Continue to assume that ϕ1 and ϕ2 are maximally mixed and let us show
that ϕ is maximally mixed. Let ϕ′ ∈ DA(ϕ). Then ϕ′ = ϕ′1 + ϕ′2, where ϕ′1 ∈
DA(ϕ1) and ϕ′2 ∈ DA(ϕ2). So

DA(ϕ) = DA(ϕ1) + DA(ϕ2) = DA(ϕ′1) + DA(ϕ′2) = DA(ϕ′),
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where we use the fact that ϕ′1 and ϕ′2 are maximally mixed, and the result of the
previous paragraph, for the final equality. Hence, ϕ is maximally mixed.

COROLLARY 3.7. Let A be a non-unital C∗-algebra and ϕ ∈ A∗+. Then ϕ is
maximally mixed if and only if its norm preserving positive extension to A∼ is maximally
mixed.

In view of the previous corollary in the sequel we focus our attention on
unital C∗-algebras. Further, since the scalar multiples of a maximally mixed func-
tional are maximally mixed, we work with states. We denote by S(A) the state
space of A and by S∞(A) the set of maximally mixed states of A.

Let A be a unital C∗-algebra. Consider states ϕ ∈ S(A) of the following two
types:

(A) ϕ is tracial;
(B) ϕ factors through a simple quotient A/M without bounded traces.

Not much effort is needed to see that the states of these types are maximally
mixed (for tracial states, this is obvious, whereas for type (B) states, it follows
from a short argument in Lemma 3.8 below); this prompts us to ponder whether
all maximally mixed states can be described in terms of these ones. We show in
Theorem 3.10 that we are close to getting all maximally mixed states by taking
the convex hull of these ones — although we do not know whether the set of
maximally mixed states is convex, see Question 3.13 below.

LEMMA 3.8. If B is a simple unital C∗-algebra with no bounded traces, then for
every state ϕ ∈ S(B), DB(ϕ) = S(B), and thus every state of B is maximally mixed.
Therefore every type (B) state of a unital C∗-algebra is maximally mixed.

Proof. Suppose for a contradiction that there exists ψ ∈ S(B) \ DB(ϕ). By
the Hahn–Banach theorem, there exist a ∈ Asa and t ∈ R such that DA(ϕ)(a) 6 t
(i.e., s 6 t for all s ∈ DA(ϕ)(a)) and ψ(a) > t. Translating by a scalar, we may
assume that a is positive. We then know that ϕ(DA(a)) 6 t (Lemma 2.1) and
ψ(a) > t. But ‖a‖ · 1 ∈ DA(a) (by Théorème 4 of [7]), and so ‖a‖ 6 t, which
contradicts that ψ(a) > t. The final statement now follows by Theorem 3.6(ii).

In the following proposition (and henceforth, where appropriate) by a
type (B) positive functional we mean a positive scalar multiple of a type (B) state.

PROPOSITION 3.9. Let A be a unital C∗-algebra. Let ϕ ∈ A∗+ be maximally
mixed and let ψ ∈ A∗+ be either tracial or type (B). Then ϕ + ψ is maximally mixed and
DA(ϕ + ψ) = DA(ϕ) + DA(ψ).

Proof. If ψ is tracial then DA(ϕ + ψ) = DA(ϕ) + ψ, from which the result
follows at once. Suppose then that ψ is type (B), i.e., it factors through a simple
quotient A/M without bounded traces. Let ϕ = ϕ1 + ϕ2, where ϕ1 ∈ (A∗+)M and
ϕ2 ∈ (A∗+)M. Then

ϕ + ψ = ϕ1 + (ϕ2 + ψ).
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By Theorem 3.6(iii), ϕ1 is maximally mixed. On the other hand, ϕ2 + ψ is type
(B) (it factors through A/M), so by Lemma 3.8, it is maximally mixed. Hence, by
Theorem 3.6(iii), ϕ + ψ = ϕ1 + (ϕ2 + ψ) is maximally mixed. Moreover, Theo-
rem 3.6(iii) also shows that DA(ϕ + ψ) = DA(ϕ1) + DA(ϕ2 + ψ). But DA(ϕ2 +
ψ) = (ϕ2(1) + ψ(1))S(A)M, where S(A)M = S(A/M) ◦ qM (i.e., all states that
factor through A/M). So

DA(ϕ + ψ) = DA(ϕ1) + ϕ2(1)S(A)M + ψ(1)S(A)M

= DA(ϕ1) + DA(ϕ2) + DA(ψ) = DA(ϕ) + DA(ψ),

using Theorem 3.6(iii) again for the last equality.

Given a C∗-algebra A, we denote by T(A) the set of tracial states on A.

THEOREM 3.10. Let A be a unital C∗-algebra. Let S(B)(A) denote the set of states
on A of type (B). Then

co(T(A) ∪ S(B)(A))
‖·‖ ⊆ S∞(A) ⊆ co(T(A) ∪ S(B)(A))

weak∗
.

Examples 3.16, 3.17, and 4.9 show that both inclusions in the above theorem
can be strict.

Proof. It follows by Proposition 3.9 that co(T(A) ∪ S(B)(A)) ⊆ S∞(A), and
so by Theorem 3.2

co(T(A) ∪ S(B)(A))
‖·‖ ⊆ S∞(A).

To show that S∞(A) is contained in the weak* closure of co(T(A)∪S(B)(A)),
it suffices to show that for any ϕ ∈ S(A) the Dixmier set DA(ϕ) has nonempty

intersection with co(T(A) ∪ S(B)(A))
weak∗

. Suppose, for the sake of contradic-
tion, that this is not the case for some ϕ ∈ S(A). Then, by the Hahn–Banach
theorem, there exists a self-adjoint element a and real numbers t1 < t2 such that
ψ(a) 6 t1 for all ψ ∈ co(T(A) ∪ S(B)(A)) and ψ′(a) > t2 for all ψ′ ∈ DA(ϕ).
Translating a by a multiple of the unit we can assume that it is positive. Since
DA(ϕ)(a) = ϕ(DA(a)) (Lemma 2.1), we have that ϕ(a′) > t2 for all a′ ∈ DA(a).
On the other hand, ψ(a) 6 t1 for every tracial state and every state that factors
through a simple quotient without bounded traces. By Theorem 4.12 of [5], the
distance from DA(a) to 0 is at most t1. Thus, there exists a′ ∈ DA(a) such that
‖a′‖ < t2. This contradicts that ϕ(a′) > t2.

Condition (i) of the following corollary has appeared in several papers pre-
viously (e.g. [7], [9], [10]). In fact, an improved version of this corollary is Theo-
rem 5 of [7].

COROLLARY 3.11. Let A be a unital C∗-algebra. The following are equivalent:
(i) every simple quotient of A has a bounded trace;

(ii) all the maximally mixed states of A are tracial;
(iii) for every ϕ ∈ S(A) the Dixmier set DA(ϕ) contains a tracial state.
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Proof. (i) ⇒ (ii) follows from the previous theorem, since (i) implies that
co(T(A)∪ S(B)(A)) = T(A), which is already a weak* closed set. As remarked at
the beginning of this section, every Dixmier set DA(ϕ) must contain maximally
mixed functionals. With this in mind, (ii) ⇒ (iii) is obvious. Finally, assume
(iii), and let A/M be a given simple quotient of A. Choose any ϕ ∈ S(A) that
factors through A/M. Then any trace in DA(ϕ) factors through A/M. We thus
have (i).

In the case of simple C∗-algebras we obtain a complete description of the
maximally mixed positive functionals.

COROLLARY 3.12. Let A be a simple C∗-algebra.
(i) If A is unital and has at least one non-zero bounded trace then every maximally

mixed positive functional on A is tracial.
(ii) If A is unital and has no bounded traces then all the positive functionals on A are

maximally mixed.
(iii) If A is non-unital then every maximally mixed positive functional on A is tracial.

Proof. (i) follows from Corollary 3.11, while (ii) is Lemma 3.8. For (iii), note
that A∼ has only one simple quotient, namely C, and it has a bounded trace.
Hence by Corollary 3.11, every maximally mixed state of A∼ is tracial, and then
(iii) follows from Theorem 3.6(i).

QUESTION 3.13. Let A be a unital C∗-algebra. Is the set S∞(A) of maximally
mixed states convex?

A closely related question is the following.

QUESTION 3.14. Given maximally mixed functionals ϕ, ψ ∈ A∗+, do we
have DA(ϕ + ψ) = DA(ϕ) + DA(ψ)?

An affirmative answer to Question 3.14 for all ϕ, ψ ∈ S∞(A) also answers
affirmatively Question 3.13. Indeed, suppose that Question 3.14 has an affirma-
tive answer for all ϕ, ψ ∈ S∞(A). Say we are given ϕ, ψ ∈ S∞(A) and ϕ′ ∈ DA(ϕ)
and ψ′ ∈ DA(ψ). Then

DA(ϕ + ψ) = DA(ϕ) + DA(ψ) = DA(ϕ′) + DA(ψ
′) = DA(ϕ′ + ψ′).

Observe that Proposition 3.9 answers Question 3.14 affirmatively in the case that
ψ is either tracial or type (B).

Turning to the question of whether the containment

S∞(A) ⊆ co(T(A) ∪ S(B)(A))
weak∗

is strict (where S(B)(A) is as defined in Theorem 3.10), it is evident from that the-
orem that (non-)strictness of this inequality is equivalent to the natural question
of whether S∞(A) is weak* closed. The next proposition gives an obstruction to
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S∞(A) being weak* closed — in fact, it is the only obstruction we have been able
to find, see Question 3.18.

PROPOSITION 3.15. Let A be a unital C∗-algebra such that S∞(A) is a weak*
closed subset of S(A). Then the set X ⊆ Prim(A) of all maximal ideals M such that
A/M either is isomorphic to C or has no bounded traces is a closed subset of Prim(A).

Proof. We may assume that X is non-empty. Let

J =
⋂

M∈X
M.

Let N ∈ Prim(A) be an adherence point of X, i.e, J ⊆ N. Then every state on
A that factors through A/N is a weak* limit of convex combinations of states
that factor through A/M, with M ∈ X ([6], Proposition 3.4.2(i)). Notice that
S∞(A/M) = S(A/M) for all M ∈ X. Thus, all the states of A that factor through
A/M, with M ∈ X, are maximally mixed. It follows that all states factoring
through A/N are maximally mixed, and so all states of A/N are maximally
mixed by Theorem 3.6(ii).

Since N is primitive, let ϕ ∈ S(A/N) be a pure state whose GNS representa-
tion πϕ is faithful. Then any pure state ψ on A/N is a weak* limit of vector states
(with respect to πϕ) by Corollary 3.4.3 of [6]. By the unitary version of Kadison’s
transitivity theorem ([6], Theorem 2.8.3(iii)), each of these vector states is in fact
unitarily equivalent to ϕ, and thus ψ is a weak* limit of unitary conjugates of ϕ.
By approximating arbitrary states on A/N by convex combinations of pure states,
we find that S(A/N) = DA/N(ϕ). This implies that A/N is simple, for otherwise
the states factoring through a non-trivial quotient would form a proper Dixmier
subset of DA/N(ϕ) (recall that ϕ is maximally mixed). From Corollary 3.12 we
see that A/N must either be isomorphic to C or without bounded traces. Thus,
N ∈ X.

The examples below show that S∞(A) may fail to be weak* closed.

EXAMPLE 3.16. Fix a simple unital C∗-algebra B without bounded traces
(e.g., the Cuntz algebra O2). Let A be the C∗-subalgebra of C([0, 1], M2(B)) of
functions f such that

f (1) ∈ M2(C) ⊆ M2(B).
For each t ∈ [0, 1] let It = { f ∈ A : f (t) = 0}. Then A/It ∼= M2(B) for all
0 6 t < 1. So It is a maximal ideal such that A/It is simple without bounded
traces. The maximal ideal I1 is an adherence point of the set {It : 0 6 t < 1}.
However, A/I1

∼= M2(C) has a bounded trace and is not isomorphic to C. Thus,
S∞(A) is not weak* closed, by Proposition 3.15.

EXAMPLE 3.17. Again fix a simple unital C∗-algebra B without bounded
traces. Let A be the C∗-subalgebra of C({1, 2, . . . , ∞}, (B ⊗ K)∼) of f such that
f (n) ∈ Mn(B) +C1 for all n ∈ N, where we regard Mn(B) embedded in B⊗K
as the top left corner. For each n ∈ N define In = { f ∈ A : en f (n) = 0},
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where en is the unit of Mn(B). Then In is a maximal ideal for all n = 1, 2, . . . and
A/In ∼= Mn(B) has no bounded traces. Since

⋂
n

In = {0}, the set {In : n ∈ N} is

dense in Prim(A). Consider the ideal

I∞ = { f : f (∞) = 0}.
Since A/I∞ = (B⊗K)∼ is a primitive C∗-algebra, I∞ ∈ Prim(A). But I∞ is not
maximal. By Proposition 3.15, S∞(A) is not weak* closed.

If one wanted an algebra A with no bounded traces in which S∞(A) is not
weak* closed, one can simply tensor the example just given with a nuclear, unital,
simple, traceless C∗-algebra (this operation does not change the ideal lattice, so
the same obstruction applies).

QUESTION 3.18. Is the converse of Proposition 3.15 true? That is, let A be
unital. Suppose that the set of maximal ideals M such that A/M either is isomor-
phic to C or has no bounded traces is a closed subset of Prim(A). Is S∞(A) weak*
closed?

The previous question admits a reduction to the special case of characteriz-
ing when S∞(A) is all of S(A) (Remark 3.21 below). Before explaining this, we
point out the following result.

PROPOSITION 3.19. Let A be a unital C∗-algebra. Let X ⊆ Prim(A) be as in
Proposition 3.15. The following are equivalent:

(i) X = Prim(A);
(ii) every pure state of A is either multiplicative or type (B);

(iii) S∞(A) contains the norm-closed convex hull of the pure states.

Proof. (i)⇒ (ii) If ϕ is a pure state then ϕ factors through a primitive quo-
tient A/N. By (i), this quotient is simple and either isomorphic to C or without
traces. In the first case ϕ is multiplicative and in the second case it is of type (B).

(ii)⇒ (iii) This follows from Theorem 3.10.
(iii) ⇒ (i) Let N ∈ Prim(A) and choose a pure state ϕ ∈ S(A/N) whose

GNS representation is faithful. Then, since ϕ is maximally mixed, it follows as in
the proof of Proposition 3.15 that A/N is simple. Since every pure state of A/N
is maximally mixed, it follows from Corollary 3.12 that A/N must either be C or
have no bounded traces. Thus, N ∈ X.

QUESTION 3.20. Let A be a unital C∗-algebra that satisfies the equivalent
conditions of Proposition 3.19. Does it follow that S∞(A) = S(A)?

REMARK 3.21. Questions 3.18 and 3.20 are equivalent. For if Question 3.18
has been answered affirmatively and A satisfies the equivalent conditions of
Proposition 3.19, then S∞(A) is weak* closed, and so by Proposition 3.19(iii)
S∞(A) = S(A). Suppose conversely that Question 3.20 has been answered af-
firmatively. Let A be a unital C∗-algebra. Let X ⊆ Prim(A) be as in Proposi-
tion 3.15 and suppose that X is a closed set. If X = ∅ then, by Corollary 3.11,
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S∞(A) = T(A) (the set of tracial states on A), which is weak∗ closed. Assume
X 6= ∅. Let J =

⋂
M∈X

M. Then the C∗-algebra A/J satisfies the equivalent condi-

tions in Proposition 3.19 (check (i)). Hence, all of its states are maximally mixed.
By Theorem 3.6(ii), S(A)J ⊆ S∞(A). Observe also that every state of A of type (B)
is in S(A)J . Then,

co(T(A), S(A)J) ⊆ S∞(A) ⊆ co(T(A), S(A)J)
weak∗

,

where the first inclusion follows from Proposition 3.9 and the second from Theo-
rem 3.10. But co(T(A), S(A)J) is weak* closed. So S∞(A) = co(T(A), S(A)J), is
weak* closed.

In the next section we answer affirmatively Questions 3.13, 3.14, and 3.18
for C∗-algebras with the Dixmier property.

4. C∗-ALGEBRAS WITH THE DIXMIER PROPERTY

In this section, we find further properties of the set of maximally mixed
states in the case of C∗-algebras with the Dixmier property (defined below).

Let A be a unital C∗-algebra, let a ∈ A and let ϕ ∈ S(A). Acting by conjuga-
tion, the unitary group U(A) induces a group of isometric affine transformations
of the convex set DA(a), and similarly for DA(ϕ). An element z ∈ DA(a) is a
fixed point for the group of conjugations of DA(a) if and only if it belongs to the
centre Z(A). An element τ ∈ DA(ϕ) is a fixed point for the group of conjugations
on DA(ϕ) if and only if it is a tracial state, i.e., τ ∈ T(A).

The C∗-algebra A is said to have the Dixmier property if DA(a) ∩ Z(A) is
non-empty for all a ∈ A, and A is said to have the singleton Dixmier property if
DA(a)∩Z(A) is a singleton set for all a ∈ A (see [5] and the many references cited
therein). On the other hand, we have seen in Corollary 3.11 that DA(ϕ)∩ T(A) is
non-empty for all ϕ ∈ S(A) if and only if every simple quotient of A has a tracial
state. Since a unital simple C∗-algebra has the Dixmier property if and only if
it has at most one tracial state [7], we see that the Dixmier property is neither
necessary nor sufficient for the equivalent properties of Corollary 3.11 to hold.
Indeed, it is shown in Proposition 1.4 of [5] that A has the Dixmier property and
also satisfies the conditions of Corollary 3.11 if and only if it has the singleton
Dixmier property.

If a Dixmier set DA(a) does not contain a central element then there is no
natural “second prize” at which to aim. In contrast, if a Dixmier set DA(ϕ) does
not contain a tracial state then we may nevertheless study the maximally mixed
states, which we have already seen to be guaranteed to exist in DA(ϕ). In this
section we study the maximally mixed states in the case where A has the Dixmier
property but not necessarily the singleton Dixmier property.
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Henceforth in this section we assume that A is a unital C∗-algebra with the
Dixmier property.

Let Ẑ denote the spectrum of Z(A). Since C∗-algebras with the Dixmier
property are weakly central (e.g., see [5]), we can identify Ẑ with the set of maxi-
mal ideals of A. We denote the latter set by Max(A).

To analyze the maximally mixed states for such A, we will make frequent
use of a description of DA(a) ∩ Z(A) (for a self-adjoint) found in [5] (see Corol-
lary 4.5 of [5] and the discussion between Theorem 2.6 and Corollary 2.7 of [5],
with details in the proof of Theorem 2.6). For a ∈ A self-adjoint, define fa, ga :
Ẑ → R by

fa(M) :=

{
min sp(qM(a)) if A/M has no bounded traces,
τM(a) otherwise,

where τM is the (necessarily unique) tracial state on A which factors through
A/M. Likewise,

(4.1) ga(M) :=

{
max sp(qM(a)) if A/M has no bounded traces,
τM(a) otherwise.

Then fa is upper semicontinuous, ga is lower semicontinuous, fa 6 ga, and, iden-
tifying Z(A) = C(Ẑ) now,

(4.2) DA(a) ∩ Z(A) = {z ∈ C(Ẑ) : z = z∗ and fa 6 z 6 ga}.

Let us say that two maximally mixed bounded functionals ϕ and ψ are
equivalent if they generate the same Dixmier set, i.e., DA(ϕ) = DA(ψ).

PROPOSITION 4.1. Let A be a unital C∗-algebra with the Dixmier property. The
equivalence classes of maximally mixed, bounded functionals on A are in bijective corre-
spondence with the bounded functionals on the centre of A. The correspondence is given
by the restriction map ϕ 7→ ϕ|Z(A), for ϕ maximally mixed.

Proof. Any two equivalent functionals agree on the centre, so the mapping
is well defined on equivalence classes. To see that it is onto, fix a functional µ ∈
Z(A)∗. The set of all ϕ ∈ A∗ whose restriction to Z(A) is µ is a weak* compact
Dixmier set. It thus must contain maximally mixed functionals.

Let us now show that the mapping is injective. Let ϕ, ψ ∈ A∗ be two max-
imally mixed functionals that agree on Z(A). Suppose for a contradiction that
DA(ϕ) 6= DA(ψ). Then DA(ϕ) and DA(ψ) are disjoint. By the Hahn–Banach
theorem, we can find a ∈ A and real numbers t1 < t2 such that Re(ϕ′(a)) 6 t1
for all ϕ′ ∈ DA(ϕ) and Re(ψ′(a)) > t2 for all ψ′ ∈ DA(ψ). By Lemma 2.1,
Re(ϕ(a′)) 6 t1 and Re(ψ(a′)) > t2 for all a′ ∈ DA(a). This holds in particular for
a′ ∈ DA(a) ∩ Z(A). This contradicts that ϕ and ψ agree on Z(A).



MAXIMALLY UNITARILY MIXED STATES ON A C∗ -ALGEBRA 203

REMARK 4.2. The previous proposition implies that if A has the Dixmier
property then DA(ϕ), for ϕ ∈ S(A), contains a unique equivalence class of max-
imally mixed states; namely, the maximally mixed states that agree with ϕ on
Z(A). This is in general not true for C∗-algebras without the Dixmier property.
Take for example A to be a simple unital C∗-algebra with at least two tracial states
and let ϕ be a pure state of A. Then DA(ϕ) is the set of all states, so it contains
distinct tracial states (which are inequivalent maximally mixed states).

We need the following little lemma in the next theorem.

LEMMA 4.3. Let X be a Hausdorff topological space, let µ be a Radon probability
measure on X, and let f : X → R be a bounded lower semicontinuous function. Then∫

X

f dµ = sup
∫
X

g dµ,

where the supremum is taken over upper semicontinuous functions g : X → R which are
(pointwise) dominated by f .

Proof. Without loss of generality, f > 0. We may approximate f uniformly
by simple lower semicontinuous functions, i.e., positive scalar linear combina-
tions of characteristic functions of open sets. Thus, it suffices to handle the case
that f is the characteristic function of an open set, say f = χU .

In this case, since µ is inner regular, µ(X) is the supremum of measures of
compact sets K contained in U, so∫

X

f dµ = µ(X) = sup
K

µ(K) = sup
K

∫
X

χK dµ,

where the suprema are taken over compact sets contained in U; but now we are
done, since each χK is upper semicontinuous.

THEOREM 4.4. Let A be a unital C∗-algebra with the Dixmier property. Let ϕ ∈
A∗+. The following are equivalent:

(i) ϕ satisfies that

(4.3) ϕ(a) 6 sup{ϕ(z) : z ∈ DA(a) ∩ Z(A)} (a ∈ A+);

(ii) ϕ is maximally mixed.

Proof. (i)⇒ (ii) Suppose for a contradiction that there exists ψ ∈ DA(ϕ) such
that ϕ /∈ DA(ψ). Then there exist a self-adjoint element a and t ∈ R separating
DA(ψ) and ϕ. That is, ψ′(a) 6 t for all ψ′ ∈ DA(ψ) and ϕ(a) > t. Translating a
by a scalar multiple of the unit we may assume that it is positive. By Lemma 2.1,
we get that ψ(a′) 6 t for all a′ ∈ DA(a). From ψ ∈ DA(ϕ) we deduce that
ψ(a′) = ϕ(a′) for all a′ ∈ Z(A). Hence

ϕ(a)6sup{ϕ(a′) : a′∈DA(a)∩Z(A)}=sup{ψ(a′) : a′∈DA(a)∩Z(A)}6 t.

This contradicts that ϕ(a) > t.
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(ii) ⇒ (i) We may assume that ϕ 6= 0 and then, multiplying it by a scalar,
that it is a state. First, let us show that if a maximally mixed state ϕ satisfies (4.3)
then so do all the states equivalent to it. Let ϕ be a state that satisfies (4.3) and
let ψ ∈ DA(ϕ). Say ψ = lim

i
ϕ ◦ Ti, where (Ti)i is a net of mixing operators in

Mix(A). Let a ∈ A+. Since DA(Tia) ⊆ DA(a),

ϕ(Tia)6sup{ϕ(z) : z∈DA(Tia)∩Z(A)}6sup{ϕ(z) : z∈DA(a)∩Z(A)}.

Hence

ψ(a) = lim
i

ϕ(Ti · a) 6 sup{ϕ(z) : z ∈ DA(a) ∩ Z(A)}

= sup{ψ(z) : z ∈ DA(a) ∩ Z(A)},

where the last equality is valid since ϕ and ψ agree on Z(A).
By Proposition 4.1, it now suffices to show that every probability (Radon)

measure µ on the centre can be extended to a state ϕ on A satisfying (4.3). We do
this next.

For each a ∈ Asa let us define pµ(a) ∈ [0, ∞) by

pµ(a) :=
∫
Ẑ

g|a|(M)dµ(M),

where g|a| : Ẑ → [0, ∞) is the lower semicontinuous function on the spectrum
of the centre associated to |a| (as in (4.1) with |a| in place of a). Let us show that
pµ is a seminorm. Clearly pµ(ta) = |t|pµ(a) for any t ∈ R. To prove the triangle
inequality it suffices to show that g|a+b| 6 g|a| + g|b| for all a, b ∈ Asa. Let us
evaluate both sides of this inequality on an ideal M ∈ Max(A) such that A/M
has no bounded traces. Set a = qM(a) and b = qM(b) (the images of a and b in
A/M). Then we must show that ‖|a + b|‖ 6 ‖|a|‖+ ‖|b|‖. But this is clear from
the triangle inequality for ‖ · ‖ and the fact that the norm of an element is equal
to the norm of its absolute value. Suppose now that M is such that A/M has
bounded traces. Let τM be the unique tracial state on A factoring through A/M.
Then we must show that

τM(|a + b|) 6 τM(|a|) + τM(|b|).(4.4)

Let p ∈ A∗∗ be a projection such that p(a + b)p = (a + b)+. Multiplying by p
on the left and on the right of a + b 6 a+ + b+ we get (a + b)+ 6 pa+p + pb+p.
Evaluating τM (extended to a normal trace on A∗∗) on both sides we get

τM((a + b)+) 6 τM(a+) + τM(b+).

The same inequality, applied to −a and −b, yields that

τM((a + b)−) 6 τM(a−) + τM(b−).

Now adding both inequalities we get (4.4), as desired. Thus, pµ is a seminorm.
Since g|a| 6 ‖a‖, we also have that pµ(a) 6 ‖a‖ for all a ∈ Asa.
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For any self-adjoint central element z we have that∣∣∣ ∫ z(M)dµ(M)
∣∣∣ 6 ∫

|z(M)|dµ(M) = pµ(z).

So we can extend µ by the Hahn–Banach extension theorem to a self-adjoint func-
tional ϕ on A such that

|ϕ(a)| 6 pµ(a) (a ∈ Asa).

Notice that ϕ(1) = 1 and that ‖ϕ‖ 6 1, since pµ(a) 6 ‖a‖ for all a ∈ Asa. Hence,
ϕ is a state.

Let a ∈ A+. To establish (4.3), we will show that pµ(a) is dominated by
the right-hand side of (4.3) (though we do not need it, in fact this implies that
these two quantities are equal, as the reverse inequality is straightforward). Let
ε > 0. Since ga is lower semicontinuous, it follows from Lemma 4.3 that we
may find an upper semicontinuous function w ∈ C(Ẑ) such that w 6 ga and∫

w(M)dµ(M) >
∫

ga(M)dµ(M)− ε. By the Katetev–Tong insertion theorem,
we may find a continuous function z0 ∈ C(Ẑ)+ such that

max( fa, w) 6 z0 6 ga,

and therefore∫
z0(M)dµ(M) >

∫
w(M)dµ(M) >

∫
ga(M)dµ(M)− ε = pµ(a)− ε.

Thus
pµ(a) 6 sup{ϕ(z) : z ∈ DA(a) ∩ Z(A)},

as required.

COROLLARY 4.5. Let A be a unital C∗-algebra with the Dixmier property.
(i) S∞(A) is convex and weakly closed.

(ii) We have DA(ϕ + ψ) = DA(ϕ) + DA(ψ) for all ϕ, ψ ∈ A∗+ maximally mixed.

Proof. (i) Let us show first that S∞(A) is convex. Since a scalar multiple of a
maximally mixed functional is again maximally mixed, it suffices to show that if
ϕ, ψ ∈ A∗+ are maximally mixed, then ϕ+ψ is maximally mixed. So let ϕ, ψ ∈ A∗+
be maximally mixed. We show that ϕ + ψ satisfies (4.3). Let a ∈ A+ and ε > 0.
Since ϕ and ψ satisfy (4.3), there exist x, y ∈ DA(a) ∩ Z(A) such that

ϕ(a) 6 ϕ(x) + ε and ψ(a) 6 ψ(y) + ε.

By the structure of DA(a) ∩ Z(A) for self-adjoint a we know that it is a lattice
(see the discussion preceding Proposition 4.1 and (4.2) in particular). So we can
choose z ∈ DA(a) ∩ Z(A) such that x, y 6 z. Then (ϕ + ψ)(a) 6 (ϕ + ψ)(z) + 2ε.
This shows that ϕ + ψ satisfies (4.3) and is therefore maximally mixed.

Since S∞(A) is convex and norm closed (Theorem 3.2), it is also weakly
closed (i.e., closed in the σ(A∗, A∗∗) topology).
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(ii) The inclusion DA(ϕ + ψ) ⊆ DA(ϕ) + DA(ψ) is straightforward: if T ∈
Mix(A∗) then

T(ϕ + ψ) = Tψ + Tψ ∈ DA(ϕ) + DA(ψ),

and letting T range through Mix(A∗), T(ϕ + ψ) ranges through all of DA(ϕ + ψ)
(Lemma 2.2).

Let ϕ, ψ ∈ A∗+ be maximally mixed and suppose, for a contradiction, that
there exist ϕ′ ∈ DA(ϕ) and ψ′ ∈ DA(ψ) such that ϕ′ + ψ′ /∈ DA(ϕ + ψ). Then
there exist a ∈ Asa and t ∈ R such that ρ(a) 6 t for all ρ ∈ DA(ϕ + ψ) while
(ϕ′ + ψ′)(a) > t. Translating a by a scalar multiple of the unit, and changing t
accordingly, we may assume that a is positive. By Lemma 2.1, (ϕ + ψ)(b) 6 t for
all b ∈ DA(a). Since ϕ + ψ and ϕ′ + ψ′ agree on Z(A), we obtain that

(ϕ′ + ψ′)(b) 6 t for all b ∈ DA(a) ∩ Z(A).

But ϕ′ + ψ′ is maximally mixed by the proof of (i). It follows by Theorem 4.4 that
(ϕ′ + ψ′)(a) 6 t, which contradicts our choice of a and t.

REMARK 4.6. The C∗-algebras in Examples 3.16 and 3.17 both have the
Dixmier property (this can be deduced from Theorem 1.1 of [5]). So S∞(A) may
fail to be weak* closed for C∗-algebras with the Dixmier property.

THEOREM 4.7. Let A be a unital C∗-algebra with the Dixmier property. The fol-
lowing are equivalent:

(i) the set S∞(A) is weak* closed;
(ii) the set of maximal ideals M such that A/M either is isomorphic to C or has no

bounded traces is a closed subset of Prim(A);
(iii) for each self-adjoint a ∈ A, the set DA(a) ∩ Z(A) contains a maximal element.

Proof. (i)⇒ (ii) This is Proposition 3.15 (no Dixmier property required).
(ii)⇒ (iii) By translating, we may assume that a > 0. Let X denote the set

of maximal ideals M ∈ Max(A) such that A/M either is isomorphic to C or has
no bounded traces, and we assume that this set is closed in Prim(A). It is evident
from the description of DA(a) ∩ Z(A), at the beginning of this section, that we
need only show that the function ga : Ẑ → R from (4.1) is continuous. Since ga is
always lower semicontinuous, it remains to show that it is upper semicontinuous.
Let t > 0. Set

Y := {M ∈ Max(A) : T(A/M) 6= ∅},
which is closed in Max(A) by Theorem 2.6 of [5]; for M ∈ Y, A has a unique
tracial state τM that factors through A/M. Since τM depends weak* continuously
on M ∈ Y ([5], Theorem 2.6),

{M ∈ Y : τM(a) > t}

is closed in Max(A). Also,

{M ∈ Prim(A) : ‖qM(a)‖ > t}
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is a compact subset of Prim(A) ([6], Proposition 3.3.7), from which (along with
that X is closed in Prim(A)) we deduce that

{M ∈ Prim(A) : ‖qM(a)‖ > t} ∩ X

is compact. Since Max(A) is Hausdorff, the set above is also closed in Max(A).
Therefore,

{M ∈ Y : τM(a) > t} ∪ ({M ∈ Prim(A) : ‖qM(a)‖ > t} ∩ X)

is closed in Max(A). But this set is g−1
a ([t, ∞)), and therefore, ga is upper semi-

continuous.
(iii) ⇒ (i) For each self-adjoint element a ∈ A, let za denote the maximal

element of DA(a) ∩ Z(A), which exists since we are assuming (iii). Given a state
ϕ, the inequality (4.3) is equivalent to ϕ(a) 6 ϕ(za) for all a ∈ A+. The latter
inequality is clearly preserved under weak* limits. By Theorem 4.4, S∞(A) is
weak* closed.

We recover as a corollary Alberti’s theorem on the maximally mixed states
of a von Neumann algebra ([1], Theorem 5.2 and [3], Theorem 4-12).

COROLLARY 4.8. Let A be a von Neumann algebra. Then S∞(A) agrees with the
weak* closure of the convex hull of the set of tracial states and type (B) states.

Proof. Let A = Af ⊕ Api be the decomposition of A into a finite and a prop-
erly infinite von Neumann algebra. Let J ⊆ Api denote the strong Jacobson rad-
ical of Api, i.e, the intersection of all maximal ideals of Api. By Proposition 2.3
of [8], N ∈ Prim(Api) is a maximal ideal of Api if and only if J ⊆ N. It follows
that N ∈ Prim(A) is maximal (in A) and such that A/N has no bounded traces
if and only if Af ⊕ J ⊆ N. This set is thus a closed subset of Prim(A). On the
other hand, the set of M ∈ Prim(A) such that A/M ∼= C is a closed subset of
Prim(A) (indeed, these are the M ∈ Prim(A) that contain the ideal generated
by the commutators of A, which is the smallest ideal the quotient by which is
abelian). So the union of these two sets is closed. Moreover, A has the Dixmier
property (by Dixmier’s approximation theorem). Thus, by the previous theorem,
S∞(A) is weak* closed. The result then follows from Theorem 3.10.

We end this section by taking advantage of the insight we have gained in the
case of the Dixmier property, to provide some examples alluded to earlier. The
first example shows that the set of maximally mixed states may be larger than the
norm-closed convex hull of the tracial states and type (B) states.

EXAMPLE 4.9. Let B be a simple unital C∗-algebra with no bounded traces,
and set A := C([0, 1], B). If ϕ is in the norm-closed convex hull of the type (B)
states, then the state that ϕ induces on the centre is in the norm-closed convex
hull of point-masses, and therefore corresponds to a discrete measure on [0, 1].
However, A has the Dixmier property by Theorem 2.6 of [5] and hence S∞(A) is
weak* closed by Theorem 4.7 ((ii) ⇒ (i)). Since every pure state of A is of type
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(B), it follows from Theorem 3.10 that S∞(A) = S(A). So the norm-closed convex
hull of the type (B) states (and tracial states, as there are none) is only a small part
of S∞(A) in this case.

The next example addresses the converse to Theorem 3.1.

EXAMPLE 4.10. Let A be a simple unital C∗-algebra with no bounded traces.
Then A has the Dixmier property [7]. Let ϕ be a nonzero self-adjoint functional
on A such that ϕ(1) = 0. Then ϕ is not maximally mixed, because if it were, then
since the zero functional is maximally mixed, it would follow by Proposition 4.1
that DA(ϕ) = DA(0) = {0}. However, by Corollary 3.12(ii), both the positive
and negative parts of ϕ are maximally mixed.

5. HAUSDORFF PRIMITIVE SPECTRUM

Here we impose a different property — Hausdorffness of the primitive ideal
space — to make the study of the structure of S∞(A) tractable.

Given a C∗-algebra A, we continue to denote by T(A) the set of tracial states
on A.

THEOREM 5.1. Let A be a unital C∗-algebra with Hausdorff primitive spectrum.
(i) Suppose that T(A) = ∅. Then every state of A is maximally mixed.

(ii) Suppose that T(A) 6= ∅. Then the set

Y := {M ∈ Max(A) : T(A/M) 6= ∅}

is non-empty and closed in Max(A) and

S∞(A) = co(T(A) ∪ S(A)J),

where J :=
⋂

M∈Y
M is a proper closed ideal of A, and S(A)J consists of all states in S(A)

which arise as extensions of states in S(J).
(iii) Questions 3.13 and 3.14 have affirmative answers for A.

Proof. Observe first that, since Prim(A) is Hausdorff, Prim(A) = Max(A) =
Glimm(A), and these spaces are all homeomorphic to Max(Z(A)) via the assign-
ment M 7→ M ∩ Z(A). For each maximal ideal N of Z(A), let ϕN be the unique
pure state of Z(A) with kernel equal to N.

(i) Since the continuous functions on the compact Hausdorff space Prim(A)
separate the points, it follows from the Dauns–Hofmann theorem that A is a cen-
tral C∗-algebra. Combining this with the fact that T(A) is empty, we obtain from
Theorem 2.6 of [5] that A has the Dixmier property. Every pure state of A is of
type (B), so by Theorem 3.10, S∞(A) is weak* dense in S(A). It follows from
Theorem 4.7 that every state of A is maximally mixed.

(ii) Since T(A) is non-empty, it contains an extreme point τ by the Krein–
Milman theorem. By Lemma 2.4 of [5], τ|Z(A) is a pure state of Z(A) and hence
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annihilates M ∩ Z(A) for some M ∈ Max(A). By the Cauchy–Schwartz inequal-
ity for states, τ annihilates the Glimm ideal (M ∩ Z(A))A. But, as noted above,
(M∩ Z(A))A = M and so τ induces a tracial state of A/M. Thus Y is non-empty.
Moreover, τ(J) = {0} and so, by the Krein–Milman theorem, every tracial state
of A annihilates J.

To show that Y is closed, suppose that (Mi) is a net in Y that is convergent
to M ∈ Max(A). For each i, let τi be a tracial state of A that vanishes on Mi.
Since T(A) is weak∗ compact, there exist τ ∈ T(A) and a subnet (τij) such that
τij →j τ. Then

τ|Z(A) = lim
j

ϕMij
∩Z(A) = ϕM∩Z(A).

It follows from the Cauchy–Schwartz inequality for states that τ annihilates the
Glimm ideal (M ∩ Z(A))A and so τ induces a tracial state of A/M as before.
Thus M ∈ Y, as required.

Since Y is closed, every maximal ideal of A/J has the form M/J for some
M ∈ Y and hence every simple quotient of A/J has a tracial state. It follows by
Corollary 3.11 that S∞(A/J) = T(A/J). Letting S2 be the set of maximally mixed
states of S∞(A) which factor through A/J, it follows by Theorem 3.6(ii) that

S2 = S∞(A/J) ◦ qJ = T(A/J) ◦ qJ = T(A).

Under the Dauns–Hofmann isomorphism between Z(A) and C(Prim(A)),
Z(J) corresponds to C0(Prim(J)), where Prim(J) is identified with an open sub-
set of Prim(A) (namely Prim(A) \ Y) in the usual way. It follows that Z(J) sep-
arates the primitive ideals of J + C1 and hence J + C1 is a central C∗-algebra.
Since J has no tracial states (this follows from Lemma 2.2 of [5]), J + C1 has a
unique tracial state, namely the one factoring through the quotient (J + C1)/J.
Hence by Theorem 2.6 of [5], J +C1 has the Dixmier property. We also have that
Prim(J +C1) = Max(J +C1), with every simple quotient being either traceless
or isomorphic to C, and thus by Theorem 4.7, S∞(J +C1) is weak* closed. Since
every pure state is either type (B) or tracial, it now follows from Theorem 3.10
that S∞(J + C1) = S(J + C1). By Theorem 3.6(i) (used once with J C J + C1
and again with J C A), S(A)J ⊆ S∞(A). Thus, letting S1 be the set of maximally
mixed states of A which are extensions of states from J, we have

S1 = S(A)J .

By Theorem 3.6(iii), we have

S∞(A) = co(S1 ∪ S2) = co(S(A)J ∪ T(A)),

as required.
(iii) It is evident in both the cases covered by (i) and (ii) that S∞(A) is convex.

Now let ϕ, ψ ∈ A∗+ be maximally mixed, and let us argue that DA(ϕ + ψ) =
DA(ϕ) + DA(ψ). In case (i), we saw that A has the Dixmier property, so this
holds by Corollary 4.5(ii).
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In case (ii), write ϕ = ϕ1 + ϕ2 and ψ = ψ1 +ψ2 where ϕ1, ψ1 are positive tra-
cial functionals and ϕ2, ϕ2 are non-negative scalar multiples of states in S(A)J ; by
Theorem 3.6(i), ϕ2|J and ψ2|J are maximally mixed functionals on J. Thus, so are
their norm-preserving positive extensions to J +C1 (Theorem 3.6(i)). Since J +C1
has the Dixmier property (seen in the proof of (ii)), we have by Corollary 4.5(ii)
that

DJ+C1((ϕ2 + ψ2)|J+C1) = DJ+C1(ϕ2|J+C1) + DJ+C1(ψ2|J+C1).
Further, by Proposition 3.5(i), the same holds restricting ϕ2 and ψ2 to J:

DJ((ϕ2 + ψ2)|J) = DJ(ϕ2|J) + DJ(ψ2|J).
Then we have

DA(ϕ + ψ) = DA(ϕ1 + ϕ2 + ψ1 + ψ2) = DA(ϕ1 + ψ1) + DA(ϕ2 + ψ2)

= DA(ϕ1) + DA(ψ1) + DJ((ϕ2 + ψ2)|J) ◦ ι∗J

= DA(ϕ1) + DA(ψ1) + (DJ(ϕ2|J) + DJ(ψ2)) ◦ ι∗J

= DA(ϕ1) + DA(ψ1) + DA(ϕ2) + DA(ψ2) = DA(ϕ) + DA(ψ)

where we used Proposition 3.5(i) in the third and fifth equalities, and Proposi-
tion 3.9 (the case that one of the functionals is tracial) in the second, third, and
final equalities.
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