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ABSTRACT. Given a directed Cartesian product T of locally finite, leafless,
rooted directed trees T1, . . . , Td of finite joint branching index, one may asso-
ciate with T the Drury–Arveson-type C[z1, . . . , zd]-Hilbert module Hca (T ) of
vector-valued holomorphic functions on the unit ball Bd in Cd, where a > 0.
The main result of this paper classifies all directed Cartesian products T for
which the Hilbert modules Hca (T ) are isomorphic in case a is an integer. In-
deed, a careful analysis of these Hilbert modules allows us to prove that the
cardinality of generations of T1, . . . , Td are complete invariants for Hca (·) if
ad 6= 1.
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1. A CLASSIFICATION PROBLEM

In [9], we introduced and studied the notion of multishifts on the directed
Cartesian product of finitely many leafless, rooted directed trees. This was in-
deed an attempt to unify the theory of weighted shifts on rooted directed trees
[17] and that of classical unilateral multishifts [18]. Besides a finer analysis of
various joint spectra and wandering subspace property of these multishifts, this
work provided a scheme to associate a one parameter family of reproducing ker-
nel Hilbert spaces Hca(T ) (a > 0) with every directed Cartesian product T of
finite joint branching index, see Corollary 2.12 below (cf. Proposition 4.4 of [1]
and Definition 4.1 of [21]). These spaces consist of vector-valued holomorphic
functions defined on the unit ball Bd in Cd, and can be thought of as tree analogs
of the reproducing kernel Hilbert spaces Ha associated with the positive definite
kernels

(1.1) κa(z, w) :=
1

(1− 〈z, w〉)a , z, w ∈ Bd
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(refer to [5] and [14]; refer also to [27] for a comprehensive account of the theory
of Hilbert spaces of holomorphic functions on the unit ball). Indeed, the repro-
ducing kernels κHca

(z, w) associated with Hca(T ) are certain positive operator
linear combinations of κa(z, w) and multivariable hypergeometric functions (see
Theorem 5.2.6 of [9]). In particular, the Hilbert space Ha is contractively contained
in Hca(T ) (see Theorem 5.1 of [22]; cf. Proposition 4.5(1) of [1]). It is interest-
ing to note that κHca

(z, w) can be obtained by integrating certain perturbations
of κa(z, w) with respect to a finite family of spectral measures (see Remark 2.11).
Further, the Hilbert space Hca(T ) carries a natural Hilbert module structure over
the polynomial ring C[z1, . . . , zd] with module action

(1.2) (p, h) ∈ C[z1, . . . , zd]×Hca(T ) 7−→ p(Mz)h ∈Hca(T ),

where C[z1, . . . , zd] denotes the ring of polynomials in the complex variables
z1, . . . , zd and Mz is the d-tuple of multiplication operators Mz1 , . . . , Mzd acting
on Hca(T ) (refer to Section 2 of [23] for the general theory of Hilbert modules
over the algebra of polynomials). We refer to Hca(T ) as the Drury–Arveson-type
Hilbert module associated with T .

A thorough study of the Hilbert modules Hca(T ) had been carried out in
Chapter 5, Section 2 of [9]. In particular, the essential normality of Hca(T ) is
shown to be closely related to the notion of finite joint branching index of T (see
Proposition 5.2.9 and Example 5.2.20 of [9]). In the present work, we continue our
study of the Drury–Arveson-type Hilbert modules Hca(T ). The investigations
herein are motivated by the following classification problem for the Hilbert mod-
ules Hca(T ) associated with the directed Cartesian product T (see Theorem 4.5
of [3], Theorem 2.4 of [8] for variants of this problem; see also Theorem 4.6 of [3]).

PROBLEM 1.1. For j = 1, 2, let T (j) = (V(j), E (j)) denote the directed Carte-
sian product of locally finite, leafless, rooted directed trees T

(j)
1 , . . . , T (j)

d of finite joint
branching index. Under what conditions on T (1) and T (2), the Drury–Arveson-type
Hilbert modules Hca(T

(1)) and Hca(T
(2)) are isomorphic ?

Recall that the Hilbert modules Hca(T
(1)) and Hca(T

(2)) are isomorphic if
there exists a unitary map U : Hca(T

(1))→Hca(T
(2)) such that

UM
(1)
zk = M

(2)
zk U, k = 1, . . . , d,

where M
(j)
zk denotes the operator of multiplication by the coordinate function zk

on Hca(T
(j)) for j = 1, 2. We refer to U as a Hilbert module isomorphism between

Hca(T
(1)) and Hca(T

(2)).
It turns out that for graph-isomorphic directed Cartesian products, the as-

sociated Drury–Arveson-type Hilbert modules are always isomorphic (see Re-
mark 2.10). However, given any positive integer k, one can produce k number
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of non-isomorphic directed Cartesian products for which the associated Drury–
Arveson-type Hilbert modules are isomorphic (see Corollary 1.7(ii)). Thus graph-
isomorphism of directed Cartesian products is sufficient but not necessary to en-
sure the isomorphism of the associated Drury–Arveson-type Hilbert modules.
This is in contrast with Theorem 2.11 of [19], where countable directed graphs
completely determine the associated tensor (quiver) algebras (up to Banach space
isomorphism) (cf. Theorem 3.7 of [26]).

The main result of the present paper answers when two Drury–Arveson-
type Hilbert modules Hca(T

(j)) (j = 1, 2) are isomorphic in case a is a positive
integer (see Theorem 1.4 and Remark 1.5). In particular, it provides complete
unitary invariants for the Drury–Arveson-type Hilbert modules Hca(T ) in terms
of some discrete data associated with T . Before we state this result, we need to
reproduce several notions from [9] and [17] (the reader is advised to recall all the
relevant definitions pertaining to the directed trees from [17]).

1.1. MULTISHIFTS ON DIRECTED CARTESIAN PRODUCT OF DIRECTED TREES. We
first set some standard notations. For a positive integer d and a set X, Xd stands
for the d-fold Cartesian product of X, while card(X) stands for the cardinality
of X. The symbol N denotes the set of nonnegative integers, and C denotes the

field of complex numbers. For α = (α1, . . . , αd) ∈ Nd, we use α! :=
d

∏
j=1

αj! and

|α| :=
d
∑

j=1
αj. The modulus of a complex number z is denoted by |z|. The complex

conjugate of z = (z1, . . . , zd) ∈ Cd is given by z := (z1, . . . , zd), while the Eu-
clidean norm (|z1|2 + · · ·+ |zd|2)1/2 of z is denoted by ‖z‖2. The open ball in Cd

centered at the origin and of radius r > 0 is denoted by Bd
r , while the sphere cen-

tered at the origin and of radius r > 0 is denoted by ∂Bd
r . For simplicity, the unit

ball Bd
1 and the unit sphere ∂Bd

1 are denoted respectively by Bd and ∂Bd. Through-
out this paper, we follow the standard conventions that the sum over the empty
set is 0, while the product over the empty set is always 1.

For j = 1, . . . , d, let Tj = (Vj, Ej) be a leafless, rooted directed tree with root
rootj. The directed Cartesian product of T1, . . . , Td is the directed graph T = (V, E)
given by

V := V1 × · · · ×Vd,

E := {(v, w) ∈ V ×V : there is a positive integer k ∈ {1, . . . , d}
such that vj = wj for j 6= k and the edge (vk, wk) ∈ Ek},

where v ∈ V is always understood as v = (v1, . . . , vd) with vj ∈ Vj, j = 1, . . . , d.
The d-fold directed Cartesian product of a directed tree T is denoted by T d.

We briefly recall some relevant notions from Chapter 2 of [9] for the sake of
completeness. Let T = (V, E) be the directed Cartesian product of directed trees
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T1, . . . , Td. For j = 1, . . . , d and v ∈ V, we set

Chij(v) := {w ∈ V : wj ∈ Chi(vj) and wk = vk for k 6= j}.

We denote Chi(v) =
d⋃

j=1
Chij(v). Further, for W ⊆ V and k ∈ N, we define

Chij(W) :=
⋃

w∈W
Chij(w), Chi

〈k〉
j (W) := Chij · · ·Chij︸ ︷︷ ︸

k times

(W),

where we understand that Chi〈0〉j (W) = W. Further, for α = (α1, . . . , αd) ∈ Nd

and W ⊆ V, we define

Chi�α�(W) := Chi
〈α1〉
1 · · ·Chi〈αd〉

d (W).

If W = {v} for some v ∈ V, then we use the simpler notation Chi�α�(v) for
Chi�α�({v}). For j = 1, . . . , d and v ∈ V, we set

parj(v) :=

{
{w ∈ V : wj = par(vj) and wk = vk for k 6= j} if vj 6= rootj,
∅ otherwise.

Moreover, for W ⊆ V and k ∈ N, we define

parj(W) :=
⋃

w∈W
parj(w), par

〈k〉
j (W) := parj · · · parj︸ ︷︷ ︸

k times

(W),

where we understand that par
〈0〉
j (W) = W. We denote Par(v) =

d⊔
j=1

parj(v).

Furthrmore, for u ∈ V and j = 1, . . . , d, we set

sibj(u) :=

{
Chij(parj(u)) if uj 6= rootj,
∅ otherwise.

The depth of a vertex v ∈ V is the unique multiindex dv ∈ Nd such that

v ∈ Chi�dv�(root),

where root denotes the root (root1, . . . , rootd) of T . The depth of a vertex always
exists (see Lemma 2.1.10(vi) of [9]). For k ∈ N, the set

Gk := {v ∈ V : |dv| = k}

is referred to as the k th generation of T . A vertex v ∈ V is called a branching vertex
of T if card(Chi(vj)) > 2 for all j = 1, . . . , d. The branching index kT of T is the
multiindex (kT1

, . . . , kTd
) ∈ Nd given by

kTj
:=

{
1 + sup{dw : w ∈ V(j)

≺ } if V(j)
≺ is non-empty,

0 otherwise,
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where V(j)
≺ is the set of branching vertices of Tj, j = 1, . . . , d. It is recorded in

Proposition 2.1.19 of [9] that

Chi�kT�(V≺) ∩V≺ = ∅,

where V≺ denotes the set of branching vertices of T .
Let T = (V, E) be the directed Cartesian product of rooted directed trees

T1, . . . , Td and let V◦ := V \ {root}. Consider the complex Hilbert space l2(V)
of square summable complex functions on V equipped with the standard inner
product. Note that l2(V) admits the orthonormal basis {ev : v ∈ V}, where
ev : V → C denotes the indicator function of the set {v}, v ∈ V. Given a system
λ = {λj(v) : v ∈ V◦, j = 1, . . . , d} of positive numbers, we define the multishift
Sλ on T with weights λ as the d-tuple of linear (possibly unbounded) operators
S1, . . . , Sd in l2(V) given by

D(Sj) := { f ∈ l2(V) : Λ
(j)
T f ∈ l2(V)},

Sj f := Λ
(j)
T f , f ∈ D(Sj),

where Λ
(j)
T is the mapping defined on complex functions f on V by

(Λ
(j)
T f )(v) :=

{
λj(v) · f (parj(v)) if vj ∈ V◦j ,

0 otherwise.

It is shown in Lemma 3.1.5 of [9] that Sj ∈ B(l2(V)) if and only if

(1.3) sup
v∈V

∑
w∈Chij(v)

λj(w)2 < ∞,

where B(H) denotes the space of bounded linear operators on the Hilbert space
H. Further, an examination of the proof of Proposition 3.1.7 in [9] reveals that for
1 6 i, j 6 d, SiSj = SjSi if and only if

(1.4) λj(u)λi(parj(u)) = λi(u)λj(pari(u)), u ∈ ChijChii(v), v ∈ V.

We say that Sλ is a commuting multishift on T if λ satisfies (1.3) and (1.4) for all
i, j = 1, . . . , d.

We assume that all the directed trees under consideration are countably infi-
nite and leafless, that is, the cardinality of set of vertices is ℵ0 and for every vertex
u, card(Chi(u)) > 1.

For future reference, we reproduce from Proposition 3.1.7 of [9] some gen-
eral properties of commuting multishifts.

LEMMA 1.2. Let T = (V, E) be the directed Cartesian product of rooted directed
trees T1, . . . , Td and let Sλ be a commuting multishift on T . Then, for any α ∈ Nd, the
following statements hold:

(i) S∗αλ Sα
λ is a diagonal operator (with respect to the orthonormal basis {ev}v∈V) with

diagonal entries ‖Sα
λev‖2, v ∈ V;
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(ii) for distinct vertices v, w ∈ V, 〈Sα
λev, Sα

λew〉 = 0.

Let Sλ = (S1, . . . , Sd) be a commuting multishift on T with weight system

λ. Assume that Sλ is joint left invertible, that is,
d
∑

j=1
S∗j Sj is invertible. Then the

spherical Cauchy dual Ss
λ = (Ss

1 , . . . , Ss
d) of Sλ is given by

Ss
j ev =

( d

∑
i=1
‖Siev‖2

)−1
∑

w∈Chij(v)
λj(w)ew, v ∈ V, j = 1, . . . , d.

Note that Ss
λ is the multishift on T with weights

(1.5) λj(w)
( d

∑
i=1
‖Siev‖2

)−1
, w ∈ Chij(v), v ∈ V, j = 1, . . . , d.

In general, Ss
λ is not commuting (see Proposition 5.2.10 of [9]). However, if Ss

λ
is commuting, then it is a joint left invertible commuting multishift such that
(Ss

λ)
s = Sλ.

1.2. JOINT COKERNEL OF MULTISHIFTS. The main result of this paper relies heav-
ily on the description of the joint cokernel ker M ∗

z of the multiplication tuple Mz
acting on the Drury–Arveson-type Hilbert space Hca(T ). The first step in this
direction is to realize ker M ∗

z as the solution space of certain systems of linear
equations arising from the eigenvalue problem for the adjoint of a commuting
multishift. For this realization, we find it necessary to collect required graph-
theoretic jargon as introduced in Chapter 4 of [9].

For a set A, let P(A) denote the set of all subsets of A. In the case when
A = {1, . . . , d}, we simply write P in place of P(A). Let T = (V, E) be the
directed Cartesian product of rooted directed trees T1, . . . , Td. Consider the set-
valued function Φ : P →P(V) given by

Φ(F) = ΦF, F ∈P ,

ΦF := {v ∈ V : vj ∈ V◦j if j ∈ F, and vj = rootj if j /∈ F},(1.6)

where V◦j := Vj \ {rootj}, j = 1, . . . , d. Note that

(•) if F 6= G, then ΦF ∩ΦG = ∅;
(•) if v ∈ V, then v ∈ ΦF for F := {j ∈ {1, . . . , d} : vj 6= rootj}.

Thus it follows that

(1.7) V =
⊔

F∈P

ΦF (disjoint sum).

For F ∈P and u ∈ ΦF, define

sibF(u) :=

{
sibi1sibi2 · · · sibik (u) if F = {i1, . . . , ik},
{u} if F = ∅.
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Define an equivalence relation ∼ on ΦF by

u ∼ v if and only if u ∈ sibF(v),

and note that for any u ∈ ΦF, the equivalence class containing u is precisely
sibF(u). An application of the axiom of choice allows us to form a set ΩF by
picking up exactly one element from each of the equivalence classes sibF(u), u ∈
ΦF. We refer to ΩF as an indexing set corresponding to F. Thus we have the disjoint
union

(1.8) ΦF =
⊔

u∈ΩF

sibF(u).

This combined with (1.7) yields the following decomposition of l2(V):

(1.9) l2(V) =
⊕

F∈P

⊕
u∈ΩF

l2(sibF(u)).

For F ∈ P and v = (v1, . . . , vd) ∈ V, let vF ∈ V denote the d-tuple with jth

coordinate, 1 6 j 6 d, given by

(vF)j =

{
vj if j ∈ F,
rootj if j /∈ F.

Further, for i = 1, . . . , d such that i /∈ F and ui ∈ Vi, we define vF|ui ∈ V to be the
d-tuple (w1, . . . , wd), where

wj =

{
ui if j = i,
(vF)j otherwise.

For F, G ∈P such that G ⊆ F and u ∈ ΦF, define

sibF,G(u) := {vG : v ∈ sibF(u)}.
In view of (1.9), it can be deduced from Lemma 4.1.6 of [9] that the joint kernel

E :=
d⋂

j=1
ker S∗j of S∗λ is given by

(1.10) E = [eroot]⊕
⊕

F∈P , F 6=∅

⊕
u∈ΩF

Lu,F,

where Lu,F ⊆ l2(sibF(u)) is the solution space of the following system of equa-
tions

(1.11) ∑
w∈sibj(vG |uj )

f (w)λj(w) = 0, j ∈ F, vG ∈ sibF,G(u) and G = F \ {j}

(see the discussion following Lemma 4.1.6 of [9] for more details). The number of
variables Mu,F and number of equations Nu,F in the above system are given by

Mu,F =card(sibF(u))=∏
j∈F

card(sib(uj)), Nu,F = ∑
j∈F

∏
i∈F, i 6=j

card(sibi(u)).(1.12)
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In particular, Lu,F is finite dimensional whenever the directed trees T1, . . . , Td are
locally finite. Indeed, Mu,F and Nu,F are finite in this case.

We present the following useful lemma for future reference.

LEMMA 1.3. Let T = (V, E) be the directed Cartesian product of locally finite,
rooted directed trees T1, . . . , Td and let Sλ be a commuting multishift on T . Then the
joint kernel E of S∗λ is given by

(1.13) E =
⊕

F∈P

⊕
u∈ΩF

Lu,F,

where Lu,F ⊆ l2(sibF(u)) is the solution space of the system (1.11). Moreover, if T is of
finite joint branching index, then

(i) for any F ∈P , Lu,F 6= {0} for at most finitely many u ∈ ΩF;
(ii) E is finite dimensional.

Proof. Note that Ω∅ = {root}. Thus the system (1.11) is vacuous, and hence
Lroot,∅ = [eroot]. The desired expression for E is now obvious from (1.10). The
part (ii) is immediate from Corollary 3.1.14 of [9], while (i) is clear in view of (1.13)
and (ii).

1.3. STATEMENT OF THE MAIN RESULT. We recall from Theorem 5.2.6 of [9] that
Hca(T ) is a reproducing kernel Hilbert space of E-valued holomorphic functions
defined on the open unit ball Bd in Cd. The reproducing kernel κHca (T ) : Bd ×
Bd → B(E) associated with Hca(T ) is given by

κHca (T )(z, w) = ∑
F∈P

∑
u∈ΩF

(
∑

α∈Nd

du!
(du + α)!

|α|−1

∏
j=0

(|du|+ a + j) zαwα
)

PLu,F ,

where z, w ∈ Bd and PLu,F is the orthogonal projection on Lu,F (see (1.13)).
We are now ready to state the main result of this paper.

THEOREM 1.4. Let a, d be positive integers such that ad 6= 1, and fix j = 1, 2. Let
T (j) = (V(j), E (j)) be the directed Cartesian product of locally finite rooted directed trees
T

(j)
1 , . . . , T (j)

d of finite joint branching index. Let Hca(T
(j)) be the Drury–Arveson-

type Hilbert module associated with T (j). Let E(j) be the subspace of constant functions
in Hca(T

(j)) and let L(j)
u,F be as appearing in the decomposition (1.13) of E(j). Then the

following statements are equivalent:
(i) the Hilbert modules Hca(T

(1)) and Hca(T
(2)) are isomorphic;

(ii) for any α ∈ Nd and F ∈P ,

∑
u∈Ω

(1)
F , du=α

dimL(1)u,F = ∑
v∈Ω

(2)
F , dv=α

dimL(2)v,F;
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(iii) for any n ∈ N and l = 1, . . . , d,

∑
u∈Ω

(1)
{l} ,du=nεl

(card(sibl(u))− 1) = ∑
u∈Ω

(2)
{l} ,du=nεl

(card(sibl(u))− 1),

where εl is the d-tuple with 1 in the lth place and zeros elsewhere;
(iv) for any n ∈ N and l = 1, . . . , d,

card(Gn(T
(1)

l )) = card(Gn(T
(2)

l )),

where Gn(T
(j)

l ) is the nth generation of T
(j)

l .

REMARK 1.5. The above result does not hold true in case ad = 1. This
may be attributed to the von Neumann–Wold decomposition for isometries ([12],
Chapter I; see the discussion following Problem 2.3 of [8]). In case d = 1, (iv) is
equivalent to the following:

(1.14) ∑
v∈V(1)

≺ ∩Gn(T (1))

(card(Chi(v))− 1) = ∑
v∈V(2)

≺ ∩Gn(T (2))

(card(Chi(v))− 1).

In particular, the invariant appearing in (iii) of Theorem 1.4 can be seen as a mul-
tivariable counterpart of kth generation branching degree as defined in equation
(4.5) of [3]. Further, it is evident from the equivalence of (i) and (iv) above that
non-graph-isomorphic directed Cartesian products can yield isomorphic Drury–
Arveson-type Hilbert modules. Finally, note that the operator theoretic state-
ments (i) and (ii) are equivalent to purely graph theoretic statements (iii) and (iv).

We discuss here some immediate consequences of Theorem 1.4. Recall that
two directed graphs are isomorphic if there exists a bijection between their sets of
vertices which preserves (directed) edges.

COROLLARY 1.6. Let a, d be positive integers and let T = (V, E) be the directed
Cartesian product of locally finite rooted directed trees T1, . . . , Td of finite joint branching
index. Then the Drury–Arveson-type Hilbert module Hca(T ) associated with T is
isomorphic to the classical Drury–Arveson-type Hilbert module Ha if and only if for any
j = 1, . . . , d, the directed tree Tj is graph isomorphic to the rooted directed tree without
any branching vertex.

Proof. The sufficiency part is immediate from Remark 3.1.1 of [9], while the
necessary part follows from the equivalence of (i) and (iv) of Theorem 1.4, and
the fact that a rooted directed tree without any branching vertex is unique up to
graph isomorphism.

COROLLARY 1.7. Given positive integers a and d, we have the following state-
ments:

(i) There exist infinitely many mutually non-isomorphic Drury–Arveson-type Hilbert
modules.
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(ii) Given any positive integer k, there exist k number of mutually non-isomorphic
directed Cartesian products T = (V, E) of locally finite rooted directed trees T1, . . . , Td
such that the associated Drury–Arveson-type Hilbert modules Hca(T ) are isomorphic.

Proof. We need the following example of rooted directed tree discussed in
Chapter 6 of [17]. For a positive integer n0, consider the directed tree Tn0,0 =
(V, E) as follows:

V = N, E = {(0, j) : j = 1, . . . , n0} ∪
n0⋃

j=1

{(j + (l − 1)n0, j + ln0) : l > 1}.

(i) Consider the directed Cartesian product

T (k) := Tk,0 ×T d−1
1,0 , k > 1.

It is now immediate from Theorem 1.4 that the Drury–Arveson-type Hilbert mod-
ules Hca(T

(k)) associated with the directed Cartesian product T (k), k > 1 are
mutually non-isomorphic.

(ii) Fix a positive integer k. For j = 1, . . . , k, consider the rooted directed
tree T1j with Chi(root) = {u, v}, card(Chi(u)) = 2k − j, card(Chi(v)) = j, and
card(Chi(w)) = 1 for all remaining vertices w in T1j. Consider the directed Carte-
sian product

T (j) := T1j ×T d−1
1,0 , j = 1, . . . , k.

Then T (j), 1 6 j 6 k are mutually non-isomorphic. Now apply Theorem 1.4 to
obtain the desired conclusion in (ii).

Our proof of Theorem 1.4 occupies a substantial part of this paper. It is fairly
long and quite involved as compared to the case of d = 1 (see Theorem 5.1 of [8]).
It is worth mentioning that in case d = 1, the conclusion of Theorem 1.4 holds
without the assumption of finite branching index. An essential reason for this is
the fact that any left-invertible analytic operator admits an analytic model in the
sense of [24]. On the other hand, in dimension d > 2, there is no successful coun-
terpart of Shimorin’s construction of an analytic model for joint left-invertible
tuples (cf. Theorem 4.2.4, Remark 4.2.5 and Appendix of [9]). The proof of the
main theorem is comprised of two parts, namely, Sections 2 and 3. Here is a brief
overview of these sections.

In Section 2, we introduce and study a one parameter family ST of spheri-
cally balanced multishifts Sλc

. This is carried out in three subsections:

(1) The first subsection is devoted to an elaborate description of joint cokernel
E of multishifts in the family ST . It turns out that the building blocks Lu,F ap-
pearing in the decomposition (1.13) of E can be identified with tensor product of
certain hyperplanes (see Theorem 2.3). These hyperplanes further can be looked
upon as the kernel of row matrices with all entries equal to 1 and of size depen-
dent on coordinate siblings of u. This description readily provides a neat formula
for the dimension of E (see Corollary 2.4).
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(2) In the second subsection, we show that the multishifts in ST can be mod-
eled as multiplication d-tuples on reproducing kernel Hilbert spaces Hc(T ) of
vector-valued holomorphic functions defined on a ball in Cd (see Theorem 2.9).
We also provide a compact formula for the reproducing kernel associated with
Hc(T ) (see (2.21)). In particular, these results apply to Drury–Arveson-type
multishifts Sλca

and their spherical Cauchy dual tuples Ss
λca

. The sequences c

associated with Sλca
and Ss

λca
are given respectively by

(1.15) c(t) := ca(t) =
t + d
t + a

, c(t) :=
1

ca(t)
, t ∈ N,

where a is a positive real number. We emphasize that if we relax the assump-
tion that T is of finite joint branching index, then the above model theorem fails
unless the dimension d = 1 (see Remark 2.11).

(3) In the last subsection, we introduce and study the notion of an operator-
valued representing measure for the Hilbert module Hc(T ). Existence of a rep-
resenting measure for Hc(T ) is shown to be equivalent to the assertion that
{∏n−1

j=0 c(j)}n∈N is a Hausdorff moment sequence (see Theorem 2.15). As an ap-
plication, we show that Drury–Arveson-type Hilbert module Hca(T ) admits a
representing measure if a is an integer bigger than or equal to d. We also show
that H s

ca(T ) (model space of Ss
λca

) admits a representing measure if a is a positive
integer less than d. Further, we explicitly compute the representing measures in
both these situations (see Corollaries 2.17 and 2.18).

In Section 3, we prove the main theorem. This section begins with the obser-
vation that the classification of Drury–Arveson-type Hilbert modules Hca(T ) is
equivalent to the unitary equivalence of operator-valued representing measures
of Hca(T ) (respectively H s

ca(T )) if a > d (respectively if a < d) (see Lemma 3.1).
We then establish another key observation that any isomorphism between two
Drury–Arveson-type Hilbert modules preserves the decomposition (1.13) of E
over each generation (see Proposition 3.2). Finally, we put all the pieces together
to obtain a proof of Theorem 1.4.

A strictly higher dimensional fact in graph theory (constant on parents is con-
stant on generations) closely related to the notion of spherically balanced multishift
is added as an appendix (see Theorem A.1).

2. A FAMILY OF SPHERICALLY BALANCED MULTISHIFTS

Let T = (V, E) be the directed Cartesian product of locally finite rooted
directed trees T1, . . . , Td. Given a sequence c : N → (0, ∞), we can associate a
system λc = {λj(w) : w ∈ V◦, j = 1, . . . , d} to T as follows:

(2.1) λj(w) =

√
c(|dv|)

card(Chij(v))

√
dvj + 1

|dv|+ d
, w ∈ Chij(v), v ∈ V, j = 1, . . . , d,



32 SAMEER CHAVAN, DEEPAK KUMAR PRADHAN, AND SHAILESH TRIVEDI

where dv denotes the depth of the vertex v in T . Note that

sup
v∈V

∑
w∈Chij(v)

λj(w)2 = sup
v∈V

c(|dv|)
dvj + 1

|dv|+ d
.

It follows that the multishift Sλc
with weights λc is bounded if and only if the

sequence c is bounded (see (1.3)). In this case, as shown in Proposition 5.2.3 of
[9], the multishift Sλc

turns out to be commuting and spherically balanced. Recall
that a commuting multishift Sλ = (S1, . . . , Sd) is spherically balanced if the function
C : V → (0, ∞) given by

C(v) :=
d

∑
j=1
‖Sjev‖2, v ∈ V

is constant on every generation Gt, t ∈ N. In case Sλ = Sλc
,

(2.2) C(v) = c(|dv|), v ∈ V.

In case the directed trees Tj are without branching vertices, Sλc
is spherical (or

homogeneous with respect to the group of unitary d × d matrices) in the sense
of Definition 1.1 in [11]. This may be concluded from Theorem 2.1 of [11]. On
the other hand, for a spherically balanced multishift Sλ, the spherical Cauchy
dual tuple Ss

λ is always commuting. In fact, by Proposition 5.2.10 of [9], Ss
λ is

commuting if and only if

(2.3) C is constant on Par(v) :=
d⋃

j=1

parj(v) for all v ∈ V◦.

In dimension bigger than 1, there is a curious fact that the apparently weaker
condition (2.3) implies that C is constant on every generation Gt, t ∈ N. It follows
that if d > 2, then Sλ is a spherically balanced d-tuple if and only if its spherical
Cauchy dual Ss

λ is commuting. Since the above facts play no essential role in the
main result of this paper, we relegate their proof to an appendix. Needless to say,
these facts are strictly higher dimensional.

The following family of multishifts plays a central role in the present inves-
tigations:

(2.4) ST := {Sλc
: inf c > 0, sup c < ∞}.

Our proof of Theorem 1.4 is based on a thorough study of this family. This in-
cludes a dimension formula for joint cokernel, an analytic model and existence of
operator-valued representing measures for multishifts in this family.

2.1. A DIMENSION FORMULA. In this subsection, we obtain a neat formula for
the dimension of joint cokernel of members Sλc

belonging to the family ST . It
is worth noting that this formula is independent of c due to the specific form
of the weight system λc of multishifts from ST (see Lemma 2.1 below). First a
definition (recall all required notations from Subsection 1.2).
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Fix a nonempty F ∈ P and let u ∈ ΩF. For j ∈ F, define the linear func-
tional Xj : l2(sib(uj))→ C by

(2.5) Xj( f ) = ∑
η∈sib(uj)

f (η), f ∈ l2(sib(uj)).

The description of the joint cokernel for a member of ST is intimately related to
the kernel of the linear functionals Xj, j ∈ F.

LEMMA 2.1. Let T = (V, E) be the directed Cartesian product of locally finite
rooted directed trees T1, . . . , Td and let Sλc

be a multishift belonging to the family ST .
Let Lu,F be as appearing in (1.13). Then, for F ∈ P and u ∈ ΩF, the following are
equivalent:

(i) f belongs to Lu,F;
(ii) ∑

w∈sibj(vG |uj)
f (w) = 0 for any j ∈ F, vG ∈ sibF,G(u) with G = F \ {j};

(iii) ∑
η∈sib(uj)

f (vG|η)eη ∈ ker Xj for any j ∈ F, vG ∈ sibF,G(u) with G = F \ {j},

where Xj is as given in (2.5).

Proof. By (2.1), for each j = 1, . . . , d, λj(·) is constant on sibF(u), and hence
the equivalence of (i) and (ii) follows from (1.11). The equivalence of (ii) and (iii)
is immediate from the definition (2.5) of Xj.

REMARK 2.2. It follows from the implication (i)⇒ (ii) above that Lu,F (and
hence by (1.13) the joint kernel E of S∗λc

) is independent of the choice of c.

The following result identifies the building blocks Lu,F appearing in the
orthogonal decomposition of the joint cokernel of Sλc

with a tensor product of
kernels of Xj, j ∈ F.

THEOREM 2.3. Let T = (V, E) be the directed Cartesian product of locally finite
rooted directed trees T1, . . . , Td and let Sλc

be a member of ST . Let Lu,F be as appearing
in (1.13) with F = {i1, . . . , ik} for some positive integer k ∈ {1, . . . , d}. Then Lu,F is
isomorphic to the finite dimensional space ker Xi1 ⊗ · · · ⊗ ker Xik where Xj, j ∈ F, is as
defined in (2.5). In particular,

(2.6) dimLu,F = ∏
j∈F

(card(sib(uj))− 1).

Proof. We begin with the fact that l2(sibF(u)) can be identified as the tensor
product of l2(sib(uj)), j ∈ F. Since our proof utilizes the precise form of the iso-
morphism between these spaces, we provide elementary details essential in this
identification.

Define φ : l2(sib(ui1))⊕ · · · ⊕ l2(sib(uik ))→ l2(sibF(u)) by

(2.7) φ(( fi1 , . . . , fik ))(v) = ∏
j∈F

f j(vj), v = (v1, . . . , vd) ∈ sibF(u).
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It is easy to see that φ is multilinear. By the universal property of tensor
product of vector spaces ([16], Theorem 4.14), there exists a unique linear map Φ
such that the following diagram commutes:

l2(sib(ui1))⊕ · · · ⊕ l2(sib(uik )) l2(sib(ui1))⊗ · · · ⊗ l2(sib(uik ))

l2(sibF(u))

φ

⊗

Φ

By (2.7) and Φ ◦ ⊗ = φ, the action of Φ on elementary tensors is given by

(2.8) Φ( fi1 ⊗ · · · ⊗ fik )(v1, . . . , vd) = ∏
j∈F

f j(vj), v ∈ sibF(u).

The map Φ turns out to be an isomorphism. Since we are not aware of an appro-
priate reference, we include necessary details. We first verify that Φ is injective.

Let f =
N
∑

j=1
f j1 ⊗ · · · ⊗ f jk ∈ ker Φ. Suppose to the contrary that f 6= 0. By

Lemma 1.1 of [20],

(2.9) { f ji : j = 1, . . . , N} is linearly independent for i = 1, . . . , k.

Since Φ( f ) = 0, it follows that

N

∑
j=1

f j1(vi1) · · · f jk(vik ) = 0, v ∈ sibF(u).

Fixing all coordinates of v ∈ sibF(u) except ik, and using (2.9), we conclude that

f j1(vi1) · · · f jk−1(vik−1
) = 0, v ∈ sibF(u), j = 1, . . . , N.

Since f jk−1 6= 0, by fixing all coordinates of v ∈ sibF(u) except ik−1, we conclude
that

f j1(vi1) · · · f jk−2(vik−2
) = 0, v ∈ sibF(u), j = 1, . . . , N.

Continuing like this, we arrive at the conclusion that f j1 is identically 0 for j =
1, . . . , N, which contradicts (2.9). Hence we must have f = 0, that is, Φ is injective.
Further, since card(sibF(u)) = ∏

j∈F
card(sib(uj)) (see (1.12)), we obtain

dim(l2(sib(ui1))⊗ · · · ⊗ l2(sib(uik ))) = dim l2(sibF(u)).

It follows that Φ is an isomorphism. However, for the rest of the proof, we also
need to know the action of Φ−1. To see that, let f ∈ l2(sibF(u)). Then

f = ∑
w∈sibF(u)

f (w)ew = ∑
w∈sibF(u)

f (w)∏
i∈F

χwi ,
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where, for i ∈ F and v ∈ sibF(u),

χwi (v) =

{
1 if vi = wi,
0 otherwise.

It is now easy to see using (2.8) that

(2.10) Φ−1( f ) = ∑
w∈sibF(u)

f (w)(ewi1
⊗ · · · ⊗ ewik

).

We now check that Φ maps ker Xi1 ⊗ · · · ⊗ ker Xik into Lu,F. To see this, let
f j ∈ l2(sib(uij)) be such that

(2.11) Xij f j = 0, j = 1, . . . , k.

In view of Lemma 2.1, it suffices to check that for j = 1, . . . , k,

∑
w∈sibij

(vG |uij
)

Φ( f1 ⊗ · · · ⊗ fk)(w) = 0, vG ∈ sibF,G(u), G = F \ {ij}.(2.12)

However, for vG ∈ sibF,G(u), G = F \ {ij}, j = 1, . . . , k,

∑
w∈sibij

(vG |uij
)

Φ( f1 ⊗ · · · ⊗ fk)(w)
(2.8)
= ∑

w∈sibij
(vG |uij

)

k

∏
l=1

fl(wil )

= ∑
η∈sib(uij

)

( k

∏
l 6=j, l=1

fl(vil )
)

f j(η)

(2.5)
=
( k

∏
l 6=j, l=1

fl(vil )
)

Xij f j,

which is 0 in view of (2.11). This yields (2.12) for every j = 1, . . . , k, and hence

Φ(ker Xi1 ⊗ · · · ⊗ ker Xik ) ⊆ Lu,F.

To see that this inclusion is an equality, let f ∈ Lu,F. By Lemma 4.1.5(i) of [9],

(2.13) sibF(u) =
⊔

vG∈sibF,G(u)

sibj(vG|uj), G = F \ {j}, j ∈ F.

It follows that for G = F \ {ij}, j = 1, . . . , k,

Φ−1( f )
(2.10)
= ∑

w∈sibF(u)
f (w)(ewi1

⊗ · · · ⊗ ewik
)

(2.13)
= ∑

vG∈sibF,G(u)
∑

w∈sibij
(vG |uij

)

f (w)(ewi1
⊗ · · · ⊗ ewik

).
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It follows that Φ−1( f ) is equal to

∑
vG∈sibF,G(u)

ewi1
⊗ · · · ⊗ ewij−1

⊗ ∑
wij
∈sib(uij

)

f (vG|wij
)ewij

⊗ ewij+1
⊗ · · · ⊗ ewik

.

However, since f ∈ Lu,F, by Lemma 2.1,

∑
wij
∈sib(uij

)

f (vG|wij
)ewij

∈ ker Xij .

It is now clear that Φ−1( f ) ∈ ker Xi1 ⊗ · · · ⊗ker Xik . Since the dimension of tensor
product of vector spaces is a product of dimensions of respective vector spaces
([16], Theorem 4.14) the remaining part is immediate.

A careful examination of the proof of Theorem 2.3 shows that the formula
for the joint cokernel holds for any multishift with constant weight system taking
value 1 (commonly known as adjacency operator in dimension d = 1; refer to [17]).
The following is immediate from (1.10), (1.13) and (2.6) (see also Lemma 1.3).

COROLLARY 2.4. Let T = (V, E) be the directed Cartesian product of locally
finite rooted directed trees T1, . . . , Td of finite joint branching index. Let Sλc

be a member
of ST and let E denote the joint kernel of S∗λc

. Then the dimension of E is given by

dim E= ∑
F∈P

∑
u∈ΩF

∏
i∈F

(card(sib(ui))−1)=1+ ∑
F 6=∅, F∈P

∑
u∈ΩF

∏
i∈F

(card(sib(ui))−1).

REMARK 2.5. In case d = 1, the above formula for E simplifies to

dim E = 1 + ∑
u∈Ω{1}

(card(sib(u))− 1),

which holds for any choice of positive weights λ (see Proposition 3.5.1(ii) of [17]).
This formula resembles the expression for the (undirected) graph invariant Υ(T )
introduced in p. 3 of [4], which counts precisely the number of the so-called par-
tial conjugations of the right angled Artin group AT defined by deep nodes.

2.2. AN ANALYTIC MODEL. In this section, we obtain an analytic model for mul-
tishifts belonging to the family ST (see (2.4)). The treatment here relies on a
technique developed in the proof of Theorem 5.2.6 in [9]. We begin with an im-
portant aspect of the family ST , namely that it is closed under the operation of
taking spherical Cauchy dual.

LEMMA 2.6. Let T = (V, E) be the directed Cartesian product of locally finite
rooted directed trees T1, . . . , Td. If Sλc

∈ ST , then Ss
λc

is well-defined and Ss
λc

belongs
to ST .

Proof. Assume that Sλc
= (S1, . . . , Sd) ∈ ST . Note that by (2.2),

inf
v∈V

d

∑
j=1
‖Sjev‖2 = inf c > 0, sup

v∈V

d

∑
j=1
‖Sjev‖2 = sup c < ∞.
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It follows that Sλc
is joint left-invertible, and hence Ss

λc
is well-defined. On the

other hand, by (1.5) and (2.2), the weights of Ss
λc

are given by

λj(w) =
1√

c(|dv|)

√
1

card(Chij(v))

√
dvj + 1

|dv|+ d
, w ∈ Chij(v), v ∈ V, j = 1, . . . , d.

It is now clear that Ss
λc
∈ ST .

We skip the proof of the following simple yet useful fact, which may be
obtained by a routine inductive argument (cf. Proof of Corollary 5.2.12 in [9]).

LEMMA 2.7. Let T = (V, E) be the directed Cartesian product of locally finite
rooted directed trees T1, . . . , Td and let Sλ be a commuting multishift on T with weight
system λ = {λj(v) : v ∈ V◦, j = 1, . . . , d}. For a bounded sequence w of positive
numbers, let λw denote the system

(2.14) w(|dv|)λj(w), w ∈ Chij(v), v ∈ V, j = 1, . . . , d.

Then the multishift Sλw
on T with weight system as given in (2.14) is commuting.

Moreover, for any v ∈ V and β ∈ Nd, we obtain:

(i) Sβ
λw

ev =
( |β|−1

∏
p=0

w(|dv|+ p)
)

Sβ
λev;

(ii) ‖Sβ
λw

ev‖2 =
( |β|−1

∏
p=0

w(|dv|+ p)2
)
‖Sβ

λev‖2.

Here is a key observation in obtaining an analytic model for members of ST .

LEMMA 2.8. Let T = (V, E) be the directed Cartesian product of locally finite
rooted directed trees T1, . . . , Td of finite joint branching index. Let Sλc

be in the family
ST and let E denote the joint kernel of S∗λc

. Then the following statements are true:
(i) E is invariant under S∗αλc

Sα
λc

and S∗αλc
Sα

λc
|E is boundedly invertible for all α ∈ Nd;

(ii) the multisequence {Sα
λc

E}α∈Nd of subspaces of l2(V) is mutually orthogonal.

Proof. The proof relies on the case in which c = ca, a > 0 (see (1.15)) as
established in Lemma 5.2.7 of [9]. Let α ∈ Nd. We apply Lemma 2.7(ii) to the
system λca given by

(2.15) λj(w) =
1√

card(Chij(v))

√
dvj + 1

|dv|+ a
, w ∈ Chij(v), v ∈ V, j = 1, . . . , d,

with

(2.16) w(t) :=
√

c(t)
√

t + a
t + d

, t ∈ N,

to conclude that

(2.17) ‖Sα
λc

ev‖2 = K(|α|, |dv|)‖Sα
λca

ev‖2, v ∈ V,
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where

(2.18) K(s, t) =
s−1

∏
p=0

w(t + p)2 (2.16)
=

s−1

∏
p=0

c(t + p)
s−1

∏
p=0

t + a + p
t + d + p

, s, t ∈ N.

For F ∈P and u ∈ ΩF, let f ∈ Lu,F. It is now easy to see from Lemma 1.2(i) and
(2.17) that

(2.19) S∗αλc
Sα

λc
f = K(|α|, |du|)S∗αλca

Sα
λca

f .

Since Lu,F is invariant under S∗αλca
Sα

λca
([9], Proof of Lemma 5.2.7), by Remark 2.2,

we must have S∗αλc
Sα

λc
f ∈ Lu,F ⊆ E. Also, since S∗αλca

Sα
λca
|E is boundedly invertible

for all α ∈ Nd, the remaining part in (i) is now immediate from (2.19), (2.18),
Lemma 1.3(i) and the assumption that inf c > 0.

To see (ii), let α ∈ Nd and

f = ∑
F∈P

∑
u∈ΩF

fu,F ∈ E, fu,F ∈ Lu,F.

Since Lu,F ⊆ l2(sibF(u)), we have

(2.20) Lu,F ⊆
∨
{ev : v ∈ G|du |}.

This combined with Lemma 2.7(i) and (2.18) implies that

Sα
λc

fu,F =
√

K(|α|, |du|) Sα
λca

fu,F.

Thus we obtain

Sα
λc

f = ∑
F∈P

∑
u∈ΩF

Sα
λc

fu,F = ∑
F∈P

∑
u∈ΩF

√
K(|α|, |du|) Sα

λca
fu,F.

The desired conclusion in (ii) now follows from the fact that {Sα
λca

E}α∈Nd is mu-
tually orthogonal (see Lemma 5.2.7 of [9]).

We note that the conclusion of (ii) in the above lemma holds for any (spher-
ically) balanced, injective weighted shift on a rooted directed tree (see Lemma 15
and Theorem 16 of [6]). We believe that this result fails in higher dimensions.

We now present the promised analytic model for multishifts belonging to
the family ST (cf. Theorem 5.2.6 of [9] and Theorem 2.2 of [10]).

THEOREM 2.9. Let T = (V, E) be the directed Cartesian product of locally finite
rooted directed trees T1, . . . , Td of finite joint branching index. Let Sλc

be a multishift be-
longing to ST . Let E denote the joint kernel of S∗λc

and let Lu,F be as appearing in (1.13).
Then Sλc

is unitarily equivalent to the multiplication d-tuple Mz = (Mz1 , . . . , Mzd) on
a reproducing kernel Hilbert space Hc(T ) of E-valued holomorphic functions defined
on the open ball Bd

r in Cd for some positive number r. Further, the reproducing kernel
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κHc(T ) : Bd
r ×Bd

r → B(E) associated with Hc(T ) is given by

κHc(T )(z, w) = ∑
F∈P

∑
u∈ΩF

(
∑

α∈Nd

du!
(du + α)!

|α|−1

∏
j=0

|du|+ d + j
c(|du|+ j)

zαwα
)

PLu,F ,(2.21)

where z, w ∈ Bd
r and PLu,F is the orthogonal projection on Lu,F.

REMARK 2.10. Note that the reproducing kernel Hilbert space Hc(T ) is
a module over the polynomial ring C[z1, . . . , zd] (see (1.2)). Fix j = 1, 2. Let
T (j) = (V(j), E (j)) be the directed Cartesian product of locally finite rooted di-
rected trees T

(j)
1 , . . . , T (j)

d of finite joint branching index. Let S(j)
λc

be a member

of ST (j) . It may be concluded from Remark 3.1.1 of [9] that if T (1) and T (2) are

graph isomorphic, then the multishifts S(1)
λc

and S(2)
λc

are unitarily equivalent. It

follows that the Hilbert modules Hc(T (1)) and Hc(T (2)) are isomorphic in this
case.

Proof. We adapt the argument of Theorem 5.2.6 in [9] to the present situa-
tion. The verification of the first part is along the lines of Step I of the proof of
Theorem 5.2.6 in [9]. Indeed, the space Hc(T ) can be explicitly written as

Hc(T ) =
{

F(z) = ∑
α∈Nd

fαzα : fα ∈ E (α ∈ Nd), ∑
α∈Nd

‖Sα
λc

fα‖2 < ∞
}

with inner product

〈F(z), G(z)〉Hc(T ) = ∑
α∈Nd

〈Sα
λc

fα, Sα
λc

gα〉l2(V), F, G ∈Hc(T ).

We leave the details to the interested reader. We also skip the routine verification
of the fact that κHc(T ) is a reproducing kernel for Hc(T ):

〈F, κHc
(·, w)g〉 = 〈F(w), g〉E, F ∈Hc(T ), g ∈ E, w ∈ Bd

r .

Let us check that the series on the right hand side of (2.21) converges for
any z, w in some open ball centred at the origin in Cd. Note that the reproducing
kernel κHc

admits the orthogonal decomposition:

κHc(T )(z, w) =
⊕

u∈ΩF , F∈P

κu,F(z, w)PLu,F ,

where, for F ∈P and u ∈ ΩF,

κu,F(z, w) = ∑
α∈Nd

du!
(du + α)!

|α|−1

∏
j=0

|du|+ d + j
c(|du|+ j)

zαwα.

Further, the domain of convergence of κu,F(·, w) contains the open ball of radius
inf c for fixed w in the unit ball in Cd. Indeed, inf c is positive since Sλc

belongs to
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ST , and hence for any F ∈P and u ∈ ΩF,

|κu,F(z, w)| 6 ∑
α∈Nd

du!
(du + α)!

|α|−1

∏
j=0

(|du|+ d + j)
1

(inf c)|α|
|zα||wα|

(?)
6

du!
(|du|+ d− 1)!

1
(1− (inf c)−1〈z, w〉)d |z

β||wγ|,

where the inequality (?) can be deduced from the multinomial formula (see proof
of Lemma 4.4 in [15] for details), and for j = 1, . . . , d,

β j =

{
−duj if zj 6= 0,

0 otherwise,
γj =

{
−duj if wj 6= 0,

0 otherwise.

Also, since T is of finite joint branching index, by Lemma 1.3(i), for any F ∈ P ,
Lu,F 6= {0} for at most finitely many u ∈ ΩF. It follows that for fixed w ∈ Bd,
the domain of convergence of κHc(T )(·, w) contains the open ball of radius inf c.
If r := min{inf c, 1}, then the absolute convergence of κHc(T )(z, w) for z, w ∈ Bd

r
is now immediate from

κHc(T )(z, w) = κHc(T )(w, z), z, w ∈ Bd
r .

To see (2.21), one can argue as in Step II of the proof of Theorem 5.2.6 in [9]
to obtain

(2.22) κHc(T )(z, w) = ∑
α∈Nd

Dαzαwα, z, w ∈ Bd
r ,

where Dα is the inverse of S∗αλc
Sα

λc
|E as ensured by Lemma 2.8(i). On the other

hand, as recorded in Step III of the proof of Theorem 5.2.6 in [9],

‖Sα
λca

eu‖−2=
du!

(du+α)!
(|du|+a)(|du|+a+1) · · · (|du|+a+|α|−1), u∈V.(2.23)

This combined with (2.17) and (2.18) yields that

(2.24) ‖Sα
λc

eu‖−2 =
du!

(du + α)!

|α|−1

∏
j=0

|du|+ d + j
c(|du|+ j)

, u ∈ V.

The desired expression in (2.21) is now immediate from (2.20), Lemma 1.2(i) and
(2.22).

REMARK 2.11. The reproducing kernel κHc(T )(z, w) can be obtained by in-
tegrating a family of scalar-valued reproducing kernels (cf. (1.1)) with respect to
a finite family of spectral measures. Indeed,

κHc(T )(z, w) = ∑
F∈P

∫
ΩF

(
∑

α∈Nd

du!
(du + α)!

|α|−1

∏
j=0

|du|+ d + j
c(|du|+ j)

zαwα
)

dPF(u),



CLASSIFICATION OF DRURY–ARVESON-TYPE HILBERT MODULES 41

where z, w ∈ Bd
r and PF(·), F ∈P is the spectral measure given by

PF(σ) = ∑
u∈σ

PLu,F , σ ∈P(ΩF).

Further, note that Theorem 2.9 fails in dimension d > 2 if we relax the assumption
that T is of finite joint branching index. Indeed, if d = 2, T1 is the binary tree (see
Section 4.3 of [17]) and T2 is the rooted directed tree T1,0 without any branch-
ing vertex, then Lu,{1} 6= {0} for infinitely many u ∈ Ω{1} (cf. Lemma 1.3(i)),
and hence it may be concluded from Lemma 1.2 and (2.23) that S∗αλca

Sα
λca
|E is not

boundedly invertible for α = (1, 1). It is worth noting that this phenomenon is
not possible in dimension d = 1 (see Proposition 3.1 of [8]).

From now onwards, the pair (Mz, Hc(T )), as obtained in Theorem 2.9, will
be referred to as the analytic model of the multishift Sλc

on T . In case c = ca, a > 0
(see (1.15)), the multishift Sλca

will be referred to as Drury–Arveson-type multishift
on T (see (2.15)). In case each directed tree Tj is isomorphic to N, Sλc1

is unitarily
equivalent to the Drury–Arveson d-shift, Sλcd

is unitarily equivalent to the Szegö
d-shift, while Sλcd+1

is unitarily equivalent to the Bergman d-shift (refer to [15] for
elementary properties of classical Drury–Arveson-type multishifts). The analytic
model for Sλca

can be described as follows.

COROLLARY 2.12. Let T = (V, E) be the directed Cartesian product of locally
finite rooted directed trees T1, . . . , Td of finite joint branching index and let Sλca

be the
Drury–Arveson-type multishift on T . Let E denote the joint kernel of S∗λca

and let Lu,F

be as appearing in (1.13). Then Sλca
is unitarily equivalent to the multiplication d-

tuple Mz = (Mz1 , . . . , Mzd) on a reproducing kernel Hilbert space Hca(T ) of E-valued
holomorphic functions defined on the open unit ball Bd in Cd. Further, the reproducing
kernel κHca (T ) : Bd ×Bd → B(E) associated with Hca(T ) is given by

κHca (T )(z, w) = ∑
F∈P

∑
u∈ΩF

(
∑

α∈Nd

du!
(du + α)!

|α|−1

∏
j=0

(|du|+ a + j) zαwα
)

PLu,F ,

where z, w ∈ Bd and PLu,F is the orthogonal projection on Lu,F.

We discuss here one more instance in which Theorem 2.9 is applicable. Let
Sλc
∈ ST . By Lemma 2.6, the spherical Cauchy dual Ss

λc
of Sλc

belongs to ST .
By Theorem 2.9, Ss

λc
admits an analytic model, say, (Mz, H s

c (T )). Sometimes,
we refer to the Hilbert module H s

c (T ) as the Cauchy dual of the Hilbert module
Hc(T ). It follows that the spherical Cauchy dual d-tuple Ss

λca
of the Drury–

Arveson-type multishift Sλca
on T is unitarily equivalent to the multiplication

d-tuple (Mz1 , . . . , Mzd) on the reproducing kernel Hilbert space H s
ca(T ) of E-

valued holomorphic functions defined on the open unit ball Bd in Cd. Further,
the reproducing kernel κH s

ca (T ) : Bd × Bd → B(E) associated with H s
ca(T ) is
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given by

κH s
ca (T )(z, w) = ∑

F∈P
∑

u∈ΩF

(
∑

α∈Nd

du!
(du + α)!

|α|−1

∏
j=0

(|du|+ d + j)2

(|du|+ a + j)
zαwα

)
PLu,F

for z, w ∈ Bd. The last formula is immediate from

‖(Ss
λca

)α f ‖−2=
du!

(du+α)!

|α|−1

∏
j=0

(|du|+d+ j)2

(|du|+ a + j)
‖ f ‖2, f ∈Lu,F, u∈V, F∈P ,(2.25)

which, in turn, can be derived from (2.24) and the fact that

(2.26) Ss
λca

is of the form Sλc
with c(t) =

t + a
t + d

, t ∈ N.

REMARK 2.13. The joint kernel of S∗λca
is the same as that of Ss∗

λca
. Thus,

in the model spaces Hca(T ) and H s
ca(T ) of Sλca

and Ss
λca

respectively, the sub-
spaces of constant functions are the same. Indeed, they are equal to the joint
kernel of S∗λca

(see Remark 2.2).

2.3. OPERATOR-VALUED REPRESENTING MEASURES. In this subsection, we for-
mally introduce the notion of an operator-valued representing measure for the
Hilbert module Hc(T ). This is reminiscent of the well-studied notion of the
Berger measure appearing in the study of subnormal operators in one and several
variables (refer to [12], [13] and [18]). The main result here provides a necessary
and sufficient condition to ensure its existence and uniqueness. We conclude this
section by computing explicitly the representing measures for Drury–Arveson-
type Hilbert modules Hca(T ), a > d and their Cauchy dual Hilbert modules
H s

ca(T ), a < d.

DEFINITION 2.14. Let T = (V, E) be the directed Cartesian product of lo-
cally finite rooted directed trees T1, . . . , Td of finite joint branching index. Let Sλc

be a multishift belonging to ST and let (Mz, Hc(T )) be the analytic model of the
multishift Sλc

on T . Let E denote the joint kernel of S∗λc
as described in (1.13). We

say that Hc(T ) admits a representing measure if there exists a B(E)-valued product
measure ρT × νT = (ρu × νu)u∈ΩF ,F∈P

supported on [0, b]× ∂Bd, b > 0 such that
the following hold:

(i) (Integral representation) For any f ∈ E and α ∈ Nd,

‖zα f ‖2
Hc(T ) =

∫
[0,b]

∫
∂Bd

s|α||zα|2〈dρT (s)× dνT (z) f , f 〉;

(ii) (Diagonal measure) ρu and νu are scalar-valued measures such that for any
gu,F ∈ Lu,F,

(2.27) dρT (s)× dνT (z)
(

∑
F∈P

∑
u∈ΩF

gu,F

)
= ∑

F∈P
∑

u∈ΩF

dρu(s)dνu(z)gu,F;
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(iii) (Normalization) ρroot and νroot are probability measures.

The existence of a representing measure is connected to the Hausdorff mo-
ment problem (refer to Chapter 4 of [25] for the definition and basic theory of
Hausdorff moment sequences).

THEOREM 2.15. Let T = (V, E) be the directed Cartesian product of locally finite
rooted directed trees T1, . . . , Td of finite joint branching index. Let Sλc

be a multishift
belonging to ST and let (Mz, Hc(T )) be the analytic model of the multishift Sλc

on T .
Then the following statements are equivalent:

(i) Hc(T ) admits a representing measure ρT × νT = (ρu × νu)u∈ΩF ,F∈P
supported

on [0, sup c]× ∂Bd;
(ii) the sequence {an}n∈N given below is a Hausdorff moment sequence:

(2.28) an =


1 if n = 0,
n−1
∏
j=0

c(j) if n > 1.

If any of the above statements holds, then for u ∈ ΩF and F ∈ P , the positive scalar-
valued measures ρu and νu are given by

dρu(s) =
s|du |

a|du |
dρroot(s),(2.29)

dνu(z) =
|zdu |2

‖zdu‖2
L2(∂Bd ,σ)

dσ(z),(2.30)

where ρroot is the representing measure of {an}n∈N supported on [0, sup c] and σ is the
normalized surface area measure on ∂Bd.

REMARK 2.16. The measure ρroot , as appearing in (2.29), turns out to be the
Berger measure of the weighted shift Sθ on T ⊗root associated with Sλc

, where T ⊗root
is the connected component of the tensor product T ⊗ of T1, . . . , Td that contains
root (see Definitions 2.2.1 and 5.2.13 of [9] for definitions of T ⊗ and Sθ). This
may be deduced from (5.26) of [9]. The representing measure of Hc(T ) can be
considered as complex and operator-valued version of the Berger measure arising
in the subnormality of commuting tuples (refer to [13], [18]).

Proof. It follows from Lemma 1.2, (2.20) and (2.24) that for f ∈ Lu,F and
α ∈ Nd,

‖Sα
λc

f ‖2
l2(V) =

(α + du)!
du!

|α|−1

∏
j=0

c(|du|+ j)
|du|+ d + j

‖ f ‖2
l2(V)

(2.28)
=

a|α|+|du |
a|du |

Q(du, α) ‖ f ‖2
l2(V),(2.31)
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where

Q(β, α) :=
(α + β)!

β!

|α|−1

∏
j=0

1
|β|+ d + j

, α, β ∈ Nd.

By Lemma 1.11 of [27], for α, β ∈ Nd, we obtain∫
∂Bd

|zα+β|2

‖zβ‖2
L2(∂Bd ,σ)

dσ(z) =
‖zα+β‖2

L2(∂Bd ,σ)

‖zβ‖2
L2(∂Bd ,σ)

=
(α + β)!(d− 1)!

(|β|+ |α|+ d− 1)!
(|β|+ d− 1)!

β!(d− 1)!
= Q(β, α).(2.32)

It is now immediate from (2.31) that

(2.33) ‖Sα
λc

f ‖2
l2(V) =

a|α|+|du |
a|du |

( ∫
∂Bd

|zα+du |2

‖zdu‖2
L2(∂Bd ,σ)

dσ(z)
)
‖ f ‖2

l2(V), f ∈ Lu,F.

(ii)⇒ (i) Assume that (ii) holds. Thus there exists a probability measure µc

supported on a finite interval [0, b] such that

(2.34) an =
∫

[0,b]

sndµc(s), n ∈ N.

By Lemma 2 of [7] and (2.28), b = sup c. It is easy to see from (2.33) and (2.34)
that for f ∈ Lu,F,

‖zα f ‖2
Hc(T ) = ‖S

α
λc

f ‖2
l2(V) =

( ∫
[0,b]

∫
∂Bd

s|α||zα|2dρu(s)dνu(z)
)
‖ f ‖2

l2(V),(2.35)

where dρu and dνu are as defined in (2.29) (with ρroot replaced by µc) and (2.30)
respectively. To see the integral representation of ‖zα f ‖2

Hc(T ) for arbitrary f ∈ E,
note that by (1.13), any f ∈ E is of the form

f = ∑
F∈P

∑
u∈ΩF

gu,F, gu,F ∈ Lu,F.

By (2.27),∫
[0,b]

∫
∂Bd

s|α||zα|2〈dρT × dνT f , f 〉

= ∑
F∈P

∑
u∈ΩF

( ∫
[0,b]

∫
∂Bd

s|α||zα|2dρu(s)dνu(z)
)
‖gu,F‖2

(2.35)
= ∑

F∈P
∑

u∈ΩF

‖zαgu,F‖2
Hc(T ) = ‖z

α f ‖2
Hc(T ),

where we used the orthogonality of {zαgu,F : F ∈P , u ∈ ΩF} in the last equality
(see Lemma 1.2). This completes the proof of (ii)⇒ (i).
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(i)⇒ (ii) Assume that (i) holds. It may be concluded from (5.24) and (5.26)
of [9] that

(2.36) ∑
α∈Nd , |α|=n

n!
α!
‖Sα

λc
ev‖2

l2(V) =
n−1

∏
p=0

c(|dv|+ p), n ∈ N, v ∈ V.

Letting f = eroot in the integral representation (see Definition 2.14(i)), we obtain
for any n ∈ N,

an =
n−1

∏
p=0

c(p)
(2.36)
= ∑

α∈Nd , |α|=n

n!
α!
‖zαeroot‖2

Hc(T )

=
( ∫
[0,b]

sndρroot(s)
) ∫

∂Bd

∑
α∈Nd , |α|=n

n!
α!
|zα|2dνroot(z) =

∫
[0,b]

sndρroot(s),

where we used the assumption that νroot is a probability measure along with
the multinomial theorem in the last equality. This completes the verification of
(i)⇒ (ii).

To see the uniqueness part, note that by (2.28) and (2.36), the sequence
{an}n∈N is uniquely determined by the action of Sλc

on eroot. By the determi-
nacy of the Hausdorff moment problem ([25], Theorem 4.17.1), the probability
measure ρroot is unique. It now follows from (2.29) and (2.30) that the represent-
ing measure ρT × νT of Hc(T ) is unique.

Let us see two particular instances in which representing measures can be
determined explicitly.

COROLLARY 2.17. Let T = (V, E) denote the directed Cartesian product of lo-
cally finite rooted directed trees T1, . . . , Td of finite joint branching index and let
(Mz, Hca(T )) be the analytic model of the Drury–Arveson-type multishift Sλca

on T .
If a is a positive integer such that a > d, then Hca(T ) admits the representing measure
ρT × νT = (ρu × νu)u∈ΩF ,F∈P

. In this case, for u ∈ ΩF and F ∈ P , the positive
scalar-valued measures ρu and νu are given by

(2.37) dρu(s) =

{
w|du |(s)dm(s) if a > d,
dδ1(s) if a = d,

dνu(z) =
|zdu |2

‖zdu‖2
L2(∂Bd ,σ)

dσ(z),

where m is the Lebesgue measure on [0, 1], δ1 is the Borel probability measure supported
at {1}, σ is the normalized surface area measure on ∂Bd, and

(2.38) wl(s) = (l + d) · · · (l + a− 1)
a−1

∑
i=d

si+l−1

∏d6j 6=i6a−1(j− i)
, s ∈ [0, 1], l ∈ N.
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Proof. Suppose that a is a positive integer such that a > d. By (1.15), ca(t) =
(t + d)/(t + a), t ∈ N, and hence by (2.28),

(2.39) an =


1 if n = 0,
n−1
∏
j=0

j+d
j+a if n > 1.

Note that in case a = d, a is the constant sequence with value 1. Clearly, it is a
Hausdorff moment sequence with representing measure δ1. Suppose that a > d.
Then

an =
a−1

∏
j=d

j
n + j

, n ∈ N.

It follows from Corollary 3.8 of [2] that {an}n∈N is a Hausdorff moment sequence
with representing measure ρroot being the weighted Lebesgue measure with the
weight function w0 : [0, 1]→ [0, ∞) as given by (2.38). Thus

dρroot(s) =

{
dδ1 if a = d,
w0(s)dm(s) if a > d.

It follows that

dρu(s)
(2.29)
=

s|du |

a|du |
dρroot(s) =


s|du |
a|du |

dδ1
(2.39)
= dδ1 if a = d,

s|du |
a|du |

w0(s)dm(s)
(2.38)
= w|du |(s)dm(s) if a > d.

The expression for dνu in (2.37) follows from (2.30).

COROLLARY 2.18. Let T = (V, E) denote the directed Cartesian product of lo-
cally finite rooted directed trees T1, . . . , Td of finite joint branching index and let
(Mz, H s

ca(T )) be the analytic model of the spherical Cauchy dual Ss
λca

of the Drury–
Arveson-type multishift Sλca

on T . If a is a positive integer such that a < d, then
H s

ca(T ) admits the representing measure ρT × νT = (ρu × νu)u∈ΩF ,F∈P
. In this case,

for u ∈ ΩF and F ∈P , the positive scalar-valued measures ρu and νu are given by

(2.40) dρu(s) = ω|du |(s)dm(s), dνu(z) =
|zdu |2

‖zdu‖2
L2(∂Bd ,σ)

dσ(z),

where m is the Lebesgue measure on [0, 1], σ is the normalized surface area measure on
∂Bd, and

(2.41) ωl(s) = (l + a) · · · (l + d− 1)
d−1

∑
i=a

si+l−1

∏a6j 6=i6d−1(j− i)
, s ∈ [0, 1], l ∈ N.
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Proof. Suppose that a is a positive integer such that a < d. By (2.26) and
(2.28),

an =


1 if n = 0,
n−1
∏
j=0

j+a
j+d =

d−1
∏
j=a

j
n+j if n > 1.

It follows from Corollary 3.8 of [2] that {an}n∈N is a Hausdorff moment sequence
with representing measure being the weighted Lebesgue measure with weight
function ω0 : [0, 1] → [0, ∞) as given by (2.41). The desired expressions in (2.40)
can now be derived as in the proof of Corollary 2.17.

3. PROOF OF THE MAIN RESULT

In this section, we present a proof of Theorem 1.4. We begin with a simple
observation which reduces Problem 1.1 to the problem of unitary equivalence of
representing measures arising from the Drury–Arveson-type Hilbert modules (as
ensured by Corollaries 2.17 and 2.18).

LEMMA 3.1. Fix j = 1, 2. Let T (j) = (V(j), E (j)) be the directed Cartesian prod-
uct of locally finite rooted directed trees T

(j)
1 , . . . , T (j)

d of finite joint branching index. Let

S(j)
λc

be a multishift belonging to ST (j) and let (M (j)
z , Hc(T (j))) be the analytic model of

the multishift S(j)
λc

on T (j). Let E(j) be the subspace of constant functions in Hc(T (j)).
If Hc(T (j)) admits the representing measure ρ

T (j) × ν
T (j) = (ρ(j)

u × ν(j)
u )u∈ΩF ,F∈P

supported on [0, 1]× ∂Bd, then the Hilbert modules Hc(T (1)) and Hc(T (2)) are iso-
morphic if and only if there exists a unitary transformation U : E(1) → E(2) such that
for every Borel subset A of [0, 1]× ∂Bd,

(3.1) Uρ
T (1) × ν

T (1) (A)U∗ = ρ
T (2) × ν

T (2) (A).

Proof. Suppose that Hc(T (j)) admits the representing measure ρ
T (j) × ν

T (j)

supported on [0, 1]× ∂Bd, j = 1, 2. Let U : Hc(T (1)) → Hc(T (2)) be a unitary
map such that

(3.2) UM
(1)
zj U∗ = M

(2)
zj , j = 1, . . . , d.

It follows that

(3.3) U maps E(1) =
d⋂

j=1
ker M

(1)∗
zj unitarily onto E(2) =

d⋂
j=1

ker M
(2)∗
zj .
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Thus, if f ∈ E(1), then U f ∈ E(2), and hence for every α ∈ Nd,
1∫

0

∫
∂Bd

s|α||zα|2〈dρ
T (1) (s)× dν

T (1) (z) f , f 〉

= ‖zα f ‖2
Hc(T (1))

= ‖U(M
(1)
z,a )

α f ‖2
Hc(T (2))

= ‖(M (2)
z,a )

αU f ‖2
Hc(T (2))

= ‖zαU f ‖2
Hc(T (2))

=

1∫
0

∫
∂Bd

s|α||zα|2〈dρ
T (2) (s)× dν

T (2) (z)U f , U f 〉

=

1∫
0

∫
∂Bd

s|α||zα|2〈U∗dρ
T (2) (s)× dν

T (2) (z)U f , f 〉.

By uniqueness of the representing measure (see Theorem 2.15), we obtain the
necessary part.

To see the converse, assume that (3.1) holds for a unitary transformation
U : E(1) → E(2). Define Ũ : Hc(T (1))→Hc(T (2)) by

(3.4) (Ũ f )(z) = U( f (z)), f ∈Hc(T
(1)), z ∈ Bd.

It is easy to see using (3.1) that Ũ is a unitary map. Also, it is a routine matter to
verify that

ŨM
(1)
zj = M

(2)
zj Ũ, j = 1, . . . , d.

This completes the proof.

The following rather technical result says that any Hilbert module isomor-
phism between two Drury–Arveson-type Hilbert modules preserves the orthog-
onal decomposition (1.13) of joint cokernels of associated multiplication tuples
over each generation.

PROPOSITION 3.2. Let a, d be positive integers such that ad 6= 1, and fix j = 1, 2.
Let T (j) = (V(j), E (j)) be the directed Cartesian product of locally finite rooted directed
trees T

(j)
1 , . . . , T (j)

d of finite joint branching index. Let root(j) denote the root of T (j)

and let Hca(T
(j)) be the Drury–Arveson-type Hilbert module associated with T (j). Let

E(j) be the subspace of constant functions in Hca(T
(j)) and let L(j)

u,F be as appearing
in the decomposition (1.13) of E(j). Suppose there exists a Hilbert module isomorphism
U : Hca(T

(1))→Hca(T
(2)). Then, for any α ∈ Nd and F ∈P ,

U maps
⊕

u∈Ω
(1)
F ,du=α

L(1)u,F onto
⊕

v∈Ω
(2)
F ,dv=α

L(2)v,F,

where we used the convention that orthogonal direct sum over empty collection is {0}. In
particular, U maps eroot(1) to a unimodular scalar multiple of eroot(2) .
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Proof. Note that two joint left-invertible tuples are unitarily equivalent if
and only if their spherical Cauchy dual d-tuples are unitarily equivalent. It fol-
lows that the Hilbert modules Hc(T (1)) and Hc(T (2)) are isomorphic if and
only if their Cauchy dual Hilbert modules H s

c (T (1)) and H s
c (T (2)) are isomor-

phic. Since Hca(T ) (a > d) and H s
ca(T ) (a < d) admit representing measures

(Corollaries 2.17 and 2.18), in view of Remark 2.2, it suffices to treat the case in
which a > d.

Suppose that a > d. Then, by Corollary 2.17, Hca(T
(j)) admits the rep-

resenting measure ρ
T (j) × ν

T (j) = (ρ(j)
u × ν(j)

u )
u∈Ω

(j)
F ,F∈P

as given by (2.37). Let

f ∈ L(1)u,F for some u ∈ Ω
(1)
F and F ∈P . Then, by (3.3), U maps E(1) into E(2), and

hence

(3.5) U f = ∑
F∈P

∑
v∈Ω

(2)
F

gv,F, gv,F ∈ L
(2)
v,F.

Further, by Lemma 3.1, for any Borel subset ∆1 ×∆2 of [0, 1]× ∂Bd,

(3.6)
∫

∆1

∫
∆2

dρ
T (2) (s)× dν

T (2) (z)U f =
∫

∆1

∫
∆2

Udρ
T (1) (s)× dν

T (1) (z) f .

We verify that for almost every z ∈ ∂Bd,

(3.7)
|zdv |2

‖zdv‖2
L2(∂Bd ,σ)

=
|zdu |2

‖zdu‖2
L2(∂Bd ,σ)

if v ∈ Ω
(2)
F , gv,F 6= 0.

We divide the verification into two cases.
Case 1. When a = d.
By the definition of the representing measure (see (2.27)) and Corollary 2.17,

∫
∆1

∫
∆2

Udρ
T (1) (s)× dν

T (1) (z) f =
∫

∆1

∫
∆2

|zdu |2

‖zdu‖2
L2(∂Bd ,σ)

dδ1(s)dσ(z) U f .(3.8)

Arguing similarly and using (3.5), we obtain

∫
∆1

∫
∆2

dρ
T (2) (s)× dν

T (2) (z)U f

=
∫

∆1

∫
∆2

(
∑

F∈P
∑

v∈Ω
(2)
F

|zdv |2

‖zdv‖2
L2(∂Bd ,σ)

gv,F

)
dδ1(s)dσ(z).(3.9)
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Hence, by (3.9), (3.6) and (3.8), we obtain

∫
∆1

∫
∆2

(
∑

F∈P
∑

v∈Ω
(2)
F

|zdv |2

‖zdv‖2
L2(∂Bd ,σ)

gv,F

)
dδ1(s)dσ(z)

=
∫

∆1

∫
∆2

|zdu |2

‖zdu‖2
L2(∂Bd ,σ)

dδ1(s)dσ(z) U f

(3.5)
=
∫

∆1

∫
∆2

|zdu |2

‖zdu‖2
L2(∂Bd ,σ)

dδ1(s)dσ(z)
(

∑
F∈P

∑
v∈Ω

(2)
F

gv,F

)
.(3.10)

Letting ∆1 = [0, 1], we get

∫
∆2

(
∑

F∈P
∑

v∈Ω
(2)
F

|zdv |2

‖zdv‖2
L2(∂Bd ,σ)

gv,F

)
dσ(z)

=
∫

∆2

|zdu |2

‖zdu‖2
L2(∂Bd ,σ)

dσ(z)
(

∑
F∈P

∑
v∈Ω

(2)
F

gv,F

)

for every Borel subset ∆2 of ∂Bd. Comparing the coefficients of nonzero gv,F on
both sides, we obtain (3.7).

Case 2. When a > d.
By the definition of the representing measure (see (2.27)) and Corollary 2.17,

∫
∆1

∫
∆2

Udρ
T (1) (s)× dν

T (1) (z) f

=
∫

∆1

∫
∆2

w|du |(s)
|zdu |2

‖zdu‖2
L2(∂Bd ,σ)

dm(s)dσ(z) U f ,(3.11)

(see (2.38) for the definition of the weight function wl(·)). Also, by (3.5), we obtain

∫
∆1

∫
∆2

dρ
T (2) (s)× dν

T (2) (z)U f

=
∫

∆1

∫
∆2

(
∑

F∈P
∑

v∈Ω
(2)
F

w|dv |(s)
|zdv |2

‖zdv‖2
L2(∂Bd ,σ)

gv,F

)
dm(s)dσ(z).(3.12)
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Hence, by (3.12), (3.6) and (3.11), we obtain∫
∆1

∫
∆2

(
∑

F∈P
∑

v∈Ω
(2)
F

w|dv |(s)
|zdv |2

‖zdv‖2
L2(∂Bd ,σ)

gv,F

)
dm(s)dσ(z)

=
∫

∆1

∫
∆2

w|du |(s)
|zdu |2

‖zdu‖2
L2(∂Bd ,σ)

dm(s)dσ(z) U f

(3.5)
=
∫

∆1

∫
∆2

w|du |(s)
|zdu |2

‖zdu‖2
L2(∂Bd ,σ)

dm(s)dσ(z)
(

∑
F∈P

∑
v∈Ω

(2)
F

gv,F

)
.(3.13)

Letting ∆2 = ∂Bd, we get∫
∆1

(
∑

F∈P
∑

v∈Ω
(2)
F

w|dv |(s)gv,F

)
dm(s) =

∫
∆1

w|du |(s)dm(s)
(

∑
F∈P

∑
v∈Ω

(2)
F

gv,F

)
for every Borel subset ∆1 of [0, 1]. Comparing the coefficients of nonzero gv,F on
both sides, we obtain for almost every s ∈ [0, 1],

w|dv |(s) = w|du |(s) if v ∈ Ω
(2)
F , gv,F 6= 0.

By (2.38), wk 6= wl as integrable functions for non-negative integers k 6= l. Thus

(3.14) gv,F 6= 0 implies that |dv| = |du| for all v ∈ Ω
(2)
F .

Thus (3.13) becomes

∑
F∈P

∑
v∈Ω

(2)
F , |dv |=|du |

( ∫
∆1

∫
∆2

w|du |(s)
|zdv |2

‖zdv‖2
L2(∂Bd ,σ)

dm(s)dσ(z)
)

gv,F

= ∑
F∈P

∑
v∈Ω

(2)
F , |dv |=|du |

( ∫
∆1

∫
∆2

w|du |(s)
|zdu |2

‖zdu‖2
L2(∂Bd ,σ)

dm(s)dσ(z)
)

gv,F.

Letting ∆1 = [0, 1] and comparing the coefficients of nonzero gv,F, for every Borel
subset ∆2 of ∂Bd, we get∫

∆2

|zdv |2
‖zdv‖L2(∂Bd ,σ)

dσ(z) =
∫

∆2

|zdu |2
‖zdu‖L2(∂Bd ,σ)

dσ(z) if v ∈ Ω
(2)
F , gv,F 6= 0,

where we used the fact that
∫

[0,1]
wl(s)dm(s) 6= 0, l ∈ N. Thus (3.7) holds in this

case as well.
We next claim that

(3.15) dv = du if v ∈ Ω
(2)
F , gv,F 6= 0.

In case a > d and d = 1, the claim is trivial in view of (3.14). Assume that d > 2.
In view of continuity of the monomials and the fact that (3.7) holds on a dense
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set, the equality in (3.7) holds for all z ∈ ∂Bd. Consider α := (α1, . . . , αd) ∈ Nd

given by αj = min{duj , dvj}, j = 1, . . . , d. Thus for every z ∈ ∂Bd,

(3.16)
d

∏
j=1
|z
dvj−αj

j |2 =
‖zdv‖L2(∂Bd ,σ)

‖zdu‖L2(∂Bd ,σ)

d

∏
j=1
|z
duj−αj

j |2, v ∈ Ω
(2)
F , gv,F 6= 0.

Suppose to the contrary that du 6= dv for some v ∈ Ω
(2)
F . Without loss of gener-

ality, we may assume that du1 6= dv1 . Let w = (0, w2, . . . , wd) ∈ ∂Bd be such that
wj 6= 0 for j = 2, . . . , d. Then evaluating (3.16) at w, we get one side of (3.16) equal
to zero, while the other side remains nonzero. This contradicts (3.16), and hence
du = dv. Thus the claim stands verified. It is now immediate from (3.5) and (3.15)
that

U(L(1)u,F) ⊆
⊕

H∈P

⊕
v∈Ω

(2)
H ,dv=du

L(2)v,H .

Note that by (1.6) and (1.8), for any H ∈ P and v ∈ Ω
(j)
H (j = 1, 2), k ∈ H if and

only if dvk 6= 0, and therefore

U(L(1)u,F) ⊆
⊕

v∈Ω
(2)
F ,dv=du

L(2)v,F.

This also yields

U
( ⊕

u∈Ω
(1)
F ,du=α

L(1)u,F

)
⊆

⊕
v∈Ω

(2)
F ,dv=α

L(2)v,F

for every α ∈ Nd such that αj 6= 0 if and only if j ∈ F. Applying this fact to U−1,
we obtain the desired conclusion in the first part. The remaining part follows by
applying the first part to α = 0 and F = ∅ (see the proof of Lemma 1.3).

REMARK 3.3. In case a = 1 = d, the conclusion in (3.7) always holds, while
(3.15) does not follow from (3.7) unlike the case ad 6= 1.

In the proof of the main result, we also need a couple of facts related to the
indexing set ΩF, F ∈P . The following is immediate from the definition of Ω{l},
l = 1, . . . , d:

(3.17) Gn−1(Tl)=
⊔

u∈Ω{l} ,du=nεl

{par(ul)}, Gn(Tl)=
⊔

u∈Ω{l} ,du=nεl

sib(ul), n>1.

In the proof of Theorem 1.4, we also need a canonical choice for the indexing set
ΩF. Indeed, the choices of Ω{j}, j ∈ F yield the following natural choice for ΩF:

Ω̃F :=
⋂
j∈F
{(u1, . . . , ud)∈V : ul = rootl if l /∈F, uj = ũj for some ũ∈Ω{j}}.(3.18)

To see that the above collection satisfies requirements of an indexing set ΩF (as
ensured by the axiom of choice), note the following:

(•) If u, v ∈ Ω̃F such that u 6= v, then sibF(u) ∩ sibF(v) = ∅.
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(•) ΦF =
⊔

v∈Ω̃F

sibF(v). To see this, let u ∈ ΦF, and fix j ∈ F. Note that the

d-tuple u(j) := (root1, . . . , rootj−1, uj, rootj+1, . . . , rootd) ∈ Φ{j}. However,

Φ{j} =
⊔

v∈Ω{j}

sib{j}(v).

Thus u(j) ∈ sib{j}(v(j)) for some v(j) ∈ Ω{j}. Let v denote the d-tuple with jth

entry given by

vj =

{
jth coordinate of v(j) if j ∈ F,
rootj if j /∈ F.

Then u ∈ sibF(v) and v ∈ Ω̃F.

The utility of the canonical choice of the indexing set is illustrated in the
following lemma.

LEMMA 3.4. Let T = (V, E) be the directed Cartesian product of locally finite
rooted directed trees T1, . . . , Td. Then, for any α ∈ Nd and a nonempty F ∈P ,

(3.19) ∏
l∈F

∑
u∈Ω{l} ,du=αl εl

(card(sib(ul))− 1) = ∑
u∈ΩF ,du=α

∏
l∈F

(card(sib(ul))− 1).

Proof. Let F = {i1, . . . , ik}, and note that

∏
l∈F

∑
u∈Ω{l} ,du=αl εl

(card(sib(ul))− 1)

= ∑
u(1)∈Ω{i1} ,du(1)

=αi1
εi1

· · · ∑
u(k)∈Ω{ik}

,d
u(k)

=αik
εik

(card(sib(u(1)
i1

))−1) · · · (card(sib(u(k)
ik

))−1)

= ∑
u∈Ω̃F ,du=α

∏
l∈F

(card(sib(ul))− 1),

where Ω̃F is the canonical choice as given in (3.18). The desired formula now fol-
lows from the fact that the summation on right hand side of (3.19) is independent
of the choice of ΩF.

We now complete the proof of the main result of this paper.

Proof of Theorem 1.4. The implication (i)⇒ (ii) follows from Proposition 3.2.
To see the implication (ii)⇒ (i), suppose that (ii) holds. Thus, for every α ∈ Nd

and every F ∈P , there exists a unitary

UF,α :
⊕

u∈Ω
(1)
F ,du=α

L(1)u,F →
⊕

v∈Ω
(2)
F ,dv=α

L(2)v,F.

Define U : E(1) → E(2) by setting U =
⊕

F∈P , α∈Nd
UF,α. Let ρ

T (j) × dν
T (j) be

the representing measure of Hca(T
(j)) (respectively H s

ca(T
(j))) in case a > d
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(respectively a < d), j = 1, 2. Fix F ∈ P and α ∈ Nd. Note that by (2.27), for any
Borel subset A of [0, 1]× ∂Bd,

Udρ
T (1) × dν

T (1) (A)
(

∑
u∈Ω

(1)
F ,du=α

gu,F

)

=
∫
A

(
∑

u∈Ω
(1)
F ,du=α

w|du |(s)
|zdu |2

‖zdu‖2
L2(∂Bd ,σ)

UF,α(gu,F)
)

dm(s)dσ(z)

=
∫
A

w|α|(s)
|zα|2

‖zα‖2
L2(∂Bd ,σ)

(
∑

u∈Ω
(1)
F ,du=α

UF,α(gu,F)
)

dm(s)dσ(z)

= dρ
T (2) × dν

T (2) (A) U
(

∑
u∈Ω

(1)
F ,du=α

gu,F

)
.

Hence, by Lemma 3.1, the Hilbert modules Hca(T
(1)) and Hca(T

(2)) (respec-
tively H s

ca(T
(1)) and H s

ca(T
(2))) are isomorphic in case a > d (respectively

a < d). By the first paragraph of the proof of Proposition 3.2, in both these cases,
Hca(T

(1)) and Hca(T
(2)) are isomorphic.

We now see the equivalence of (iii) and (iv). Note that for every integer
n > 1,

∑
u∈Ω

(j)
{l} ,du=nεl

(card(sibl(u))− 1) = ∑
u∈Ω

(j)
{l} ,du=nεl

(card(sib(ul))− card(par(ul)))

(3.17)
= card(Gn(T

(j)
l ))− card(Gn−1(T

(j)
l )).

Since each T
(j)

l is rooted, card(G0(T
(j)

l )) = 1. A routine telescopic sum argu-
ment now establishes the equivalence of (iii) and (iv).

To see (iii)⇒ (ii), note first that (ii) holds trivially in case F = ∅. Let α ∈ Nd

and F ∈P be nonempty. For j = 1, 2,

∏
l∈F

∑
u∈Ω

(j)
{l} ,du=αlεl

(card(sibl(u))− 1) = ∏
l∈F

∑
u∈Ω

(j)
{l} ,du=αl εl

(card(sib(ul))− 1)

(3.19)
= ∑

u∈Ω
(j)
F ,du=α

∏
l∈F

(card(sib(ul))− 1).

However, by (2.6),

∑
u∈Ω

(j)
F ,du=α

dimL(j)
u,F = ∑

u∈Ω
(j)
F ,du=α

∏
l∈F

(card(sib(ul))− 1),(3.20)

which establishes (ii). To complete the proof of the theorem, it now suffices to see
that (ii)⇒ (iii). This follows immediately by taking F = {l} in (3.20).
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We conclude this paper with some possibilities for further investigations.
It is clear that the existence of the operator-valued representing measures for
Drury–Arveson-type modules or its spherical Cauchy dual modules is one of the
crucial ingredients for the proof of Theorem 1.4. In case the parameter a is non-
integral, we do not know whether or not the Hilbert modules Hca(T ) or H s

ca(T )
admit representing measures. Further, the following classification problem arises
naturally in the realm of graph-theoretic operator theory.

PROBLEM 3.5. For j = 1, 2, let T (j) = (V(j), E (j)) denote the directed Carte-
sian product of locally finite, leafless, rooted directed trees T

(j)
1 , . . . , T (j)

d of finite joint
branching index, and consider the (graded) submodules N (j) of the Drury–Arveson-
type Hilbert module Hca(T

(j)) generated by (homogeneous) polynomials p1, . . . , pl ∈
C[z1, . . . , zd]. Under what conditions on T (1) and T (2), the submodules N (1) and
N (2) are isomorphic ?

Appendix A. CONSTANT ON PARENTS IS CONSTANT ON GENERATIONS

The main result of this appendix is a rigidity theorem showing that in higher
dimensions (d > 2) the conditions (2.2) and (2.3) are equivalent. Here is the
precise statement.

THEOREM A.1. Let T = (V, E) be the directed Cartesian product of leafless,
rooted directed trees T1, . . . , Td and let Sλ = (S1, . . . , Sd) be a commuting multishift on
T . Consider the function C : V → (0, ∞) given by

C(v) :=
d

∑
j=1
‖Sjev‖2, v ∈ V.

If d > 2, then the following conditions are equivalent:
(i) C is constant on every generation Gt, t ∈ N;

(ii) C is constant on Par(v) for every v ∈ V◦.

Recall the following notations from [9]:

Chi(v) :=
d⋃

j=1

Chij(v), Par(v) :=
d⋃

j=1

parj(v), v ∈ V.

In the proof of the above theorem, we need two general facts.

LEMMA A.2. Let T = (V, E) be the directed Cartesian product of leafless, rooted
directed trees T1, . . . , Td. Set

(A.1) Vβ := {v ∈ V : dv = β}, β ∈ Nd.

Let f be a complex valued function on V such that f is constant on each of the sets Chi(v),
v ∈ V. If d > 2, then the following statements are equivalent:
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(i) f is constant on each of the sets Vtε1 , t ∈ N;
(ii) f is constant on each of the sets Vβ and f (Vβ) = f (V|β|ε1

), β ∈ Nd;
(iii) f is constant on each of the generations Gt, t ∈ N.

Proof. Assume that d > 2. Clearly, the implications (iii)⇒ (ii), and (ii)⇒ (i)
hold. To see that (i)⇒ (ii), let β = (β1, . . . , βd) ∈ Nd. By (i), f is constant on V|β|ε1

.
Consider the sequence {Γl}d−1

l=1 given by

Γ1 :={γ(j)
1 = (|β| − j, j, 0, . . . , 0) ∈ Nd : 1 6 j 6 β2},

Γk :={γ(j)
k =(|β|−β2−· · ·−βk− j, β2, . . . , βk, j, 0, . . . , 0︸ ︷︷ ︸

d−k−1
entries

)∈Nd : 1 6 j 6 βk+1

2 6 k 6 d− 1.

}

Let v ∈ V
γ
(1)
1

. Then v ∈ Chi2(par2(v)) and Chi1(par2(v)) ⊆ V|β|ε1
. Thus the set

Chi(par2(v)) intersects with V|β|ε1
. Since f is constant on Chi(par2(v)), it follows

that f (v) is equal to the constant value of f on V|β|ε1
. Since v was chosen arbitrar-

ily, we get that f is constant on V
γ
(1)
1

and f (V
γ
(1)
1
) = f (V|β|ε1

).

We claim that for any k = 1, . . . , d − 1, if f is constant on V
γ
(j)
k

, then it is

also constant on V
γ
(j+1)
k

(if j < βk+1) or V
γ
(1)
k+1

(if j = βk+1) with the same constant

value. We divide this verification into two cases.
Case 1. When j < βk+1.
Note that

γ
(j)
k = (|β| − β2 − · · · − βk − j, β2, . . . , βk, j, 0, . . . , 0),

γ
(j+1)
k = (|β| − β2 − · · · − βk − j− 1, β2, . . . , βk, j + 1, 0, . . . , 0).

Suppose f is constant on V
γ
(j)
k

. Let v ∈ V
γ
(j+1)
k

. Then v ∈ Chik+1(park+1(v))

and Chi1(park+1(v)) ⊆ V
γ
(j)
k

. Thus Chi(park+1(v)) intersects with V
γ
(j)
k

. Since f is

constant on Chi(park+1(v)), it follows that f (v) is equal to the constant value of
f on V

γ
(j)
k

. Since v was chosen arbitrarily, we get that f is constant on Vγ(j+1) and

f (V
γ
(j+1)
k

) = f (V
γ
(j)
k
).

Case 2. When j = βk+1.
Note that

γ
(βk+1)
k = (|β| − β2 − · · · − βk+1, β2, . . . , βk+1, 0, . . . , 0),

γ
(1)
k+1 = (|β| − β2 − · · · − βk+1 − 1, β2, . . . , βk+1, 1, 0, . . . , 0).

Suppose f is constant on V
γ
(βk+1)
k

. Let v ∈ V
γ
(1)
k+1

. Then v ∈ Chik+2(park+2(v)) and

Chi1(park+2(v)) ⊆ V
γ
(βk+1)
k

. Thus Chi(park+2(v)) intersects with V
γ
(βk+1)
k

. Since f is

constant on Chi(park+2(v)), it follows that f (v) is equal to the constant value of f
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on V
γ
(βk+1)
k

. Since v was chosen arbitrarily, we get that f is constant on V
γ
(1)
k+1

and

f (V
γ
(1)
k+1

) = f (V
γ
(βk+1)
k

). Thus the claim stands verified. Since γ
(βd)
d−1 = β, we obtain

f (V|β|ε1
) = f (V

γ
(1)
1
) = · · · = f (V

γ
(βd)
d−1

) = f (Vβ).

This yields (ii).
Now we show that (ii) ⇒ (iii). Let u, v be any two vertices in Gt, t ∈ N.

Then |du| = |dv| = t and by (ii), f (Vdv) = f (Vdu) = f (Vtε1). This shows that
f (u) = f (v), which proves (iii).

LEMMA A.3. Let T = (V, E) be the directed Cartesian product of leafless, rooted
directed trees T1, . . . , Td, d > 2 and let f be a complex valued function on V. Then the
following statements are equivalent:

(i) f is constant on each of the sets Chi(v), v ∈ V;
(ii) f is constant on each of the sets Par(v), v ∈ V◦.

Proof. To see that (i)⇒ (ii), let f be constant on each of the sets Chi(v), v ∈ V.
Let v ∈ V◦ and u, w ∈ Par(v). Then u = pari(v) and w = parj(v) for some
1 6 i, j 6 d. Note that

u ∈ Chij(pariparj(v)) and w ∈ Chii(pariparj(v)).

Thus u, w ∈ Chi(pariparj(v)). Hence, by the hypothesis, f (u) = f (w), proving (ii).
To see that (ii)⇒ (i), let f be constant on each of the sets Par(v), v ∈ V◦. Let

v ∈ V and u, w ∈ Chi(v). Then u ∈ Chii(v) and w ∈ Chij(v) for some 1 6 i, j 6 d.
Case 1. When i 6= j.
Without loss of generality, assume that i < j. In this case, consider the vertex

η = (v1, . . . , ui, . . . , wj, . . . , vd).

Note that ui ∈ Chi(vi), wj ∈ Chi(vj), u = parj(η) and w = pari(η). Thus u, w ∈
Par(η). Hence, by (ii), f (u) = f (w).

Case 2. When i = j.
For any positive integer k ∈ {1, . . . , d} such that k 6= i, consider the vertices

θ = (v1, . . . , ηk, . . . , ui, . . . , vd) and ξ = (v1, . . . , ηk, . . . , wi, . . . , vd),

where ηk ∈ Chi(vk). Note that ui, wi ∈ Chi(vi), and pari(θ) = pari(ξ). Hence
Par(θ) ∩ Par(ξ) 6= ∅. Further, u = park(θ) ∈ Par(θ) and w = park(ξ) ∈ Par(ξ).
Since f is constant on Par(θ) as well as on Par(ξ), and Par(θ), Par(ξ) have a com-
mon vertex, it follows that f (u) = f (w).

This proves (i).

Proof of Theorem A.1. Assume that d > 2. In view of Lemmas A.2 and A.3
(applied to f = C), it suffices to show that if

(A.2) C is constant on each of the sets Chi(v), v ∈ V,
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then it is constant on Vtε1 for every t ∈ N, where Vβ is as defined in (A.1). To this
end, let t ∈ N and let u, v be any two vertices in Vtε1 . We need to show that C(u) =
C(v). Observe that as du = tε1 = dv, we must have u = (u1, root2, . . . , rootd) and
v = (v1, root2, . . . , rootd) for some vertices u1, v1 of depth t in T1. Let k denote the
unique least non-negative integer such that

(A.3) par〈k〉(u1) = par〈k〉(v1).

If k = 0, then u = v, and hence C(u) = C(v) holds trivially. So assume that k > 1.
Consider the sequence {v(l)2 }l∈N of vertices in V2 with the following conditions:

par(v(1)2 ) = root2 = v(0)2 , par(v(l)2 ) = v(l−1)
2 , l > 2.

Now consider the sequence {v(l)}k
l=1 of vertices in T given as follows:

v(l) = (par〈l〉(v1), v(l−1)
2 , root3, . . . , rootd), l = 1, . . . , k.

Further, consider the sequence {θ(l)}k
l=1 of vertices in T given as follows:

θ(l) = (par〈l〉(v1), v(l)2 , root3, . . . , rootd), l = 1, . . . , k.

Notice that v ∈ Chi1(v(1)) and θ(1) ∈ Chi2(v(1)). Thus v, θ(1) ∈ Chi(v(1)), and
hence by (A.2), C(v) = C(θ(1)). Further, observe that θ(1) ∈ Chi1(v(2)) and θ(2) ∈
Chi2(v(2)). Once again, by (A.2), C(θ(1)) = C(θ(2)). A finite inductive argument
together with (A.2) shows C(θ(l−1)) = C(θ(l)) for l = 2, . . . , k− 1. Thus we obtain

(A.4) C(v) = C(θ(1)) = · · · = C(θ(k)).

Note that by (A.3),

v(k) = (par〈k〉(v1), v(k−1)
2 , root3, . . . , rootd) = (par〈k〉(u1), v(k−1)

2 , root3, . . . , rootd).

Now consider the sequence {w(l)}k−1
l=1 of vertices in T given as follows:

w(l) = (par〈k−l〉(u1), v(k−l−1)
2 , root3, . . . , rootd), l = 1, . . . , k− 1.

Further, consider the sequence {η(l)}k
l=1 of vertices in T given as follows:

η(l) = (par〈k−l〉(u1), v(k−l)
2 , root3, . . . , rootd), l = 1, . . . , k.

Observe that η(1) ∈ Chi1(v(k)) and θ(k) ∈ Chi2(v(k)). Thus η(1), θ(k) ∈ Chi(v(k)),
and hence by (A.2), C(θ(k)) = C(η(1)). Further, observe that η(1) ∈ Chi2(w(1))

and η(2) ∈ Chi1(w(1)). Arguing as above, we have C(η(1)) = C(η(2)). A finite
inductive argument now shows that

(A.5) C(θ(k)) = C(η(1)) = · · · = C(η(k)) = C(u).

Combining (A.4) and (A.5), we get C(v) = C(u).
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