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ABSTRACT. The bounded real lemma, i.e., the state-space linear matrix in-
equality characterization (referred to as Kalman–Yakubovich–Popov or KYP-
inequality) of when an input/state/output linear system satisfies a dissipa-
tion inequality, has recently been studied for infinite-dimensional discrete-
time systems in a number of different settings: with or without stability as-
sumptions, with or without controllability/observability assumptions, with
or without strict inequalities. In these various settings, sometimes unbounded
solutions of the KYP-inequality are required while in other instances bounded
solutions suffice. In a series of reports we show how these diverse results can
be reconciled and unified. This first instalment focusses on the state-space-
similarity approach to the bounded real lemma. We shall show how these
results can be seen as corollaries of a new state-space-similarity theorem for
infinite-dimensional linear systems.
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1. INTRODUCTION

We consider the discrete-time linear system

(1.1) Σ :=
{

x(n + 1) = Ax(n) + Bu(n),
y(n) = Cx(n) + Du(n),

(n ∈ Z)

where A : X → X , B : U → X , C : X → Y and D : U → Y are bounded linear
Hilbert space operators, i.e., X , U and Y are Hilbert spaces and the system matrix
associated with Σ takes the form

(1.2) M =

[
A B
C D

]
:
[
X
U

]
→
[
X
Y

]
.
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We refer to the pair (C, A) as an output pair and to the pair (A, B) as an input
pair. In this case input sequences u = (u(n))n∈Z, with u(n) ∈ U , are mapped
to output sequences y = (y(n))n∈Z, with y(n) ∈ Y , through the state sequence
x = (x(n))n∈Z, with x(n) ∈ X . With the system Σ we associate the transfer
function given by

(1.3) FΣ(z) = D + zC(I − zA)−1B.

Since A is bounded, FΣ is defined and analytic on a neighborhood of 0 in C. We
shall be interested in the case where FΣ admits an analytic continuation to the
open unit disk D such that the supremum norm ‖FΣ‖∞ of FΣ over D is at most
one, i.e., FΣ has analytic continuation to a function in the Schur class

S(U ,Y) =
{

F : D 7→
holo
L(U ,Y) : ‖F(z)‖ 6 1 for all z ∈ D

}
.

A well-known sufficient condition for this to be the case is that the system
matrix M be contractive. We review the elementary argument. Note first that∥∥ [ A B

C D
] ∥∥ 6 1 implies that ‖A‖ 6 1 and hence |z| < 1 implies that ‖zA‖ < 1.

Therefore I − zA is boundedly invertible, and hence the transfer function FΣ is
well-defined and analytic on the open unit disk D. For any u ∈ U and z ∈ D we
have the identity

(1.4)
[

A B
C D

] [
z(I − zA)−1Bu

u

]
=

[
(I − zA)−1Bu

FΣ(z)u

]
.

For simplicity let us set x = z(I − zA)−1Bu and x′ = (I − zA)−1Bu, so that we
can rewrite (1.4) as the feedback system

(1.5)

[
A B
C D

] [
x
u

]
=

[
x′

FΣ(z)u

]
,

x = zx′.

The fact that
∥∥ [ A B

C D
] ∥∥ 6 1 now implies that

‖x′‖2 + ‖FΣ(z)u‖2 6 ‖x‖2 + ‖u‖2.

Rewrite this and use that ‖x‖2 = |z|2‖x′‖2 6 ‖x′‖2 to get

‖FΣ(z)u‖2 6 ‖x‖2 − ‖x′‖2 + ‖u‖2 6 ‖u‖2.

Since u ∈ U and z ∈ D were chosen arbitrarily, we can conclude that ‖FΣ(z)‖ 6 1
for all z ∈ D, i.e., FΣ is in the Schur class S(U ,Y). For a circuit-theoretic perspec-
tive on this argument, we refer to the paper of Helton–Zemanian [14].

The same argument goes through if we suppose that the system matrix M
is contractive when some other equivalent norm

(1.6) ‖x‖H = 〈Hx, x〉1/2, with H strictly positive-definite on X ,

is used on the state space. Here we use the conventions: given a selfadjoint oper-
ator H on a Hilbert space X , we say:
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(1) H is strictly positive-definite (written H � 0) if there is a δ > 0 so that
〈Hx, x〉 > δ‖x‖2 for all x ∈ X ,

(2) H is positive-definite if 〈Hx, x〉 > 0 for all nonzero x ∈ X , and
(3) H is positive-semidefinite if 〈Hx, x〉 > 0 for all x ∈ X .

Note that there is no distinction between strictly positive-definite and positive-
definite if X is finite-dimensional. The condition that the system matrix M =[

A B
C D

]
is contractive with the H-norm (1.6) used on the state space translates to:

there exists a bounded strictly positive-definite operator H on X so that the Kalman–
Yakubovich–Popov inequality holds:

(1.7)
[

A B
C D

]∗ [H 0
0 IY

] [
A B
C D

]
�
[

H 0
0 IU

]
.

Indeed, in this case FΣ is also the transfer function of the system Σ̃ with contrac-
tive system matrix M̃ obtained after a state space similarity with H1/2, i.e.,

M̃ =

[
H1/2 AH−1/2 H1/2B

CH−1/2 D

]
.

Since A is similar to the contraction H1/2 AH−1/2, we have rspec(A) 6 1, so that
FΣ in (1.3) is defined and analytic on D. Thus the KYP-inequality (1.7) can have a
bounded strictly positive-definite solution H only in case rspec(A) 6 1.

For future reference, note that the KYP-inequality (1.7) can be rewritten in
spatial form as

(1.8)
∥∥∥∥[H1/2 0

0 IU

] [
x
u

]∥∥∥∥2

−
∥∥∥∥[H1/2 0

0 IY

] [
A B
C D

] [
x
u

]∥∥∥∥2

> 0 (x ∈ X , u ∈ U ).

By a Schur-complement argument (with the obvious invertibility assump-
tion), the KYP-inequality (1.7) can be converted into Riccati form

H − A∗HA− C∗C− (A∗HB + C∗D)(I − B∗HB− D∗D)−1(B∗HA + D∗C) � 0

which one can then attempt to solve for H directly. We do not pursue this direc-
tion and will refer to (1.7) as the KYP-inequality for the unknown H. See [6] for a
recent treatment of this Riccati form of the KYP-inequality, which also considers
the case where equality occurs.

The bounded real lemma is concerned with the converse question: Given
a system Σ as in (1.1) with system matrix M =

[
A B
C D

]
and transfer function FΣ(z) =

D + zC(I − zA)−1B, defined at least in a neighborhood of 0, give explicit conditions
in terms of M =

[
A B
C D

]
under which FΣ has analytic continuation to a function in the

Schur class S(U ,Y). We mention two such versions for the finite-dimensional
situation.

THEOREM 1.1 (Standard bounded real lemma (see [1])). Suppose that Σ is a
discrete-time linear system as in (1.1) with X , U and Y finite dimensional, say U = Cr,
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Y = Cs, X = Cn, so that the system matrix M has the form

(1.9) M =

[
A B
C D

]
:
[
Cn

Cr

]
→
[
Cn

Cs

]
and the transfer function FΣ is equal to a rational matrix function of size s× r. Assume
that the realization (A, B, C, D) is minimal, i.e., the output pair (C, A) is observable
and the input pair (A, B) is controllable:

(1.10)
n⋂

k=0

Ker CAk = {0} and spank=0,1,...,n−1Im AkB = X = Cn.

Then FΣ is in the Schur class S(Cr,Cs) if and only if there is an n× n positive-definite
matrix H satisfying the KYP-inequality (1.7).

In the strict version of the bounded real lemma, one replaces the minimality
condition with a stability condition to characterize the strict Schur class So(U ,Y):

So(U ,Y) =
{

F : D 7→
holo
L(U ,Y) : sup

z∈D
‖F(z)‖ 6 ρ for some ρ < 1

}
.

Then we have the following result.

THEOREM 1.2 (Strict bounded real lemma (see [16])). Suppose that the dis-
crete-time linear system Σ is as in (1.1) withX , U and Y finite dimensional, say U = Cr,
Y = Cs, X = Cn, i.e., the system matrix M is as in (1.9). Assume that A is stable, i.e.,
all eigenvalues of A are inside the open unit disk D, so that rspec(A) < 1 and the transfer
function FΣ(z) is analytic on a neighborhood of D. Then FΣ(z) is in the strict Schur class
So(Cr,Cs) if and only if there is a positive-definite matrix H ∈ Cn×n so that the strict
KYP-inequality holds:

(1.11)
[

A B
C D

]∗ [H 0
0 IY

] [
A B
C D

]
≺
[

H 0
0 IU

]
.

The discussion above concerning the sufficiency of the existence of a so-
lution H to the KYP-inequality for Σ for SΣ to be in the Schur class suggests
the following proof of the necessity side of Theorem 1.1 based on the Kalman
state-space-similarity theorem from linear systems theory. Suppose that Σ is a
finite-dimensional minimal system with system matrix M =

[
A B
C D

]
such that FΣ

has analytic continuation to a Schur-class function. It is known from circuit the-
ory (see e.g. [1]) that the rational Schur-class function FΣ also has a realization
as FΣ′ where Σ′ is a system with contractive system matrix M′ =

[
A′ B′
C′ D

]
. By

using Kalman reduction theory, we may suppose that Σ′ is controllable and ob-
servable (i.e., minimal), and hence that Σ and Σ′ are both minimal. Then the
Kalman state-space-similarity theorem implies that there is a bounded invertible
matrix Γ so that M′ =

[
ΓAΓ−1 ΓB
CΓ−1 D

]
. Since ‖M′‖ 6 1, it is easy to check that

H = Γ∗Γ is a positive-definite solution of the KYP-inequality for the system Σ.
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As for Theorem 1.2, the proof of Petersen–Anderson–Jonkheere uses a regulariza-
tion technique to reduce the strict bounded real lemma to the standard bounded
real lemma.

For the case where the state space X and the input/output spaces U and Y
are all allowed to be infinite-dimensional, the results on the bounded real lemma
are more recent. It turns out that the generalizations of Theorems 1.1 and 1.2
to the infinite-dimensional situation are quite different, in that the first involves
unbounded operators while the second does not.

For an infinite-dimensional system Σ as in (1.1) much depends on what is
meant by controllable and observable. Here are a few possibilities.

DEFINITION 1.3. Let (C, A) be an output pair and (A, B) an input pair. De-
fine the reachability space Rea (A|B) and the observability space Obs (C|A) by

Rea (A|B) = span{Im AkB : k = 0, 1, 2, . . .},(1.12)

Obs (C|A) = span{Im A∗kC∗ : k = 0, 1, 2, . . .} = Rea (A∗|C∗),(1.13)

or, in the terminology of Opmeer–Staffans ([15], Definition 3.1), Rea (A|B) is the
set of finite-time reachable states for the input pair (A, B), while Obs (C|A) is the set
of finite-time reachable states for the input pair (A∗, C∗). We say that the pair (C, A)
is exactly observable if Obs (C|A) = X and approximately observable (or simply ob-
servable for short) if Obs (C|A) is dense in X . Note that (C, A) being observable is

equivalent to
∞⋂

n=0
Ker CAn = {0}. Similarly, we say that the pair (A, B) is exactly

controllable if Rea (A|B) = X and approximately controllable (or simply controllable
for short) if Rea (A|B) is dense in X .

Another notion of minimality involves the observability operator Wo and
controllability operator Wc associated with the system Σ, which in the present
context may be unbounded operators; see (2.1)–(2.4) for their definitions and
Propositions 2.1 and 2.3 for some of their properties. We then say that Σ is
`2-exactly observable in case Wo is densely defined and has adjoint operator W∗o
(which is automatically closed and densely defined) which is surjective (X =
W∗oD(W∗o)). We say that Σ is `2-exactly controllable in case the adjoint controlla-
bility operator W∗c is densely defined and has adjoint operator, the controllability
operator Wc, (also automatically closed and densely defined) which is surjective
(X = WcD(Wc)). If Σ is a system with system matrix M =

[
A B
C D

]
as in (1.2),

we say that Σ is controllable/exactly controllable/`2-exactly controllable if the input
pair (A, B) is controllable/exactly controllable/`2-exactly controllable, respec-
tively. Similarly, we say that Σ is observable/exactly observable/`2-exactly observable
if the output pair (C, A) is observable/exactly observable/`2-exactly observable,
respectively. In case Σ is both controllable/exactly controllable/`2-exactly con-
trollable and observable/exactly observable/`2-exactly observable, we say that
the system Σ is minimal/exactly minimal/`2-exactly minimal, respectively.



230 JOSEPH A. BALL, GILBERT J. GROENEWALD, AND SANNE TER HORST

As we shall see, either notion of exact controllability/observability implies
(approximate) controllability/observability, but in general neither notion of exact
controllability/observability implies the other, except with some additional hy-
potheses imposed (see Proposition 2.7 below). Using these notions we obtain the
following variation on Theorem 1.1.

THEOREM 1.4 (Infinite-dimensional standard bounded real lemma). Let Σ
be a discrete-time linear system as in (1.1) with system matrix M as in (1.2) and transfer
function FΣ defined by (1.3).

(i) Suppose that the system Σ is minimal, i.e., the input pair (A, B) is controllable
and the output pair (C, A) is observable. Then the transfer function FΣ has an analytic
continuation to a function in the Schur class S(U ,Y) if and only if there exists a general-
ized positive-definite solution H of the KYP-inequality (1.7) in the following generalized
sense: H is a closed, possibly unbounded, densely defined, injective, positive-definite op-
erator on X with domain D(H1/2) satisfying

(1.14) AD(H1/2) ⊂ D(H1/2), BU ⊂ D(H1/2),

and the spatial form of the KYP-inequality holds on the appropriate domain:

(1.15)
∥∥∥∥[H1/2 0

0 IU

][
x
u

]∥∥∥∥2

−
∥∥∥∥[H1/2 0

0 IY

][
A B
C D

][
x
u

]∥∥∥∥2

>0 (x∈D(H1/2), u∈U ).

(ii) Suppose that Σ is exactly minimal. Then the transfer function FΣ has an analytic
continuation to a function in the Schur class S(U ,Y) if and only if there exists a bounded
strictly positive-definite solution H of the KYP-inequality (1.7). In this case A has a
spectral radius of at most one, and hence FΣ is in fact analytic on D.

(iii) Statement (ii) above continues to hold if the “exactly minimal” hypothesis is re-
placed by the hypothesis that Σ be “`2-exactly minimal”.

Let us remark here that most texts do not mention statements (ii) or (iii) of
Theorem 1.4; indeed, arguably it is rare that a nonrational matrix function has
a realization Σ ∼ M =

[
A B
C D

]
which is exactly minimal or `2-exactly minimal.

Nevertheless, we identify a class of examples where (A, B) is in fact both exactly
controllable and `2-exactly controllable and (C, A) is both exactly observable and
`2-exactly observable; either of these classes serves as the stepping stone for our
proof of Theorem 1.6 below which is a simple adaptation of the regularization
technique of Petersen–Anderson–Jonkheere [16] used in their proof of the finite-
dimensional, rational case.

On the other hand statement (i) of Theorem 1.4 has appeared in the work of
Arov–Kaashoek–Pik [5] (see Theorems 4.1 and 1.2 there). Parallel results for the
continuous-time setting are developed in the paper of Arov–Staffans [7].

We shall see that all three flavors of the standard bounded real lemma as
stated in Theorem 1.4 follow the sketch outlined above for the finite-dimensional,
rational case, where one uses the contractive realization theorem for (not neces-
sarily rational) Schur-class functions (see e.g. Theorem 5.2 of [8] or Theorem VI.3.1
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of [19] as well as [3]), and an appropriate infinite-dimensional state-space-simi-
larity theorem as encoded in the following theorem.

THEOREM 1.5 (Infinite-dimensional state-space-similarity theorem). Let Σ
and Σ′ be two systems with respective system matrices

M =

[
A B
C D

]
:
[
X
U

]
→
[
X
Y

]
, M′ =

[
A′ B′

C′ D′

]
:
[
X ′
U

]
→
[
X ′
Y

]
where U , X , X ′, Y are all possibly infinite-dimensional Hilbert spaces. Then:

(i) Suppose that Σ and Σ′ are both minimal, i.e., both are (approximately) control-
lable and (approximately) observable. Then Σ and Σ′ have transfer functions FΣ and FΣ′

agreeing on some neighborhood N of the origin

FΣ(λ) = FΣ′(λ) for λ ∈ N

if and only if Σ and Σ′ are pseudo-similar in the following sense (see e.g. Section 3 of [5]):
D = D′ and there exists an injective, closed, linear operator Γ : X → X ′ so that

(1.16)

D(Γ) is dense in X , Im Γ is dense in X ′,
AD(Γ) ⊂ D(Γ), ΓA|D(Γ) = A′Γ,

BU ⊂ D(Γ), B′ = ΓB,

C|D(Γ) = C′Γ.

(ii) Suppose that Σ is exactly minimal while Σ′ is (approximately) minimal. Then FΣ

and FΣ′ are identical on a neighborhood of 0 if and only if Σ and Σ′ are similar, i.e., there
is a bounded and boundedly invertible linear operator Γ : X → X ′ so that

(1.17)
[

A′ B′

C′ D′

]
=

[
ΓAΓ−1 ΓB
CΓ−1 D

]
.

(iii) Suppose that Σ is `2-exactly minimal, while Σ′ is (approximately) minimal and
has bounded controllability operator W′c as well as bounded observability operator W′o.
Then FΣ and FΣ′ are identical on a neighborhood of 0 if and only if Σ and Σ′ are similar
as described in item (ii).

We note that item (i) in Theorem 1.5 has been known for some time; one can
trace its origins to the work of Helton ([13], Theorem 3.2 ) and of Ball–Cohen ([8],
Theorem 3.2) with the fact that the pseudo-similarity can be taken to be closed
added later by Arov [2]. Indeed, this state-space-pseudo-similarity theorem is
the main ingredient behind the proof of the first flavor of the infinite-dimensional
standard bounded real lemma given above (item (i) in Theorem 1.4) in the work of
Arov–Kaashoek–Pik [5]. Essentially the same proof can be used to prove items (ii)
and (iii) in Theorem 1.4, but with items (ii) and (iii) respectively from Theorem 1.5
(introduced we believe here for the first time) used as the relevant state-space-
similarity theorem in place of item (i) from Theorem 1.5.
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For the reader’s convenience we include a complete, self-contained proof of
part (i) of Theorem 1.5, as the same framework applies to the proof of the new
results, namely, items (ii) and (iii) in Theorem 1.5.

Furthermore, with respect to statement (i) we mention that there exist sys-
tems Σ having transfer function FΣ in the Schur class S(U ,Y) such that every
generalized positive-definite solution H of the spatial KYP-inequality (1.15) is
unbounded with unbounded inverse H−1 (see Section 4.5 of [5]).

On the other hand, the strict bounded real lemma extends to the infinite-
dimensional setting in essentially the same form as for the finite-dimensional
case.

THEOREM 1.6 (Infinite-dimensional strict bounded real lemma). Let Σ be a
discrete-time linear system as in (1.1) with system matrix M as in (1.2) and transfer
function FΣ defined by (1.3). Assume that A is exponentially stable, i.e., rspec(A) < 1.
Then the transfer function FΣ is in the strict Schur class So(U ,Y) if and only if there
exists a bounded strictly positive-definite solution H of the strict KYP-inequality (1.11).

This result is asserted in a number of papers in the engineering literature, in
particular in page 1490 of [12] where it is attributed to Yakubovich [22], [23]; how-
ever it appears that Yakubovich’s stated result must be combined with some ad-
ditional (infinite-dimensional) inertia theorems to get the precise statement here,
namely that the operator H is not only bounded selfadjoint but also (invertible)
positive-definite. The relatively recent paper of Rantzer [17] presents a new el-
ementary proof using convexity analysis for the finite-dimensional case. The
infinite-dimensional version of the result appears implicitly in the paper of Ben-
Artzi–Gohberg–Kaashoek [10], where the result is given in the more complicated
context of time-varying systems with dichotomy.

The original inspiration for the present paper was to resolve the apparent
discrepancies in these infinite-dimensional versions of the bounded real lemma,
where in some instances it appears that unbounded operators are required ([4],
[5]) while in other instances one gets away with bounded operators just as in
the finite-dimensional case [10], [12]. A first inspection of Theorems 1.4 and 1.6
suggests that this issue can be resolved by carefully distinguishing between the
standard and the strict bounded real lemmas: one requires the possibility of un-
bounded positive-definite solutions of the KYP-inequality in the standard case
but gets away with only bounded and boundedly invertible solutions in the strict
case.

Let us mention now how our results relate to a couple of other approaches
which have appeared in the literature.

1. It is easy to see that a system Σ′ being exactly minimal implies that Σ is
in particular (approximately) minimal. Hence in item (ii) of Theorem 1.5, the result
still holds if the minimality assumption on Σ′ is replaced by an exact minimality
hypothesis, in which case the hypothesis in item (ii) of Theorem 1.5 assumes the
more symmetric form: assume that both Σ and Σ′ are exactly minimal. Similarly,
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we shall see as a consequence of the results in Section 2 (specifically, Corollary 2.5
and items (iv) and (ix) in Proposition 2.7) that `2-exact minimality implies bound-
edness of the associated observability and controllability operators Wo and Wc as
well as (approximate) minimality. Hence the result of item (iii) in Theorem 1.5 still
holds if we impose the more symmetric assumption: both Σ and Σ′ are `2-exactly
minimal. In the language of Chakhchoukh–Opmeer [11], the content of items (ii)
and (iii) in Theorem 1.5 is then that either of the two conditions (i) exact minimal-
ity or (ii) `2-exact minimality gives a notion of canonical realization which leads to a
good state-space isomorphism theorem, but with the caveat that not all transfer
functions have such canonical realizations. The approach of [11] to a good state-
space isomorphism theorem, on the other hand, is to extend the category where
state spaces are to reside from Hilbert spaces to locally convex topological vec-
tor spaces which are Hausdorff and barrelled, and then to assume that the given
systems are minimal in the sense that neither has a nontrivial Kalman reduction.

2. Willems [20], [21] has given an energy-dissipation interpretation of posi-
tive-definite solutions H of the KYP-inequality as follows. We view the function
S : x 7→ ‖x‖2

H := 〈Hx, x〉X as a measure of energy stored by the state x in the
state space X . The KYP-inequality (1.7) can then be rewritten as

(1.18) S(x(n + 1))− S(x(n)) 6 ‖u(n)‖2 − ‖y(n)‖2

which should hold for any system trajectory (u(n), x(n), y(n))n∈Z of (1.1). Let
us say that a function S : X → R+ is a storage function for the system Σ if the
energy balance relation (1.18) holds over all trajectories of the system, subject to
the additional normalization condition

(1.19) min
x∈X

S(x) = S(0) = 0.

In words this says: the net energy stored by the system in the transition from state
x(n) to x(n + 1) is no more than the net energy supplied to the system from the out-
side environment, as measured by the supply rate s(u(n), y(n)) = ‖u(n)‖2−‖y(n)‖2.
In a sequel to this paper [9], we show how to arrive at the infinite-dimensional
bounded real lemmas as presented here via explicit computation of extremal
Willems storage functions, rather than via application of infinite-dimensional
state-space-similarity theorems as is done here.

The paper is organized as follows. After the current Introduction, Section 2
develops more precise statements concerning observability operators Wo and
controllability operators Wc needed in the sequel for the general unbounded set-
ting. Section 3 proves the new parts (ii) and (iii) of the infinite-dimensional state-
space-similarity theorem (Theorem 1.5), as well as sketches the proof of part (i)
needed as the framework of the proofs of (ii) and (iii). Section 4 goes through
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the three flavors of the infinite-dimensional standard bounded real lemma (The-
orem 1.4) while the final section (Section 5) shows how the regularization tech-
nique of Petersen–Anderson–Jonckheere [16] can be adapted to this infinite-di-
mensional setting to give a proof of the infinite-dimensional strict bounded real
lemma (Theorem 1.6).

2. THE OBSERVABILITY AND CONTROLLABILITY OPERATORS

In this section we introduce the observability and controllability operators
associated with the discrete-time linear system Σ given by (1.1) and derive some
of their basic properties. For the case of a general system Σ, we define the observ-
ability operator Wo associated with Σ to be the possibly unbounded operator with
domain D(Wo) in X given by

(2.1) D(Wo) = {x ∈ X : {CAnx}n>0 ∈ `2
Y (Z+)}

with action given by

(2.2) Wox = {CAnx}n>0 for x ∈ D(Wo).

Dually, we define the adjoint controllability operator W∗c associated with Σ to have
domain

(2.3) D(W∗c ) = {x ∈ X : {B∗A∗(−n−1)x}n6−1 ∈ `2
U (Z−)}

with action given by

(2.4) W∗c x = {B∗A∗(−n−1)x}n6−1 for x ∈ D(W∗c ).
It can happen that D(Wo) = {0} (e.g., Y = X = C with C = 1, A = 2), and
similarly forD(W∗c ). Nevertheless, both Wo and W∗c are always closed operators,
and, when it is the case that their domains are dense and hence they have adjoints,
the adjoints are explicitly computable, as recorded in the next result.

PROPOSITION 2.1. Let Σ be a system as in (1.1) with observability operator Wo
and adjoint controllability operator W∗c as in (2.1)–(2.4). Then:

(i) Wo is a closed operator on its domain (2.1).
(ii) Assume that D(Wo) is dense in X . Then the adjoint W∗o of Wo is a closed,

densely defined operator with domain D(W∗o) containing the linear manifold `fin,Y (Z+)

of finitely supported sequences in `2
Y (Z+). In general, D(W∗o) is characterized as the

set of all y ∈ `2
Y (Z+) such that there exists a vector xo ∈ X such that the limit

lim
K→∞

〈
x, ∑K

k=0 A∗kC∗y(k)
〉
X exists for each x ∈ D(Wo) and is given by

(2.5) lim
K→∞

〈
x, ∑K

k=0 A∗kC∗y(k)
〉
X
= 〈x, xo〉X ,

and then the action of W∗o is given by

(2.6) W∗oy = xo
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where xo is as in (2.5). In particular, `fin,Y (Z+) is contained in D(W∗o) and the observ-
ability space defined in (1.13) is given by

Obs (C|A) = W∗o`fin,Y (Z+).

Thus, if in addition (C, A) is observable, then W∗o has dense range.
(iii) The adjoint controllability operator W∗c is closed on its domain (2.3).
(iv) Assume D(W∗c ) is dense in X . Then the controllability operator Wc defined as

the adjoint of W∗c is a closed, densely defined operator with domain D(Wc) containing
the linear manifold `fin,U (Z−) of finitely supported sequences in `2

U (Z−). In general,
D(Wc) is characterized as the set of all u ∈ `2

U (Z−) such that there exists a vector
xc ∈ X so that lim

K→∞

〈
x, ∑−1

k=−K A−k−1Bu(k)
〉
X exists for each x ∈ D(W∗c ) and is

given by

(2.7) lim
K→∞

〈
x, ∑−1

k=−K A−k−1Bu(k)
〉
X
= 〈x, xc〉X ,

and then the action of Wc is given by

(2.8) Wcu = xc

where xc is as in (2.7). In particular, the reachability space Rea (A|B) is equal to
Wc`fin,U (Z−). Thus, if in addition (A, B) is controllable, then Wc has dense range.

Proof. Note that once (i) and (ii) are verified, (iii) and (iv) follow directly by
applying (i) and (ii) to the adjoint system Σ∗ defined by

(2.9) Σ∗ :=
{

x(n) = A∗x(n + 1) + C∗y(n),
u(n) = B∗x(n + 1) + D∗y(n),

(n ∈ Z).

Hence it suffices to prove (i) and (ii).
To show that Wo is closed, we must show: whenever {xk}k∈Z+

is a sequence
of vectors in D(Wo) converging to a vector x ∈ X such that the output sequence
yk = Woxk converges to a vector y ∈ `2

Y (Z+), then it follows that x ∈ D(Wo) and
Wox = y. We therefore assume that we have a sequence of vectors {xk}k>0 from
D(Wo) with lim

k→∞
xk = x in X and lim

k→∞
Woxk = y in `2

Y (Z+). Fix n ∈ Z+. From

the assumption that lim
k→∞

xk → x in X , since C and A are bounded operators, it

follows that

(2.10) lim
k→∞

CAnxk = CAnx in Y .

On the other hand, continuity of the evaluation map evn : `2
Y (Z+)→ Y given by

evn : y 7→ y(n) implies that

lim
k→∞

CAnxk = lim
k→∞

evnWoxk = evn lim
k→∞

Woxk = evny = y(n)

for each nonnegative integer n. Thus CAnx = y(n) holds for each n ∈ Z+.
This implies that {CAnx}n∈Z+

is in `2
Y (Z+), hence x ∈ D(Wo), and Wox =

{CAnx}n∈Z+
= {y(n)}n∈Z+

= y. Thus Wo is a closed operator and (i) follows.
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Let us now assume that D(Wo) is dense. As we have shown that Wo is
closed, it follows that Wo is adjointable with adjoint W∗o also closed and densely
defined (see Theorem VIII.1 of [18]). For the particular case of W∗o here, we
show that in fact D(W∗o) contains the dense linear manifold `fin,Y (Z+). Let y ∈
`fin,Y (Z+). Define xo ∈ X by the finite sum xo = ∑

n∈Z
A∗nC∗y(n). Then for each

x ∈ D(Wo) we have

〈Wox, y〉`2
Y (Z+)

= ∑
n∈Z+

〈CAnx, y(n)〉Y = ∑
n∈Z+

〈x, An∗C∗y(n)〉X = 〈x, xo〉X .

This shows that y ∈ D(W∗o) with W∗oy = xo. We obtain that `fin,Y (Z+) is a subset
of D(W∗o). Since `fin,Y (Z+) is dense in `2

Y (Z+), so is D(W∗o).
More generally, suppose that y ∈ `2

Y (Z+) is such that there exists a vector
xo ∈ X so that (2.5) holds for all x ∈ D(Wo). Then, for x ∈ D(Wo) we have

〈Wox, y〉`2
Y (Z+)

=
∞

∑
k=0
〈CAkx, y(k)〉Y = lim

K→∞

〈
x, ∑K

k=0 A∗kC∗y(k)
〉
X
= 〈x, xo〉X

and we conclude that y ∈ D(W∗o) with W∗oy = xo. Conversely, suppose that
y ∈ D(W∗o) with W∗oy = xo. Then, for x ∈ D(Wo) we have

〈x, xo〉X = 〈x, W∗oy〉X = 〈Wox, y〉`2
Y (Z+)

=
∞

∑
k=0
〈CAkx, y(k)〉Y = lim

K→∞

〈
x, ∑K

k=0 A∗kC∗y(k)
〉
X

and we conclude that the pair y, xo is as in (2.5). We have now verified the claimed
characterization (2.5)–(2.6) of D(W∗o).

From this characterization we read off that Im W∗o ⊃ Obs (C|A). Hence if
we assume in addition that (C, A) is observable, we conclude that W∗o has dense
range and (ii) follows.

Much more can be said about the observability and (adjoint) controllability
operators in case the transfer function FΣ of Σ, given by (1.3), has an analytic
continuation to a function in H∞(U ,Y). We first collect a few observations about
this case.

PROPOSITION 2.2. Suppose that F(z) =
∞
∑

n=0
Fnzn defines an H∞-function on D.

Then the following statements hold:
(i) the Hankel matrix

HF = [Fi−j]i>0, j<0

defines a bounded operator from `2
U (Z−) into `2

Y (Z+).
(ii) in case F = FΣ is the transfer function from a system Σ as in (1.1) with system

matrix
[

A B
C D

]
, then the Hankel matrix HFΣ

is given by

(2.11) HFΣ
= [CAi−j−1B]i>0, j<0.
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Proof. Suppose that the function F is an L(U ,Y)-valued H∞-function on D.
Then the multiplication operator

(2.12) MF : u(z) 7→ F(z)u(z)

is bounded as an operator from H2
U (D) to H2

Y (D). Moreover, the same formula
(2.12) can be used to extend MF to a bounded operator from L2

U (T) to L2
Y (T) of

the same norm, and this operator is contractive in case S ∈ S(U ,Y). Let us define
the Hankel operator HF : H2

U (D)
⊥ → H2

Y (D) by

HF = PH2
Y (D)

MFΣ
|H2
Y (D)⊥

.

As MF is bounded (contractive in case F ∈ S(U ,Y)), it follows that also HF is
bounded (contractive in case F ∈ S(U ,Y)). We shall be interested in the inverse-
Z-transform version of these observations.

The inverse-Z-transform version of MF is given by the biinfinite Laurent
operator

(2.13) LFΣ
= [Fi−j]−∞<i,j<∞ : `2

U (Z)→ `2
Y (Z)

where the Taylor series F(z) =
∞
∑

n=0
Fnzn for F determines Fn for n > 0 and where

we set Fn = 0 for n < 0. By the unitary property of the Z-transform from `2(Z)
to L2(T), we see that LF has the same norm as MF and hence is bounded (con-
tractive in case F ∈ S(U ,Y)) as an operator from `2

U (Z) to `2
Y (Z). The inverse-

Z-transform version of the Hankel operator HF is the time-domain version of the
Hankel operator HF : `2

U (Z−)→ `2
Y (Z+) with matrix representation given by the

southwest corner of the Laurent matrix LF:

HF = [Fi−j]i>0, j<0

and trivially has norm bounded by the norm of LF. This completes the verifica-
tion of statement (i) of the proposition.

In case F = FΣ is the transfer function of a system as in (1.1) with system
matrix

[
A B
C D

]
, so

FΣ(z) = D + zC(I − zA)−1B,

then clearly F0 = D, Fn = CAn−1B if n > 1, and Fn = 0 if n < 0, and the Hankel
matrix has the form

HFΣ
= [CAi−j−1B]i>0, j<0

and statement (ii) of the proposition follows.

The next proposition shows, among others, that the denseness conditions
in items (ii) and (iv) of Proposition 2.1 are automatically satisfied if FΣ has an
analytic continuation to an H∞ function.

PROPOSITION 2.3. Let Σ be a discrete-time linear system as in (1.1) with system
matrix M as in (1.2). Assume that the transfer function FΣ defined by (1.3) has an
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analytic continuation to an L(U ,Y)-valued H∞-function on D. Define Wo and W∗c as
in (2.1)–(2.2) and (2.3)–(2.4), respectively. Then:

(i) The domain D(Wo) of Wo contains the reachability subspace Rea (A|B). Thus,
if (A, B) is controllable, then D(Wo) is dense in X . If in addition (C, A) is observable,
then Wo is injective.

(ii) The domain D(W∗c ) of the adjoint controllability operator W∗c contains the ob-
servability space Obs (C|A). Hence, if (C, A) is observable, then D(W∗c ) is dense in X .
If in addition (A, B) is controllable, then W∗c is injective.

Proof. Note that (ii) follows from (i) by duality, so it suffices to consider (i).
We first show that D(Wo) contains the reachability space. For this pur-

pose, note that since FΣ is in H∞, we know by Proposition 2.2 that the Hankel
operator HFΣ

defined by FΣ is a bounded operator from `2
U (Z−) into `2

Y (Z+).
Let u ∈ `fin,U (Z−), say u has support in the entries indexed with K, . . . ,−1 and
u = {u(k)}−1

k=K. Then as a consequence of the matrix representation (2.11) for
HFΣ

, we see that the action of HFΣ
on u can be arranged to have the form

HFΣ
u = Wo

(
∑−1

k=K A−1−kBu(k)
)
∈ `2
Y (Z+).

Since u ∈ `fin,U (Z−) was chosen arbitrarily it follows that D(Wo) contains all
vectors from the reachability space Rea (A|B). If we assume that (A, B) is con-
trollable, it then follows that D(Wo) is dense in X .

If x ∈ D(Wo) is such that Wox = 0, then CAnx = 0 for all n ∈ Z+. If we
assume that (C, A) is observable, it now follows that x = 0, i.e., it follows that Wo
is injective. This completes the proof of (i).

The precise characterizations of D(W∗o) and D(Wc) in Proposition 2.1 en-
able us to pick up the following useful corollary. Recall that an operator T is said
to be bounded below in case there exists a δ > 0 so that

(2.14) ‖Tx‖ > δ‖x‖ for all x ∈ D(T).
We note that if T is positive-definite, then T being bounded below is equivalent
to T−1 being bounded.

COROLLARY 2.4. Assume that we are given a discrete-time linear system (1.1)
with associated transfer function FΣ (possibly after analytic continuation) equal to an
H∞-function on D, observability operator Wo and adjoint controllability operator W∗c ,
and Hankel matrix HFΣ

as in (1.3), (2.1), (2.2), (2.3), (2.4), (2.11). Then:
(i) Assume that D(W∗c ) is dense in X (alternatively, by Proposition 2.3, assume that

(C, A) is observable). Then D(Wo) contains Im Wc = WcD(Wc) and

(2.15) HFΣ
|D(Wc) = WoWc.

(ii) Assume that D(Wo) is dense in X (alternatively, by Proposition 2.3, assume that
(A, B) is controllable). Then D(W∗c ) contains Im W∗o = W∗oD(W∗o) and

(2.16) H∗FΣ
|D(W∗o) = W∗c W∗o.
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Proof. Suppose that u ∈ D(Wc), a dense subset of `2
U (Z−) by Proposi-

tion 2.1. Then from formula (2.7) we see that xc = Wcu is determined by

(2.17) lim
K→∞
〈x, WcuK〉X = 〈x, xc〉X

for each x in the dense (by assumption) subset D(W∗c ), where we set

uK(k) =

{
u(k) if k > −K,
0 otherwise.

In particular, by Proposition 2.3 we know that Obs (C|A) ⊂ D(W∗c ) and hence,
for any y ∈ Y , (2.17) holds with A∗nC∗y in place of x. This then leads us to
lim

K→∞
〈y, CAnWcuK〉Y = 〈y, CAnxc〉Y for each y ∈ Y , i.e., to

(2.18) weak-lim
K→∞

CAnWcuK = CAnxc.

Note that CAnWcuK = evnHFΣ
uK. As HFΣ

is bounded and lim
K→∞

uK = u in norm,

it follows that lim
K→∞

evnHFΣ
uK = evnHFΣ

u in the norm topology of Y for each n.

On the other hand, from (2.18) we see that lim
K→∞

CAnWcuK = CAnxc in the weak

topology of Y . As norm convergence implies weak convergence, uniqueness of
weak limits implies the equality CAnxc = evnHFΣ

u. As this holds for all n =

0, 1, 2, . . . , we conclude that {CAnxc}n>0 = HFΣ
u is in `2

Y (Z+), i.e., xc ∈ D(Wo)
and WoWcu = Woxc = HFΣ

u.
The assertion for W∗c W∗o follows by a dual analysis.

The next corollary lists some useful consequences of `2-exact controllability
and `2-exact observability.

COROLLARY 2.5. Let Σ be a discrete-time linear system as in (1.1) with system
matrix M as in (1.2). Assume that the transfer function FΣ defined by (1.3) has an
analytic continuation to an L(U ,Y)-valued H∞-function on D.

(i) If Σ is `2-exactly controllable, then Wo is bounded.
(ii) If Σ is `2-exactly observable, then Wc is bounded.

(iii) Σ is `2-exactly minimal, i.e., both `2-exactly controllable and `2-exactly observ-
able, then Wo and W∗c are both bounded and bounded below.

Proof. Assume that Σ is `2-exactly controllable. In particular, by the defini-
tion of `2-exact controllability in the Introduction, D(W∗c ) is dense in X . Then the
`2-exact controllability hypothesis combined with item (i) in Corollary 2.4 tells
us that D(Wo) is the whole space X . As Wo is a closed operator (as verified in
Proposition 2.1), it follows from the closed graph theorem that Wo is bounded.
This verifies item (i) in Corollary 2.5. Item (ii) in Corollary 2.5 follows by the dual
analysis.

Next suppose that Σ is `2-exactly minimal, so we know that Wo and Wc are
bounded by items (i) and (ii) above. The `2-exact-minimality hypothesis gives us
that Im W∗o = X and Im Wc = X . Hence also W∗oWo and WcW∗c are surjective.
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From the fact that W∗o and Wc are surjective, it follows that Wo and W∗c are injec-
tive, and hence also W∗oWo and WcW∗c are injective. It now follows from the open
mapping theorem that W∗oWo and WcW∗c are bounded below, and hence also Wo
and W∗c are bounded below.

A well-known case in which Wo and Wc are bounded is when the system
matrix M in (1.2) is a contraction. In this case, as mentioned in the Introduction
(see also [14]), the transfer function FΣ is a Schur class function. For later use we
record the following result.

PROPOSITION 2.6. Let Σ be the discrete-time linear system (1.1) with transfer
function FΣ given by (1.3). Assume that the system matrix M in (1.2) is a contraction.
Then FΣ is in the Schur class S(U ,Y) and the controllability operator Wc and observ-
ability operator Wo are contraction operators with respective row- and column-matrix
representations

Wc = rowj<0[A−j−1B] : `2
U (Z−)→ X , Wo = coli>0[CAi] : X → `2

Y (Z+)

and furthermore provide a factorization of the Hankel operator HFΣ
:

HFΣ
= WoWc.

Proof. In case the system matrix Σ =
[

A B
C D

]
is contractive, then in particular

the row matrix
[
A B

]
is contractive so we have AA∗ + BB∗ � I. Hence we have

[
AN B · · · AB B

]


B∗A∗N

...
B∗A∗

B∗

 =
N

∑
k=0

AkBB∗A∗k

�
N

∑
k=0

Ak(I − AA∗)A∗k = I − AN+1 A∗N+1 � I

and hence

WcW∗c = s-lim
N→∞

N

∑
k=0

AkBB∗A∗k � I

and it follows that ‖Wc‖ 6 1. The proof that W∗oWo � I proceeds similarly
making use of the fact that A∗A + C∗C � I, and statement (iii) of the proposition
follows. As observed in the Introduction, the result of [14] tells us (even for the
nonrational case) that FΣ is a Schur-class function when ‖M‖ 6 1.

We are now in position to sort out the connections among the notions of
controllable/exactly controllable/`2-exactly controllable and the dual notions of
observable/exactly observable/`2-exactly observable.

PROPOSITION 2.7. Suppose that Σ is a linear system with system matrix M =[
A B
C D

]
as in (1.2).

(i) It can happen that (A, B) is exactly controllable but not `2-exactly controllable.
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(ii) It can happen that (A, B) is `2-exactly controllable but not exactly controllable.
(iii) If (A, B) is exactly controllable, then (A, B) is controllable.
(iv) If (A, B) is `2-exactly controllable with D(W∗c ) = X (so W∗c is bounded and Wc

is not only bounded but also surjective), then (A, B) is controllable.
(v) If (A, B) is exactly controllable and D(W∗c ) is dense, then (A, B) is `2-exactly

controllable.
(vi) It can happen that (C, A) is exactly observable but not `2-exactly observable.

(vii) It can happen that (C, A) is `2-exactly observable but not exactly observable.
(viii) If (C, A) is exactly observable, then (C, A) is observable.

(ix) If (C, A) is `2-exactly observable and D(Wo) = X (so Wo is bounded and W∗o is
not only bounded but also surjective), then (C, A) is observable.

(x) If (C, A) is exactly observable and D(Wo) is dense, then (C, A) is `2-exactly
observable.

Proof. As items (vi)–(x) are just dual versions of items (i)–(v), we need only
prove (i)–(v).

(i) Take X = U = C with A = [2] and B = [1]. Then W∗c defined by (2.3)–
(2.4) has domain D(W∗c ) equal to the zero space, so in particular is not dense in
X . Then, according to our definition, (A, B) is not `2-exactly controllable. Never-
theless it is clear that the input pair (A, B) is exactly controllable.

To remedy this situation we may attempt instead to use the formulas (2.7)–
(2.8) to define a controllability operator W̃c; however, for our example A = [2],
B = [1], the resulting W̃c is not closed or even closable. Note if we choose C so
that (C, A) is observable (e.g., C = [1]), the resulting transfer function FΣ(z) =

z
1−2z does not have analytic continuation to an H∞-function on D. This example
illustrates the crucial role of the hypotheses that Σ have an H∞-transfer function
in Proposition 2.3.

(ii) Take X = `2(Z+), U = C with A equal to the forward shift operator and
B equal to the injection of C into the first slot of `2(Z+):

A =


0 0 0 · · ·
1 0 0 · · ·
0 1 0 · · ·

. . .

 , B =

1
0
...

 .

One easily computes that W∗c is the identity operator on `2(Z+), hence in partic-
ular with dense domain equal to the whole space. Thus Wc = I`2(Z+)

is bounded.
It is also clear that Rea (A|B) = Wc`fin(Z+) = I`2(Z+)

`fin(Z+) = `fin(Z+) 6= X .
(iii) If (A, B) is exactly controllable, then Rea (A|B) = X ; thus trivially

Rea (A|B) is dense in X , i.e., (A, B) is controllable.
(iv) We now assume that (A, B) is exactly `2-controllable with D(W∗c ) = X .

Then the domain of Wc is determined by (2.7) where x can be taken to be an
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arbitrary vector in X , i.e., for u ∈ `2
U (Z−),

xc := W∗c u = weak-lim
K→∞

−1

∑
k=−K

A−k−1Bu(k).

Note that each approximant
−1
∑

k=−K
A−k−1Bu(k) of xc is in the reachability space

Rea (A|B). We conclude that Im Wc is contained in the weak-closure of Rea (A|B).
But a consequence of the Hahn–Banach theorem is that weak and norm closure
are the same on convex sets (in particular on linear subsets); hence Im Wc is con-
tained in the norm-closure of Rea (A|B). The `2-exact controllability hypothesis
now gives us that Rea (A|B) is norm-dense in X , i.e., (A, B) is controllable. This
verifies item (iv).

(v) We now assume instead that the pair (A, B) is exactly controllable and
that D(W∗c ) is dense in X . We may then apply Proposition 2.1 to see that Wc is
given by (2.7)–(2.8). In particular, any u ∈ `2

fin,U (Z−) is in D(Wc) with Wcu =

∑
k∈Z−

A−k−1Bu(k) (where the sum is finite). This shows that Im Wc ⊃ Rea (A|B).

The exact controllability hypothesis now implies that Im Wc = X , i.e., that (A, B)
is `2-exactly controllable.

3. INFINITE-DIMENSIONAL STATE-SPACE-SIMILARITY THEOREMS

The goal of this section is to prove Theorem 1.5.

Proof of Theorem 1.5. The proof is given in four steps. We first prove the suf-
ficiency directions in items (i)–(iii), after which we prove the necessity directions
in three separate steps.

Proof of sufficiency in items (i)–(iii). We first consider the sufficiency direction:
Σ and Σ′ (pseudo-)similar ⇒ FΣ(λ) = FΣ′(λ) in a neighborhood of the origin. Note
that the equality FΣ(λ) = FΣ′(λ) in a neighborhood of the origin is the same as
matching of Taylor coefficients at the origin:

(3.1) D′ = D and C′A′nB′ = CAnB for n = 0, 1, 2, . . . .

Note also that similarity-equivalence between Σ and Σ′ is a particular kind of
pseudo-similarity equivalence. Hence. to prove the sufficiency direction in items
(i), (ii), (iii) of Theorem 1.5, it suffices to show: if Γ is a closed, densely defined
operator with dense range satisfying conditions (1.16), then conditions (3.1) hold.

Toward this end, note first that the condition D′ = D is part of the condi-
tions (1.16) (pseudo-similarity equivalence between Σ and Σ′). As for the remain-
ing conditions in (3.1), use the relations in (1.16) to compute

C′A′nB′ = C′A′nΓB = C′ΓAnB = CAnB

as needed.
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Proof of necessity in item (i). Item (i) has already been worked out in the
literature (see [2], [8], [13]), so we only give a sketch. We suppose that we are
given two minimal systems Σ and Σ′ with respective system matrices M =

[
A B
C D

]
and M′ =

[
A′ B′
C′ D′

]
with conditions (3.1) holding. We must construct an injective,

closed, densely defined operator Γ with dense range so that (1.16) holds. Toward
this end, we attempt to define an operator Γ0 from Rea (A|B) to Rea (A′|B′) by

(3.2) Γ0 :
n

∑
k=0

AkBuk 7→
n

∑
k=0

A′kB′uk.

One can use the observability of the pair (C′, A′) to see that the formula for
Γ0 is well-defined and observability of the pair (C, A) to see that the resulting
well-defined linear transformation Γ0 is injective. Furthermore, controllability of
the pair (A, B) implies that Γ0 has dense domain and controllability of the pair
(A′, B′) implies that Γ0 has dense range Im Γ0 in X ′. A mild limit enhancement of
these computations shows that moreover Γ0 is closable with closure Γ also injec-
tive with dense range.

From the definition (3.2) of the action of Γ0, it is clear that ΓB = B′ and that
ΓAx = A′Γx if x ∈ Rea (A|B). A limit enhancement of this same argument then
shows that ΓAx = A′Γx for any x ∈ D(Γ). Similarly, application of the operator

C to an element x =
n
∑

k=0
AkBuk combined with the equality of Taylor coefficients

(3.1) and the definition (3.2) of the action of Γ0 yields the identity Cx = C′Γx for
x ∈ Rea (A|B). A limit enhancement of this argument then gives the equality
Cx = C′Γx for a general x in D(Γ). We conclude that Γ implements a pseudo-
similarity equivalence between Σ and Σ′ as wanted.

Proof of necessity in item (ii). In this case we are given that Σ is exactly min-
imal while Σ′ is minimal such that relations (3.1) hold. Trivially, Σ then is also
minimal. The work in the immediately preceding proof (necessity in item (i))
then tells us that the operator Γ0 defined on Rea (A|B) by (3.2) is well-defined
and injective with dense range, and moreover is closable. The exact minimality
hypothesis on Σ means in particular that (A, B) is exactly controllable, i.e., that
the reachability space Rea (A|B) is the whole space X . Hence, the closability of
Γ0 just means that Γ0 is a closed operator with domain equal to the whole space
X . The closed graph theorem then implies that Γ0 is bounded as an operator from
X to X ′. Moreover, by the work in the proof for item (i) above, we know that Γ0
satisfies all the relations in (1.16). It remains only to show that Γ0 is surjective. It
then follows that Γ has a bounded inverse by the open mapping theorem.

Toward this end, we view M∗ =
[

A∗ C∗
B∗ D∗

]
as the system matrix for a linear

system Σ∗ and similarly M′∗ =
[

A′∗ C′∗
B′∗ D∗

]
as a system matrix for a linear system

Σ′∗. Note that

FΣ∗(λ) = FΣ(λ)
∗ = FΣ′(λ)

∗ = FΣ′∗(λ)
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so Σ∗ and Σ′∗ have identical transfer functions in a neighborhood of the origin,
and hence

D′∗ = D∗ and B′∗A′∗nC′∗ = B∗A∗nC∗ for n = 0, 1, 2, . . .

(just the adjoint versions of the relations (3.1)). Moreover, the `2-exact observ-
ability of Σ implies that Σ∗ is `2-exactly controllable and the observability of Σ′

implies that Σ′∗ is controllable. We may then repeat the preceding argument but
applied to the pair (Σ∗, Σ′∗) in place of the pair (Σ, Σ′). We conclude that there is
a well-defined bounded linear operator Γ̃ from X to X ′ uniquely determined by

its action on vectors x of the form x =
n
∑

k=0
A∗kC∗yk:

Γ̃ :
n

∑
k=0

A∗kC∗yk 7→
n

∑
k=0

A′∗kC′∗yk,

which in addition satisfies the intertwining relations:

Γ̃A∗ = A′∗ Γ̃, Γ̃C∗ = C′∗, B′∗ Γ̃ = B∗.

In other words, Γ̃∗ satisfies

AΓ̃∗ = Γ̃∗A′, CΓ̃∗ = C′, Γ̃∗B′ = B.

A consequence of these relations is that

Γ̃∗ :
n

∑
k=0

A′kB′uk =
n

∑
k=0

AkBuk

for any choice of uk ∈ U , k = 0, 1, . . . , n. This implies that Γ̃∗Γx = x for all
x ∈ Rea (A|B) = X . Thus Γ̃∗ is a bounded left inverse of Γ.

We use this last observation to see that Im Γ is closed as follows. If x′n = Γxn
is a sequence of elements of Im Γ converging to x′ ∈ X ′, then xn = Γ̃∗Γxn →
Γ̃∗x′ ∈ X as n→ ∞. Since Γ is bounded, we conclude that

x′ = lim
n→∞

Γxn = Γ
(

lim
n→∞

xn

)
= ΓΓ̃∗x′ ∈ Im Γ

and we conclude that Im Γ is closed as claimed. As Im Γ is also dense due to
the assumed controllability of the pair (A′, B′), it follows that Im Γ is the whole
space X ′ and in fact that Γ̃∗ is a two-sided bounded inverse for Γ, as needed to
complete the proof.

Proof of necessity in item (iii). We are now given that Σ is exactly `2-minimal
while Σ′ is assumed to be minimal with bounded controllability and observability
operators W′c and W′o and furthermore the relations (3.1) hold. We must produce
a bounded, boundedly invertible operator Γ : X → X ′ so that the relations (1.16)
hold.

By Corollary 2.5, the operators Wo and W∗c are bounded operators which are
also bounded below. In particular, Wo admits a bounded generalized left-inverse
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W†
o and Wc admits a bounded generalized right-inverse W†

c , i.e.,

(3.3) W†
oWo = IX , WcW†

c = IX .

In addition we may choose W†
o and W†

c to be the Moore–Penrose generalized
inverses; this means that in addition to (3.3) we have

(3.4) WoW†
o = PIm Wo , W†

c Wc = P(ker Wc)⊥

where in general PN indicates the orthogonal projection onto the subspace N .
Furthermore, from the fact that Wc and Wo are bounded, we see that HFΣ

=
WoWc is bounded and similarly HFΣ′

= W′oW′c. From the assumption that FΣ =
FΣ′ in a neighborhood of the origin, it follows that HFΣ

= HFΣ′
and hence

(3.5) WoWc = W′oW′c.

A consequence of this property combined with the observability of the output
pair (C′, A′) (i.e., the injectivity of the operator W′o) is the fact that

(3.6) W′c|ker Wc = 0.

Let us define Γ : X → X ′ by

(3.7) Γ = W′cW†
c .

As both W′c and W†
c are bounded, we see that Γ is a bounded operator.

We next use (3.4) and (3.6) to check that

(3.8) ΓWc = W′c

as follows:
ΓWc = W′cW†

c Wc = W′cP(ker Wc)⊥ = W′c.

Set Γ̃ = W†
oW′o. Let us check that Γ̃ is a left inverse for Γ:

Γ̃Γ = W†
oW′oW′cW†

c

= W†
oWoWcW†

c by (3.5)

= IX (by (3.3)).

Note next that Γ has dense range by the assumed controllability of the system Σ′

and the relation (3.8).
To show that Γ̃ is a two-sided inverse for Γ, it suffices to show that Im Γ

is closed. As Γ̃ is a bounded left inverse for Γ, this follows by exactly the same
argument as used at the end of the proof of the sufficiency in item (ii) given im-
mediately above.

To verify that Γ implements a similarity equivalence between Σ and Σ′, it
now remains only to verify the intertwining conditions (1.16). Toward this end,
let us point out that it is easily verified from the definitions that the following
intertwining condition holds:

W∗c A∗ = S−W∗c
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where S− is the truncated right shift operator on `2
U (Z−). Taking adjoints then

gives us
WcS∗− = AWc

where S∗− is the (untruncated) backward shift operator on `2
U (Z−). Making use

of (3.8) we then get

ΓAWc = ΓWcS∗− = W′cS∗− = A′W′c = A′ΓWc

and we arrive at the first intertwining condition in (1.16):

ΓA = A′Γ.

To verify the second intertwining condition (ΓB = B′) in (1.16), observe that
Bu = Wcu where u(−1) = u an u(k) = 0 for k < −1. Hence

ΓBu = ΓWcu = W′cu = B′u

as wanted. To see the last intertwining condition (C′Γ = C), simply note first
that, for any u ∈ `2

fin,U (Z−), as a consequence of the identities (3.1) we have

C′W′cu = C′
( −K

∑
k=−1

A′−k−1B′u(k)
)
= C

( −k

∑
k=1

A−k−1B′u(k)
)
= CWcu.

By approximating an arbitrary u ∈ `2
U (Z−) by input signals of finite support and

taking limits, we arrive at the general operator identity

C′W′c = CWc.

Hence, by combining this with the identity (3.8) we can compute

C′ΓWc = C′W′c = CWc

and arrive at the last of the intertwining relations (1.16) as wanted. These com-
pletes the proof of necessity in item (iii) of Theorem 1.5.

REMARK 3.1 (Similarity versus pseudo-similarity). The result of the suf-
ficiency side in Theorem 1.5 is that the existence of a similarity or even only
pseudo-similarity transform from Σ to Σ′ is enough to ensure that FΣ(λ) = FΣ′(λ)
for λ in a neighborhood of the origin. It can easily be checked that the existence
of a similarity transform from Σ to Σ′ (in the sense used in Theorem 1.5) pre-
serves most other system-theoretic properties which we have discussed so far,
namely: exponential stability; controllability, exact controllability, `2-exact con-
trollability; and hence also by duality observability, exact observability, `2-exact
observability; and therefore also minimality, exact minimality, and `2-exact min-
imality. On the other hand, identifying which properties are preserved under
pseudo-similarity equivalence is much more delicate. For example, it is possible
to produce an exponentially stable state operator A which is pseudo-similar to
a state operator A′ which is not exponentially stable (see Section 2.7 of [5]). If Γ
is a pseudo-similarity from Σ ∼ (A, B, C, D) to Σ′ ∼ (A′, B′, C′, D′) and (A, B)
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is controllable, then one can show that (A′, B′) is again controllable if one im-
poses the additional hypothesis that Rea (A|B) ⊂ D(Γ) is a core for Γ, i.e., given
x ∈ D(Γ), there exists a sequence {xn} contained in Rea (A|B) so that xn → x
and Γxn → Γx as n→ ∞. This same hypothesis that Rea (A|B) be a core for Γ (or
equivalently for H1/2 = (Γ∗Γ)1/2) comes up in [5] in the discussion of character-
ization of maximal and minimal solutions of the KYP-inequality.

4. INFINITE-DIMENSIONAL STANDARD BOUNDED REAL LEMMAS

In this section we prove Theorem 1.4. The following lemma connects (gen-
eralized) solutions to the KYP-inequality to (pseudo) similarity. Note that no
minimality condition is assumed.

LEMMA 4.1. Let Σ be a discrete-time linear system as in (1.1) with system matrix
M as in (1.2) and transfer function FΣ defined by (1.3). Then:

(i) Σ is similar to a contractive system if and only if there exists a bounded, strictly
positive-definite solution to the KYP-inequality (1.7).

(ii) Σ is pseudo-similar to a contractive system if and only if there exists a generalized
positive-definite solution to the spatial KYP-inequality (1.15).

Proof. We begin with a proof of item (i). Let H be a bounded strictly pos-
itive-definite solution of the KYP-inequality (1.7). This is equivalent to the sys-
tem matrix of the discrete-time linear system Σ′ associated with the quadruple
{H1/2 AH−1/2, H1/2B, CH−1/2, D} being contractive. Hence Σ is similar to a con-
tractive system.

Conversely, assume Σ is similar to a contractive system Σ′ = {A′, B′, C′, D′}
via a bounded and boundedly invertible operator Γ : X → X ′, i.e., A′, B′, C′ and
D′ are given by (1.17). Set H = Γ∗Γ and let M′ denote the system matrix of Σ′.
Then M′ being contractive implies

0 � I −M′∗M′ =
[

I 0
0 I

]
−
[

Γ−1∗A∗Γ∗ Γ−1∗C∗

BΓ∗ D∗

] [
ΓAΓ−1 ΓB
CΓ−1 D

]
=

[
Γ−1∗ 0

0 I

] ([
H 0
0 I

]
−
[

A∗ B∗

C∗ D∗

] [
H 0
0 I

] [
A B
C D

]) [
Γ−1 0

0 I

]
.

Thus the KYP-inequality (1.7) holds with H = Γ∗Γ.
Next we prove item (ii). The idea behind the proof is the same as for item (i),

but one has to be more careful when dealing with generalized KYP solutions and
pseudo-similarity. First assume there exists a generalized positive-definite solu-
tion H to the spatial KYP-inequality, i.e., H is closed, densely defined, injective
positive-definite operator on X satisfying (1.14) and (1.15). We now define oper-
ators

A′ : Im H1/2 → X , B′ : U → X , C′ : Im H1/2 → Y , D′ = D : U → Y ,
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via

(4.1)
[

A′ B′

C′ D′

][
H1/2x

u

]
=

[
H1/2 0

0 I

][
A B
C D

][
x
u

]
(x∈D(H1/2), u∈U ).

Note that the right-hand side is well defined for each x ∈ D(H1/2) and u ∈ U
because of (1.14). Since H1/2 is injective, H1/2x⊕ u in Im H1/2⊕U being equal to
the zero vector implies x = 0 and u = 0. This implies that the operators A′, B′, C′

and D′ are well defined on their given domains. Moreover, as a consequence of
the spectral theorem for unbounded selfadjoint operators (see e.g. Theorem VIII.6
of [18]), one can see that H being selfadjoint and injective implies that H as well
as H1/2 have dense range in X . Thus the block operator matrix

[
A′ B′
C′ D′

]
given by

(4.1) has dense domain in D(H1/2) ⊕ U in X ⊕ U . Furthermore, by the spatial
KYP-inequality (1.15), we see that this operator (4.1) acts contractively on its do-
main, and hence can be continuously extended to a 2× 2 block operator (of which
the entries are also denoted by A′, B′, C′, D′) that maps X ⊕ U contractively into
X ⊕ Y . Hence the operators {A′, B′, C′, D′} generate a contractive linear system
Σ′. We claim that Γ = H1/2 provides a pseudo-similarity between the systems
Σ and Σ′. By definition H1/2 is densely defined, and we already observed above
that H1/2 has dense range. The remaining conditions on Γ = H1/2 listed in (1.16)
follow directly from (1.14) and the definition of the operators A′, B′, C′ and D′.

It remains to prove the reverse inclusion. Hence, we assume Σ is pseudo-
similar to a contractive system Σ′ given by the quadruple {A′, B′, C′, D′} via the
pseudo-similarity Γ : X → X ′. Since Γ is a closed operator, by Theorem VIII.32 of
[18] it admits a polar decomposition Γ = U|Γ|with |Γ| the positive-semidefinite,
square root |Γ| = (Γ∗Γ)1/2 with D(|Γ|) = D(Γ) and U a partial isometry with
initial space equal to (Ker Γ)⊥ = X and final space Im Γ = X ′, i.e., U is unitary.
As Γ is injective, in fact |Γ| is positive-definite. Now set H = Γ∗Γ = |Γ|2, so that
H1/2 = |Γ|. From the spectral theorem applied to |Γ| = H1/2, one can read off
that H = (H1/2)2 is positive-definite selfadjoint with a domain in general smaller
than D(H1/2) but still dense in X . Since D(H1/2) = D(Γ), the inclusions (1.14)
follow directly from (1.16). Since U is unitary, for each x ∈ D(H1/2) = D(Γ) and
u ∈ U we have∥∥∥∥[ H1/2 0

0 I

] [
x
u

]∥∥∥∥2

−
∥∥∥∥[ H1/2 0

0 I

] [
A B
C D

] [
x
u

]∥∥∥∥2

=

∥∥∥∥[ UH1/2 0
0 I

] [
x
u

]∥∥∥∥2

−
∥∥∥∥[ UH1/2 0

0 I

] [
A B
C D

] [
x
u

]∥∥∥∥2

=

∥∥∥∥[ Γ 0
0 I

] [
x
u

]∥∥∥∥2

−
∥∥∥∥[ Γ 0

0 I

] [
A B
C D

] [
x
u

]∥∥∥∥2

=

∥∥∥∥[ Γx
u

]∥∥∥∥2

−
∥∥∥∥[ A′Γ B′

C′Γ D′

] [
x
u

]∥∥∥∥2

=

∥∥∥∥[ Γx
u

]∥∥∥∥2

−
∥∥∥∥[ A′ B′

C′ D′

] [
Γx
u

]∥∥∥∥2

.
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The fact that Σ′ is a contractive system then shows that (1.15) holds. Hence H is
a generalized positive-definite solution to the spatial KYP-inequality associated
with Σ.

Proof of Theorem 1.4. We start with the sufficiency claims of items (ii) and
(iii). In both cases, we assume that the KYP-inequality (1.7) has a bounded,
strictly positive-definite solution H. Then item (i) of Lemma 4.1 yields that Σ
is similar to a contractive system. The sufficiency claims of items (ii) and (iii) then
follow directly from the sufficiency claims of items (ii) and (iii) of Theorem 1.5.
Moreover, since Σ is similar to a contractive system, A is similar to the state op-
erator of a contractive system, which is a contraction. In particular, the spectral
radius of A is at most one, so that the transfer function FΣ is analytic on D. The
sufficiency in item (i) follows in the same way, now combining item (ii) of Lemma
4.1 with the sufficiency direction of item (i) of Theorem 1.5.

Next we proof the necessity claims of Theorem 1.4. In all three items we
assume the transfer function FΣ of Σ has an analytic continuation to a Schur class
function in S(U ,Y). By the contractive realization theorem for Schur class func-
tions (see e.g. Theorem 5.2 of [8] or Theorem VI.3.1 of [19] as well as [3]), there is
another discrete-time linear system Σ′ with a contractive system matrix

M′ =
[

A′ B′

C′ D

]
:
[
X ′
U

]
→
[
X ′
Y

]
for some Hilbert space X ′ with associated transfer function FΣ′ equal to FΣ on
an open neighborhood of 0. By compressing orthogonally to the controllable and
observable subspace in X ′, we may assume that the system Σ′ is minimal, i.e.,
the input pair (A′, B′) is controllable and the output pair (C′, A′) is observable.
The fact that M′ is contractive implies that the controllability operator W′c and
the observability operator W′o associated with Σ′ are both contractive, by Propo-
sition 2.6.

Note that the conditions in items (i)–(iii) of Theorem 1.4 coincide with the
conditions in items (i)–(iii) of Theorem 1.5, respectively. Since FΣ and FΣ′ are equal
on some open neighborhood of 0, we conclude from Theorem 1.5 that Σ and Σ′

are pseudo-similar in case (i) and similar in cases (ii) and (iii). The claims then
follow from Lemma 4.1, applying item (i) of Lemma 4.1 to arrive at the conclusion
of claim (i) of Theorem 4.1, and applying item (ii) of Lemma 4.1 to arrive at the
conclusions of claims (ii) and (iii) of Theorems 1.4.

5. THE INFINITE-DIMENSIONAL STRICT BOUNDED REAL LEMMA

In this section we prove Theorem 1.6.

Proof of sufficiency in Theorem 1.6. The sufficiency follows simply from the
sufficiency in Theorem 1.4(ii). Indeed, since the KYP-inequality in question (1.11)
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is strict, one can replace B and D by γB and γD for a sufficiently small γ > 1
without violating the strict inequality. Evoking the sufficiency claim of Theo-
rem 1.4(ii) tells us that γFΣ is a Schur class function, so that ‖FΣ‖∞ 6 1/γ < 1.
Hence FΣ ∈ So(U ,Y).

Our proof of the necessity also relies on Theorem 1.4, but is more involved.
We follow the ideas from the proof for the finite-dimensional case from Petersen–
Anderson–Jonkheere [16].

Proof of necessity in Theorem 1.6. Let Σ be a discrete-time linear system as in
(1.1) with system matrix M as in (1.2) and transfer function FΣ defined by (1.3).
Assume that (i) rspec(A) < 1, and (ii) FΣ is in the strict Schur class So(U ,Y).

Since rspec(A) < 1, we have that the resolvent expression (I − zA)−1 is
uniformly bounded in norm with respect to z in the unit disk D. It follows that
we can choose ε > 0 sufficiently small so that the augmented matrix function

(5.1) Fε(z) :=

 F(z) εzC(I − zA)−1

εz(I − zA)−1B ε2z(I − zA)−1

εIU 0


is in the strict Schur class So(U ⊕X ,Y ⊕X ⊕ U ). Note that

Fε(z) =

 D 0
0 0

εIU 0

+ z

 C
εIX

0

 (I − zA)−1 [B εIX
]

and hence

(5.2) Mε =

[
A B
C D

]
:=


A B εIX
C D 0

εIX 0 0
0 εIU 0


is a realization for Fε(z) with associated linear system which we denote by Σε.
Note that B is already onto the state space X and C∗ is also onto X , so the system
Σε is exactly controllable and exactly observable, i.e., exactly minimal. As A is
exponentially stable, it is also the case that Σε is `2-exactly minimal. We may
therefore apply either of items (ii) or (iii) in Theorem 1.4 to conclude that there is
a bounded strictly positive-definite operator H on the state space X so that[

A∗ C∗

B∗ D∗

] [
H 0
0 IY⊕X⊕U

] [
A B
C D

]
�
[

H 0
0 IU⊕X

]
.

Spelling this out givesA∗HA + C∗C + ε2 IX A∗HB + C∗D εA∗H
B∗HA + D∗C B∗HB + D∗D + ε2 IU εB∗H

εHA εHB ε2H

 �
H 0 0

0 IU 0
0 0 IX

 .
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By crossing off the third row and third column, we get the inequality[
A∗HA + C∗C + ε2 IX A∗HB + C∗D

B∗HA + D∗C B∗HB + D∗D + ε2 IU

]
�
[

H 0
0 IU

]
or [

A∗ C∗

B∗ D∗

] [
H 0
0 IY

] [
A B
C D

]
+ ε2

[
IX 0
0 IU

]
�
[

H 0
0 IU

]
leading us to the strict KYP-inequality (1.11) as wanted.
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