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ABSTRACT. For each 1 < p < o and each countable oriented graph Q we
introduce an LP-operator algebra O7(Q), which contains the Leavitt path C-
algebra L as a dense subalgebra, and is universal for those LP-representations
of Ly which are spatial in the sense of N.C. Phillips. We prove that O7(Q) is
simple as an LP-operator algebra if and only if Ly is simple, in which case it is
isometrically isomorphic to p(Lg) for any nonzero spatial LP-representation
p: Lo — L(LP(X)). If moreover Ly is purely infinite simple and p # p’, then
there is no nonzero continuous homomorphism O (Q) — O (Q).
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1. INTRODUCTION

The study of algebras of operators on LP-spaces, for p € [1,00), can be
traced back to the work of Carl Herz in the 60’s and 70’s on harmonic analy-
sis on LP-spaces. There has been a much more recent interest for this area, with
an influx of ideas and motivations coming from operator algebras and specifi-
cally C*-algebras ([9], [10], [11], [15], [16], [17]). These new ideas have led to
the solution of some long standing open problems, and have given the area new
impetus. In this context, it has proved to be very fruitful to study LP-versions
of well-established and useful notions in C*-algebras: Cuntz algebras, crossed
products, AF-algebras, groupoid algebras, etc. In the current paper, we introduce
and study LP-algebras associated to graphs, which are LP-versions of C*-graph
algebras.

Let Q be a countable oriented graph, let Q° and Q! be the sets of vertices
and edges, and let Ly be the Leavitt path C-algebra. For 1 < p < o we call a
representation p : Lo — L(LP(X)) spatial if X is a o-finite measure space and p
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maps the elements of Q° LI Q! L (Q!)* to partial isometries which are spatial in the
sense of Definition 6.4 in [15]. Each spatial representation p induces a seminorm
on Lg via |jal, = [|p(a)]|; the supremum || - || of these seminorms is a norm
(Proposition and we write OF(Q) for the completion of (Lg, || - ||). We show
that O?(Q) is the usual graph C*-algebra (Proposition and that for p # 1,
OP(Q) is the tight semigroup algebra of [9] (Proposition [7.12). We prove the
following theorem.

THEOREM 1.1 (Simplicity theorem). Let Q be a countable graph and let p €
[1,00). The following are equivalent:
(i) Lg is simple;
(ii) every nonzero spatial LP-representation of Lq is injective;
(iii) every nondegenerate contractive nonzero LP-representation of OF (Q) is injective.
Furthermore, if either QU is finite or p > 1, then the above conditions are also
equivalent to:
(iv) for every LP-operator algebra B, every contractive, nonzero homomorphism
OP(Q) — B is injective.

Condition (iv) says that O?(Q) is simple as an LP-operator algebra. Since
every LP-operator algebra is isometrically embedded in £(L?(X)) for some o-
finite measure space X, simplicity as an LP-operator algebra is equivalent to the
condition that every contractive nonzero representation p : O?(Q) — L(LF (X)),
degenerate or not, be injective. For p = 2 any such contractive representation
factors through a nondegenerate one, so (iii) and (iv) are equivalent in this case.
We show (using a classical result of Ando [5] and a recent result of Gardella and
Thiel [11]]) that a similar result holds for p # 2 if either Q° is finite or p > 1; this
allows us to prove that (iii) < (iv).

To prove Theorem [I.T|we first show the following uniqueness theorem.

THEOREM 1.2 (Uniqueness theorem). Let Q be a countable graph such that Lg
is simple. Let p € [1,00), X a o-finite measure space and p : Lo — L(LP(X)) a
nonzero spatial representation. Then the canonical map OP(Q) — p(Lg) is an isometric
isomorphism.

Specializing Theorem [1.2|to the case when Q has only one vertex recovers
N.C. Phillips” uniqueness result for LP-analogues of Cuntz algebras ([15], Theo-
rem 8.7). We also show the following theorem (Theorem[11.2)).

THEOREM 1.3. Let Q be a countable graph and let p,p’ € [1,00), p # p" . If Lg
is purely infinite simple then there is no nonzero continuous homomorphism OF (Q) —

or'(Q).
A similar result for LP-Cuntz algebras was obtained by N.C. Phillips in The-
orem 9.2 of [15]].

The rest of this paper is organized as follows. In Section 2| we recall some
definitions and basic facts on Leavitt path algebras and prove some elementary
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technical lemmas. In Section 3] we show (Lemma that Lg is the universal
algebra for tight algebraic representations of the inverse semigroup S(Q) gen-
erated by Q. Spatial representations of the Leavitt path algebra Ly of a count-
able graph Q are introduced in Section[l] We give examples of such representa-
tions and show in Proposition that for every countable Q and 1 < p < oo,
there is an injective, nondegenerate spatial representation Lo — L(¢”(N)). Spa-
tial representations of matrix algebras M,Lg for 1 < n < oo are considered
in Section [5| and it is shown that they are the same as spatial representations
of the Leavitt path algebra over the graph M,;Q (Remark 5.I). Morever, we
prove that any such representation is equivalent to the matricial amplification
Myp of a spatial representation p of Lo (Lemma [5.3). Section [f] is concerned
with a characterization of spatiality of representations in terms of norm esti-
mates. We prove a spatiality criterion which we shall presently explain. The
subalgebra (Lg)o1 = span{o € Q%ee*,e € Q'} C Lg is a direct sum of,
possibly infinite dimensional, matrix algebras and is thus naturally equipped
with an LP-operator norm. The spatiality criterion, Theorem says that if
p € [1,00)\ {2}, then a nondegenerate representation p : Lo — L(LF(X)) is
spatial if and only if its restriction to (Lg)o,1 is contractive and ||o(x)|| < 1 for
every x € Q'II(Q")*. Along the way we also prove a spatiality criterion for
nondegenerate LP-representations of matricial algebras (Proposition [6.I). Both
spatiality criteria fail to be true if the nondegeneracy hypothesis is dropped (see
Remark 6.3). By contrast, for a representation p : Lo — £(L?(X)), the condition
that ||o(x)|| < 1 for every x € QT Q' I(Q")* is equivalent to requiring that p
be a *-homomorphism (Proposition [6.4). In Section [7] we define LP-operator al-
gebras and introduce the LP-operator algebra O (Q). By definition, any spatial
representation of Lo — L(LP(X)) factors uniquely through a contractive rep-
resentation OF(Q) — L(LP(X)) (1 < p < o0). Moreover we prove, using the
spatiality criterion of Section [6} that for p # 2, any nondegenerate contractive
representation OF(Q) — L(LP(X)) induces a nondegenerate spatial representa-
tion Lo — L(LP(X)) (Theorem . We show that if moreover p # 1, then the
nondegeneracy hypothesis may be dropped. We also prove that O?(Q) is just
the usual graph C*-algebra C*(Q) (Proposition [7.9). It follows from this that a
contractive L?-representation of C*(Q) is equivalent to a *-representation of Ly
(Remark [7.10). We also show, using the material of Section 3} that if p € (1, 00)
then O (Q) is the same as the LP-algebra Pg ght(S (Q)) introduced by E. Gardella
and M. Lupini in [9] (Corollary [7.1T]and Proposition[7.12). The latter is universal
for those tight LP-representations of S(Q) which are either spatial (if p # 2) or
x-representations (if p = 2). In Section [§| we show that adding heads and tails
to a graph Q to obtain a new graph Q' without sources, sinks or infinite emitters
results in an isometric inclusion OF (Q) — OP(Q') (Corollary[8.2). Section[9]is de-
voted to the proof of Theorem|[I.2](Theorem9.1). The technical result of the previ-
ous section is used here to reduce the proof to the case of graphs without sources,
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sinks or infinite emitters. After this reduction, the strategy of proof is similar to
that of the analogous result for the LP-Cuntz algebra ([15], Theorem 8.7), although
it requires several nontrivial technical adjustments. The simplicity Theorem|[I.1]is
proved in Section[I0} The last section of this article is Section[IT} where we prove
Theorem [I1.2} of which Theorem[I.3]is a particular case.

NOTATION 1.4. In this paper N = Z>; and Ny = Z>(. All algebras, vector
spaces, and tensor products are over C. All identities pertaining measure spaces
are to be interpreted up to sets of measure zero. For example we say that a family
{Xn}n>1 of measurable sets in a measurable space X = (X, B, ) is disjoint if
Xy N Xy, has measure zero for all n # m, and write [ [ X, for their union. In case

n
the latter agrees with X up to measure zero, we write X = [ [ X;;. This reflects the

n
fact that under the above hypothesis (X, B, ) is equivalent to the set theoretic
coproduct ] [ X,, equipped with the o-algebra generated by [ [ B, and the measure
n n

induced by the sequence of measures {y|, }. We write L%(X) for the vector space
of classes of measurable functions X — C.

2. GRAPHS AND LEAVITT PATH ALGEBRAS

In this section we briefly recall some of the basics of Leavitt path algebras; a
general reference for the subject is [1].

An oriented graph or quiver Q = (Q° Q!,r,s) consists of sets Q¥ and Q! of
vertices and edges, and range and source functions 7,5 : Q' — Q" . We say that Q
is finite or countable if QY and Q' are both finite or countable. A vertexv € Q%is an
infinite emitter if s~!(v) is infinite, and is a sink if s~1(v) = @. A vertex is singular
if it is either a sink or an infinite emitter. We write sing(Q) = sink(Q) Uinf(Q) C
QO for the set of singular vertices and reg(Q) = Q° \ sing(Q). We call Q singular
if sing(Q) # @ and nonsingular (or reqular) otherwise. We call Q row-finite if it has
no infinite emitters. A vertex v is a source if ¥~ (v) = @; we write sour(Q) C Q°
for the set of sources.

Since all our graphs will be oriented, we shall use the term graph to mean
oriented graph.

A path « is a (finite or infinite) sequence of edges &« = ¢1 - - -¢; - - - such that
r(e;) = s(ejr1) (i = 1). For such a, we write s(a) = s(eqp); if « is finite of length
I, we put || = I and r(a) = r(e;). Vertices are considered as paths of length 0.
A finite path a is closed if s(a) = r(a). A closed path « = «aq - - - a, is a cycle if in
addition s(e;) # s(ej) if i # j. Let P = P(Q) be the set of finite paths, and let P,
be the set of paths of length n. Thus,

(2.1) P=1] Pu

neNy

We consider the following preorder in P:
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(2.2) a < B < Jysuchthatr(f) =s(y) and a« = By.
Observe that also makes sense when « is an infinite path.

DEFINITION 2.1. Let Q be a graph. The Leavitt path algebra L is the quotient
of the free C-algebra on Q° U Q! U (Q!)*, modulo the following relations:
(i) v’ = 6, forall v,v' € QY
(ii) s(e)e = er(e) = e forall e € Q;
(iii) r(e)e* = e*s(e) = e* forall e € Q;
(iv) (CK1) e*¢’ = 6, 47(e) forall e,e’ € Q%;
(v) (CK2) v = Y ee*, if v € reg(Q).
{e€Ql:s(e)=v}
The Leavitt path algebra is a x-algebra with involution determined by v
v, e — ¢*. It has a Z-grading where vertices have degree zero, edges have degree
1,and |e*| = —1 for e € Q! ([1], Corollary 2.1.5). We write

(2.3) (Lg)n = span{ap” : [a| — [B] = n}

for the n-th homogeneous component with respect to this grading.
The elementary lemmas below shall be used later in the article.

LEMMA 2.2. Let Q be a nonsingular graph and ay,...,an € Lg. Then there

exist n € N, a finite set F C P, and finitely supported functions A Fx P, = C,
(a,B) = Ayg (i=1,...,m & € F, p € Py), such that

ai=y Y )Lf;‘,ﬁzxﬁ*, foralli=1,...,m.

a€F BEPy
nj P .
Proof. Foreachi =1,...,m, we may writea; = }_ )\}tx;ﬁ}* with paths ﬁ; of
=1
length n := max{| [3;\}, using relation (CK2) of Deﬁnition Put F; := {oc;- =
ij

. m
1,...,n}, G == {,8; :j=1,...,n;} and F := {J F,. Rewriting the sums for each
i=1
i,wehavea; = Y ¥ Agﬁaﬁ* with)\;ﬁ =0ifa ¢ ForB¢G;. 1
aeF BeP, ’

LEMMA 2.3. Let Q be a graph, B a C-algebra, and p : Lo — B a homomorphism.
Let u := {uy}yeqo C B such that uy is invertible in p(v)Bo(v) for all v € Q°. Then
there is a unique homomorphism p,, : Lo — B such that foralle € Q', v € Q°

pule) = usyple),  pule’) = p(eugy and pu(v) = p(0).

Proof. One checks that for x € Q% U Q' U (Q')* the elements p, (e), satisfy
the relations of Definition[2.1] 1
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3. LEAVITT PATH ALGEBRAS AND SEMIGROUPS

Let Q be a graph and P = P(Q) the set of finite paths. Write
(3.1) §=8(Q)={0}u{aB*:a,pec P} C Lg.

Then S is the inverse semigroup associated with Q. The Cohn algebra of Q is the
semigroup algebra C = C[S] of S; its elements are the finite linear combinations
of the elements of S with multiplication induced by that of S. Observe that Lg
is the quotient of Co modulo the relation CK2. Consider the sub-semigroup & of
idempotent elements of S:

SOE&={0}U{an™:a € P}.

The set £ is partially ordered by p < q & pg = p and is a semilattice for this
partial order. Observe that for the order of paths defined in (2.2), the bijection
P — £\{0}, a — aa* is a poset isomorphism. Note also that p,q € £ are
incomparable if and only if pg = 0. Letp € Eand Z C {g € £ : q < p}.
We call Z a cover of p if for every q < p there exists z € Z such that zg # 0.
Let (End(V), o) be the set of linear endomorphisms considered as a semigroup
under composition. A representation of S on a vector space V is a semigroup
homomorphism p : S — (End(V), o). The image of £ under a representation p
generates a boolean algebra B, with operations pAq = pq, pVq = p+q— pq.
By Proposition 11.8 of [8], the boolean representation p : & — B, is tight in the
sense of Definition 11.6 in [§] if and only if for every p € £ and every finite cover
Z of p, we have

(32) V p(z) = p(p).

z€Z

Following Definition 13.1 of [8], we call the representation p of S tight if its re-
striction to £ is tight.

Although the following lemma is well-known to experts, we have not been
able to find it explicitly stated in the literature, so we include it here with proof.
The particular case of Lemma[3.I|when Q has a single vertex is Lemma 7.5 of [11]].
See also Corollary 5.3 of [22].

LEMMA 3.1. Let p: S(Q) — (End(V), o) be a representation. Then p is tight if
and only if it extends to an algebra homomorphism Lo — End (V).

Proof. If v € reg(Q), then Z = {ee* : e € Q,s(e) = v} is a finite cover of

v and the supremum in equals Y p(ee*). It follows that if p is tight then it
ecZ
extends to an algebra homomorphism Ly — End(V). Assume conversely that p

extends to Lg. We have to prove that (3.2) holds. Since the supremum in (3.2) de-
pends only on the maximal elements of Z, and any two of these are incomparable,



LP-OPERATOR ALGEBRAS ASSOCIATED WITH ORIENTED GRAPHS 231

we may assume that no two distinct elements of Z are comparable. Hence

Vo) =) p(2)

zeZ ze”Z

Ifa € Pandr(a) = v,then W = a*Zaisacoverofvand } =a Y wa*. Hence
z€Z weW
we may further assume that &« = v. We must then prove that for each finite cover

Z of v in which no two distinct elements are comparable, the following identity
holds in Lg
Yz-o

We do this by induction on n = m(Z) = max{|a| : aa* € Z}. For n = 0 this is
trivial. Assumen > landlet A = {a € P, : aa* € Z}. Eacha € A canbe written
uniquely as &e, where [@| = n—1and e, € Q. Forw € B := {s(ey) : & € A},
put Cyy = {eq : s(ex) = w}; because Z is a cover, C;, = s~ !(w). Hence

Y ot = ZZMX Y Z Bee*p* =Y BB*.

acA BecAd= peAs(e)=r(B) BcA

Let Z/ = (Z\ A) U A; then m(Z') = n — 1, any two distinct elements of Z’ are

incomparable, and by the calculation above, Y. z’ = ¥ z. This concludes the
z'ez! zeZ
proof. 1

4. SPATIAL REPRESENTATIONS OF Lg

Let E be a Banach space. We write £(E) for the Banach algebra of bounded
linear maps E — E. A representation of Lg on E is an algebra homomorphism p :
Lo — L(E). We say that p is nondegenerate if p(Lg)E C E is dense. In this paper
we shall be mostly concerned with LP-representations, that is, with representations
on Banach spaces of the form LP(X), p € [1,00), where X = (X, B, i) is a o-finite
measure space. If A € B3, we write P(A) for the set of subsets of A and consider
A as a measure space with -algebra B4 := BN P(A) and measure y, 5, thus

A= (A’BA’V‘BA)'

We write N (u) = {A € B: u(A) =0} and B, = B/N (u).

In what follows, we need to borrow several definitions from [15], pertaining
to (partial) isometries between LP-spaces.

Let X = (X, B, 1) and (Y, C, v) be o-finite measure spaces. A measurable set
transformation from X to Y is homomorphism of c-algebras S : B, — C,. If Sis
bijective, then S.(u) = uS~!is a ¢ finite measure on C, absolutely continuous
with respect to v. By Proposition 5.6 of [15], there is also a map S. : L%(X) —
LO(Y) such that S, (xg) = Xs(k) (E € By).
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Let 1 < p < oo; to a bijective measurable set transformation S from X to Y
and a measurable function /1 : Y — C such that |i(x)| = 1 for almost every x € B
one associates an isometric isomorphism u : L (X) — LP(Y) as follows:

@) u@)y) = h(y)([ddsj(%) DW 5.(&)(y) forallg € LP(X),y € X.

An isometric isomorphism u : L (X) — LP(Y) is called spatial if there exist S and
h such that u is of the form @.1). If p # 2, then every isometric isomorphism in
L(LP(X),LP(Y)) is spatial, by the Banach-Lamperti theorem ([13], Theorem 3.1;
see Theorem 6.9 and Lemma 6.15 of [15] for a detailed proof). A partial isometry
s : LP(X) — LP(X) is spatial if there are A, B € By, called respectively the domain
and the range support of s, and a spatial isometric isomorphism u : LP(A) —
LP(B), such that for the projection w4 : LP(X) — LP(A) and the inclusion ip :
L?(B) — LP(X) we have a factorization

(4.2) S = IBUTTA.

If S and h are as in (4.1) we call s the spatial partial isometry associated with the
spatial system (S, A, B,h); S and h are the spatial realization and the phase factor of
the spatial system. Observe that whereas different choices of 1 and S may induce
the same partial isometry s, 14 and 7t depend only on the latter. Indeed

ta =inf{ma 1 A’ € B,sty =s} and m, = inf{my : B' € B, s = s}.

If sisasin [2), then t = 1qu~ 7ty is the unique spatial partial isometry such that
ts = 4 and st = 7tp; we call t the reverse of 5. If p = 2 and s is a spatial partial
isometry then the reverse of s is just its adjoint ¢ = s™.

EXAMPLE 4.1. Let X = (X, B, ) be a o-finite measure space. Let E € B
and let xg be the characteristic function. Then the canonical projection g :
LP(X) — LP(E) C LP(X), me(E) = xE€ is a spatial partial isometry with spatial
system (Idg,, E, E,1). Every idempotent spatial partial isometry is of this form,
by Lemma 6.18 of [15].

EXAMPLE 4.2. Let X be as in the previous example and let s : L7 (X) —
LP(X) be a spatial partial isometry with spatial system (S, A, B,h). If z € S! then
¢ +— zs({) is again a spatial partial isometry with spatial system (S, A, B, zh).

REMARK 4.3. Spatial partial isometries in general and spatial idempotents
in particular have norm 1. However the converse does not hold. For example,

(}jj }ji) e My = B(7({1,2})))

is a norm one idempotent that is not spatial in our sense (which is that of [15]) for
any p = 1 ([15], Example 7.3). However it is self-adjoint and therefore 2-spatial
in the sense of Definition 4.6 in [9].
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A representation p : Lo — L(LF(X)) is spatial if for each v € Q°, p(v) is
a spatial idempotent and for each e € Q!, p(e) is a spatial partial isometry with
reverse p(e*). If p is spatial then p(x) is spatial for every x € S(Q), whence by
Lemma|3.1]a spatial representation of L is the same as a tight spatial representation
of S(Q), that is, a tight representation of S(Q) which takes values in the inverse
semigroup S(LP(X)) of spatial partial isometries.

REMARK 4.4. As we explained above, the reverse of a spatial isometry s €
L?(X) is just its adjoint. Hence any spatial representation Ly — L£(L*(X)) is a
x-representation. The converse does not hold. For example C is the Leavitt path
algebra of the graph consisting of a single vertex and no edges, and the repre-
sentation p : C — My = L(¢?(N)) that sends 1 to the self-adjoint idempotent of
Remark[4.3]is a *-representation that is not spatial in our sense.

REMARK 4.5. If pisspatialand «, B € P(Q) are paths withr(a) = r(p), then
p(ap*) is a spatial partial isometry. In particular, p(aa*) is an idempotent spatial
partial isometry, and thus by Example[4.1} there is X, € B such that p(aa*) is the
canonical projection 7tx, : LP(X) — LP(X,) C LP(X). If S, is the measurable set
transformation of p(«) then X, = Sy (X, (4)), so the spatial system of p(«) is of the
form

(SIX/ Xr(a)/ Xa, glx)
for some g, : X, — C such that |g(x)| = 1 for almost all x € X,. If « > B, say
B = ay, then X5 C X, because Xz = Sy(Xy) C Sa(X(y)) = Xa. On the other
hand if « and p are not comparable then X, and Xy are disjoint. In particular, for
each v € QU the family {X, : s(e) = v} C BN P(X,) consists of pairwise disjoint
sets, and if v is regular its union is the whole Xy:

(4.3) Xo= [] X. forallv e reg(Q).
e€s1(v)
It follows from that if Q is nonsingular then for each [ > 0 we have
(4.4) Xo= [] X
acvP(Q)

Conversely, if we are given disjoint families {X, : v € Q°} C Band {X. :
e € Ql,s(e) = v} C BN P(Xy) for each v € QU satisfying and a family
{se : e € Q'} of spatial partial isometries in £(LF(X)) with range and source
projections 7tx, and 7x,, then there exists a unique algebra homomorphism p :
Lo — L(LP(X)) satisfying p(v) = mx,, p(e) = s¢, and sending e* to the reverse
of s,.

LEMMA 4.6. Let X be a o-finite measure space. If p : Lo — L(LF(X)) is a spatial
representation, then p is nondegenerate if and only if

(4.5) X=1]] Xo

ve0
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Proof. Immediate from the fact that

p(LQ)LF(X) = ) p(0)LP(X) = D LF(Xo).
veQ veQ0
It follows from and Lemma [4.6|that if Q is nonsingular and p is nonde-
generate, then for each | > 0 we have

(4.6) X= ] Xa
a€P(Q)

LEMMA 4.7. Let Q be a graph, 1 < p < oo, X = (X, B, u) a o-finite measure
space, and p : Lo — L(LP(X)) a spatial representation. Then there are X' € B and
a nondegenerate spatial representation p' : Lq — L(LP(X")) such that p factors as o’
followed by the inclusion L(LF(X')) C L(LP(X)).

For the proof put X' = [] X,.

veQO

The following example of a nondegenerate spatial representation is used in

the proof of Theorem [10.1}

EXAMPLE 4.8. Let Q be a graph, and let
4.7) X =X = {a: infinite pathin Q} U {a € P : r(a) € sing(Q)}.

Fora € P, let

XDZy={xeX:a>x}=0aX
The sets Z, are the basis of a topology on X which makes it a locally compact
Hausdorff space; modulo our different conventions for ranges and sources, this
is the space considered in page 3 of [6]. The inverse semigroup S = S(Q) acts on
X by partial homeomorphisms; an element u = af* € S acts on X with domain
Zp and range Z, via

(4.8) af*(Bx) = ax.
Let B be the o-algebra of all Borel subsets of X. The semigroup S of acts on
X via @.8). If a, p € P with r(a) = r(B), then

(49) Stx‘B* : B‘Zﬁ — Blza’ A OCIB* (A)

is a bijective homomorphism of o-algebras. Let # be a measure on B; y is quasi-
invariant under a§* if V‘Z,; and p, o pa* are equivalent measures (that is, if they

are absolutely continuous with respect to each other); u is quasi-invariant under
§ if it is quasi-invariant under any element of S. One can show that X always
has a o-finite measure that is quasi-invariant under S. For example, in case X
is countable we can take y to be the counting measure. Assume that y is a o-
finite measure on the Borel subsets of X, quasi-invariant under S, and let Sap* be
the spatial isometry of with spatial realization S = S, and constant phase
factor h = 1. Then
S = L(LP(X, 1)), ap” = sup:
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is a tight nondegenerate spatial representation of S and thus induces a nonde-
generate spatial representation p,, : Lo — L(L?(X, t)). There are graphs Q such
that p,, is not injective for any p € [1,c0). For example, if Q consists of one vertex
and one loop, then L = C[t,t~!] and py, is 1-dimensional.

REMARK 4.9. Each element x € X induces a tight Boolean representation
¢x + € — {0,1} (that is, a tight character in the sense of Definition 12.8 in [8]) so
that ¢x(aa*) = 1if and only if x € Z,. One can show that the map x — ¢y
is a homeomorphism between X and the space aight of tight characters with the
topology of point-wise convergence, and that the action corresponds to the
canonical action of Proposition 12.8 in [8§].

CONSTRUCTION 4.10. Let X be a countable set, and let Z(X) be the inverse
semigroup of all partially defined injections

XDdomeX.

Let Q be a countable graph, S = S(Q) its associated inverse semigroup and
S : S — Z(X) a semigroup homomorphism. For each « € P = P(Q), set X, =
dom(S,). We shall assume that S is tight, i.e. that the identities and are
satisfied. Let G = G(S, X) be the groupoid of germs, as defined in Section 4 of [8].
The elements of G are equivalence classes [¢8*, x] where r(a) = r(B), x € Xp; the
equivalence relation is determined by the prescription that [af*, x| = [ayy*B*, x]
for any v € P with s(y) = r(a). For af* € S\ {0}, put

Onp = {[ap" x] 1 x € Xg} CG.

Let A(G) C map(G,C) be the linear subspace generated by the characteristic
functions xe, ,, (ap* € S\ {0}). One checks that A(G) is an algebra under the
convolution product (it is in fact the Steinberg algebra of G [21]) and that

(4.11) p:Lo = A(G), ¢@p’) = xe,,

is an algebra homomorphism. Let

(4.12) L A(G) = L(P(G)), LHE)h) =} F(QE(g h),

g€g

for f € A(G), ¢ € ¢P(G) and h € G. This is well-defined because the domain and
range functions are injective on each 0, g. One checks that L is a monomorphism.
Consider the composite

(4.13) p=Lp:Lo— L(ILP(G)).
Let ap* € S(Q) and consider the following subsets of G:

A={[y0"0x]: p=vx}, B={[ap"y0",dx]: p > yx}.
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The map

A — B,
[v6%, 6x] > [ap*, yx][yd", 0x] = [aB" 0™, Ox]

is bijective and thus induces a cardinality preserving bijection S, 5: P(A) — P(B).
One checks that p(«*) is the spatial isometry with spatial system (S, 3, A, B, 1).
Hence p is a spatial, nondegenerate representation.

LEMMA 4.10. Assume that in Construction one has X, # @ forall v €
Q. Then @II) is an isomorphism and @I3) is an injective, nondegenerate spatial
representation.

Proof. Put A(G), = span{y(ap*) : |af*| = n}; we have
(4.14) A(G) =) A(G)u.

Letc: G — Z, c([aB*, x]) = |aB*|; note that the elements of A(G), are supported
inc~1({n}). It follows from this that the sum in is direct. Moreover, because
¢ is a groupoid homomorphism, we have A(G)nA(G)m C A(G)ntm. Thus ¢ is
a homogeneous homomorphism of graded algebras. For v € Q°, ¥(v) is the
characteristic function of {[v, x] : x € X, } which is nonempty by hypothesis, so
P(v) # 0. By Theorem 2.2.15 of [I] this implies that i is an isomorphism. 1

PROPOSITION 4.11. Let Q be a countable graph and let p € [1,00). Then Lg has
an injective, nondegenerate spatial representation Lo — L(€F(N)).

Proof. Let X be any countably infinite set. Because X is infinite and #Q° <
#X, there exists a bijection ¢ : X — Q" x X. For v € Q°, set X, = ¢~ ({v} x X);
observe that (£.5) is satisfied by construction. Put Q! (v, —)=s"!({v})CQ" and let

& {Ql(v,—) v € reg(Q),
" {o}IQY (v, —) v € sing(Q).

Because #X, = #X is infinite and #R, < #Xy, there is a bijection {y : Xy — Ry X X.
Set X, = gs’(g)({e} X Xy(e)) (e € Q). By construction, (3) is satisfied. Fore € Q',
let 7=t x 1:{r(e)} x X — {e} x X be the obvious bijection. Define a semigroup
homomorphism S : S(Q) — Z(X) by setting

Sy =1x,, Se= g;(g) (r ' x1)¢: Xy = Xe, See=5," forveQ’eecqQl.

Let G be the groupoid of germs associated to this action of S on X, and consider
the nondegenerate spatial representation p : Lo — L(¢P(G)) of (4.13). Then p is

injective by Lemma furthermore, #G = Ny and any bijection G = N induces
a spatial isometric isomorphism ¢7(G) = (P(N). n
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5. MATRIX ALGEBRAS AND SPATIAL REPRESENTATIONS

Let 1 < n < co and let A be an algebra. Write M, for the algebra of n x n-
matrices with finitely many nonzero entries, and M, A = M, ® A. Ifi,j € N, we
write E; j for the canonical matrix unit. Let Q be a countable graph, X a o-finite
measure space, and p € [1,00). Call a representation p : M, (Lg) — L(LF(X))
spatial if for every x € QU Q! and i,j, p(E;; ® x) is a spatial partial isometry
with reverse p(E;; @ x*).

REMARK 5.1. Let n < oo and let M,,Q be the graph obtained by adding a
head

v v v )
e i1 € €1

0; 0i—1 s 01 0

foreachv € Qand i < n. By Propositions 9.3 and 9.8 of [3], there is a *-isomor—
phism

Lyt,0 — MyLo,
(6.1) v E1®0, 0> Eif1i11®0
e — E1,1 ®e, ef — Ei+1,j X e.

Itis clear that a representation M, Lo — £(LP(X)) is spatial in the matricial sense
above if and only if its composition with the map (5.1) is a spatial representation
of L M, Q-

EXAMPLE 5.2. Let 0 : Lo — L(LP(X)) be a spatial representation. Let
I ={1,...,n}if nis finite, and I = N if n = co. We have a canonical isometric
isomorphism LP(I x X) = ¢F(I,LP(X)). Let

01 : MyLg — L(P(L LP(X))),  o1(Eij @ a)(§)(k) = 00 (a)(E(f))-

Then o7 is spatial. Indeed if a € S(Q) and ¢ (a) is a spatial isometry with domain
support A and rank support B, then ¢ (E; j @ a) is a spatial isometry with domain
support {j} x A and range support {i} x B. We remark that for I = {1,...,n},
o7 is the representation induced by the amplification of ¢ in the sense of Defini-
tion 4.10 in [9].

LEMMA 5.3. Let Q be a countable graph, I a countable set, X a o-finite measure
space, p € [1,00), and p : My Lo — L(LP(X)) a nondegenerate spatial representation.
Then there exist a o-finite measure space Y, a spatial representation o : Lo — L(LP(Y)
and a spatial isometric isomorphism u : ¢P(I,LP(Y)) — LF(X) such that p(a) =
uop(a)u~! foralla € Lg.

Proof. Foreachi € Iandv € QY, let X; , be the domain support of the spatial
idempotent p(E;; ® v). Set X; = ][ X;,; we have X = [] X;. Hence we have
veQ iel
LP-direct sum decompositions LF(X) = @ LP(X;) and LP(X;) = @ LP(Xjy,).
i€l veQP
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Choose ip € I, and let Y = X;. Then u = @ p(E;;, ® v) is a spatial isometric
i,v
isomorphism ¢7(I,LP(Y)) = @ LP(Y) — LP(X). Leto : Lo — L(LP(Y)), o(a) =
i€l

p(Ejyi, ® a). One checks that u conjugates o7 to p, concluding the proof. &

6. A SPATIALITY CRITERION

We have a natural identification M, = L(¢P({1,...,n}) for n < oo and a
natural embedding M, — L(¢P(N)); by pulling back the operator norm, we get

anorm || - ||, on My, for n € [1, 0], which makes the latter into a normed algebra
M} If I is a set and
(6.1) n = (nj)ier
is a family with n; € [1, 0], we write
(6.2) My =P M,
icl

for the algebraic direct sum equipped with the supremum norm
(@) = sup [|a; ] -
i€l
We write E;,b (i € I),1 < a,b < n; for the canonical matrix unit.

The following proposition generalizes Theorem 7.2 of [15]; its proof is
adapted from loc. cit.

PROPOSITION 6.1. Let p € [1,00) \ {2}, I a countable set, n as in (6.1), and M}
as in (6.2). Let X = (X, B, i) be a o-finite measure space with y # 0. The following are
equivalent for a nondegenerate representation p : M}y — L(LF(X)):

() p(Efl,b) is a spatial partial isometry for alli € I and, a,b € [1,n;];
(ii) p is contractive.

Proof. Assume that (i) holds. Then each p(E},) is a spatial idempotent,
whence by Example [4.1|there is X, € B such that p(E. ;) = Tyi is the canonical
projection. Foreachi € I put N; = Nifn; = coand N; = {1,...,n;} if n; < c0. Be-

cause p is nondegenerate, we have X = [[ [[ Xi. Put X' = ][ X}. By restric-
ielaeN; aeN;

tion, we obtain a nondegenerate representation p' : M,, — L(L? (X)) satisfying
(i); hence we may assume that I = {1} has only one element. If n < co, nondegen-
eracy implies that p(1) = 1, so p is contractive by Theorem 7.2 of [15]. Assume
n = oo. Proceed as in loc. cit., using the partial isometries p(E1,) : LP(X,) —
LP(X1) to construct an isometry u : LV (X) — (P(N,LF(X;)) = (F(N) ®, LP(X1)
(the LP-tensor product) that conjugates p to the contractive representation T +—
T ® 1. It follows that p is contractive, concluding the proof that (i) = (ii).
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Assume now that (i) holds. Then {p(E},) : i € I,a € N;} is a family of
orthogonal idempotents. Let B, = p(Ef,,a)LF’(X ); then the algebraic direct sum
B = @B is dense in LP(X). Foreachz € S!,i € I and a € N define an

ia
operator u;,(z) : B — B as multiplication by z on B} and the identity on every
other summand. Because p is contractive, u;,(z) has norm 1, so it extends to a
norm 1 operator u;,(z) € L(LP(X)). Since this also holds for u; ,(z71), u; ,(z) is
a bijective isometry. Hence it is spatial, by the Banach-Lamperti theorem. Now
proceed as in page 42 of [15] to deduce that p(E ;) = (1 — u;,(—1))/2 is a spatial
idempotent. Hence there exists X: € B such that B = LP(X!) and X = []X..
Since P(Eé,b) is an isometry B, — B}, another application of the Banach-Lamperti
theorem shows that it is spatial. &

Recall that the Leavitt path algebra is equipped with a Z-grading Lo =
@D(Lo)n where (Lg), is as in 2.3). Write (Lg)on C (Lg)o for the subalgebra

n

linearly spanned by the elements of the form af* with r(a) = r(B) and |a| =
|B| < n. We have an increasing union

(Lg)o = G (Lg)on-
n=0

Each (Lg)o,, is isomorphic to a direct sum of (possibly infinite dimensional) ma-
trix algebras.

THEOREM 6.2 (cf. Theorem 7.7 of [9]). Let X = (X, B, i) be a o-finite measure
space with u # 0, p € [1,00) \ {2}, and Q a countable graph. The following are
equivalent for a nondegenerate representation p : Lo — L(LP(X)):

(i) p is spatial;
@) le(e)|, le(e*)|| < 1 (e € Q') and the restriction of p to ((Lg)on, || - |p) is
contractive.

Proof. The implication (i) = (ii) is clear using Proposition [6.1} Assume that
(ii) holds; then p(e) is a bijective isometry p(r(e))LF(X) — p(ee*)LP(X) with
inverse p(e*). By Proposition p(v) and p(ee*) are spatial idempotents for
allv € Q" and e € Q'. Hence it follows from the Banach-Lamperti theorem,
Theorem 6.9 in [15] and from Lemma 6.15 of [15] that p(e) and p(e*) are spatial.
This concludes the proof. 1

REMARK 6.3. The assumption that p be nondegenerate in necessary in both
Proposition [6.1|and Theorem|[6.2] For example the trivial graph on one vertex has
Leavitt algebra C, which equals Mf forall1 < p < oo, and the representation
C — Mg that maps 1 to the idempotent of Remark is contractive but not
spatial. The correct version of Theorem [6.2)for p = 2 is Proposition [6.4]
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PROPOSITION 6.4. Let (X, B, u) and Q be as in Theorem The following are
equivalent for a representation p : Lo — L(L?(X)):
(i) p is a x-homomorphism;

@) llo(e)ll, llo(e)l, lo()|l < 1 for every e € Q" and v € Q°.

Proof. Recall that an idempotent 77 € £(L?(X)) is contractive if and only if
it is self-adjoint. It follows that if two elements s, t € £(L2(X)) satisfy sts = s and
tst = t then ||s|| < 1 > ||t|| if and only if t = s*. The proposition is immediate
from this observation applied to 77 = p(v), s = p(e) and t = p(e*) for all v € Q°
ande € QL. 1

7. THE LP-OPERATOR ALGEBRA O*(Q)

DEFINITION 7.1. Let p € [1,00). An LP-operator algebra is a Banach alge-
bra B together with a norm on each M;,B that makes into a Banach algebra in
such a way that there exists a nondegenerate representation p : B — L(LP(X))
for some o-finite measure space X, such that M,p : M,B — M,L(LP(X)) =

n
£<LP( 11 X)) is isometric for each 1 < n < oo. We call B standard if X can
i=1

be chosen to be a standard Borel space. A homomorphism f : A — B between
LP-operator algebras is p-completely contractive (respectively isometric) if M, f is
contractive (respectively isometric) for every n.

REMARK 7.2. By Proposition 1.25 of [16], any separable LP-operator algebra
admits an isometric representation on a separable, whence standard, LP-space.
Thus a separable LP-operator algebra is automatically standard.

REMARK 7.3. If either p € [1,00) and B has a contractive unit or p # 1
and B has a contractive approximate unit, then the condition that the isometric
representation in Definition [7.1be nondegenerate can be dropped, by Theorem 4
of [5] and Theorem 3.19 of [11]].

Let Q be a countable graph and let p € [1,00). A spatial p-seminorm on
its Leavitt path algebra is a seminorm & : Lo — R such that there exist a o-
finite measure space X and spatial representation p : Lo — L(LP(X)) such that
h(a) = ||p(a)| foralla € L. Observe that by Lemma every spatial seminorm
is induced by a nondegenerate spatial representation. Put

(7.1) la|| = sup{h(a) : h is a spatial p-seminorm}.

By Proposition[4.11] || - || is a norm.

DEFINITION 7.4. Let Q be a countable graph and let p € [1,00). Write

Or(Q) = fg“ for the completion of Lo with respect to the norm (7.1). By def-
inition, O”(Q) is a Banach algebra; we shall see in Proposition [7.5| below that
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furthermore, OF(Q) is an LP-operator algebra. We call OF(Q) the LP-operator
algebra of Q.

Observe that the canonical map Lo — OF(Q) is injective, by Proposi-
tion Since Q is countable, there is a countable family {p,} of o-finite non-
degenerate spatial representations such that || - || is the norm associated to the
LP-direct sum

(7.2) p:@pn:LQ—MC(U’(]ZIX,J)

which is a nondegenerate spatial representation. Hence OF(Q) is isometrically
isomorphic to the closure of p(Lg).

PROPOSITION 7.5. Let Q be a countable graph. Then OP(Q) has a canonical

structure of LP-operator algebra such that there is an isometric isomorphism M, OF (Q) =
OF (M, Q) foralln € [1,00).

Proof. By Remark every LP-representation of M,Lgy which is spatial
in the sense of Section j| factors uniquely through the canonical map M,Lgy =
Ly,o — OP(M,Q). By Lemma [5.3[and the discussion above, for each n there is

a spatial representation 0y, : Lo — L(LF(Y})) such that || - ||, := [[Myuou(-)|| is

the supremum of all p-spatial norms on Ly, (o). Let Y =Y, andletc = @ oy, :
n n

Lo — L(LP(Y)) be the LP-direct sum. Then || Mo (-)|| = || - [|x forall n > 1, and

we have isometric isomorphisms

OF (M Q) = 0(My(Lg)) = Mn(0(Lg)) = Mu(c(Lg)) = MyOP(Q). 1

THEOREM 7.6. Let X be a o-finite measure space with nonzero measure, p €
[1,00) \ {2}, Q a countable graph, p : OP(Q) — L(LP(X)) a representation and
p : Lo — L(LP(X)) the restriction of p. If p is nondegenerate, then the following
conditions are equivalent:

(i) p is contractive;
(ii) o is spatial.

Further assume either that p # 1 or that QU is finite. Then for any, possibly

degenerate representation, condition (i) is equivalent to

(ii") there exist a o-finite measure space Y, an isometry ¢ : LP(Y) — LP(X), a norm 1
operator 7t : LP(X) — LP(Y) such that 7t = 1, and a spatial representation p’ : Lg —
L(LP(Y)), such that for f : L(LF(Y)) — L(LP(X)), f(T) = (Tm, the following

diagram commutes

L(LF(X))
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Proof. First assume that p is nondegenerate. If p is spatial then it induces
a contractive homomorphism p’ : OP(Q) — L(LP(X)) which agrees with p on
Lg; since p does the same, we must have p = p’. This proves that (i) = (i).
Conversely if (i) holds, then p is spatial by Theorem [6.2} Next observe that if p is
any (possibly degenerate) representation that satisfies (ii’) then p’ factors through
a contractive representation E’ :OP(Q) — L(LP(Y)). Thus fﬁ’ = pis contractive.
Assume conversely that (i) holds. Let E C L?(X) be the closure of p(Lg)(LP(X)).

If QU is finite then OF(Q) is unital with unit 1 = Y v which has norm 1; thus
veQO
E is the image of the contractive idempotent p(1). For general Q, the family
{ Y U} indexed by the finite subsets of QU is a contractive approximate unit
veF
of OP(Q); hence if p # 1, then again E is the image of a contractive idempotent,

by Corollary 3.13 of [11]. Hence under either hypothesis, by Theorem 4 of [5]
there are a contractive projection 7t/ : LP(X) — E and an isometric isomorphism
h: E — LP(Y) for some standard Borel space Y. Put 7t = h7t’,let tbe h~! followed
by the inclusion E C LP(X), and set p’(a) = hp(a)h~!. Itis clear that the diagram
commutes; moreover, o’ is spatial by Theorem 1

REMARK 7.7. The argument of the proof that (ii) = (i) in Theorem still
works for p = 2. The proof of the converse uses Theorem[6.2] which in turn relies
on the Banach-Lamperti theorem. Since the latter does not hold for p = 2, the
proof above does not apply.

Recall that the circle group S! acts on Lg via the gauge action, which asso-
ciates to each z € S! an automorphism

This action is characterized by the fact that v, (a) = z"a whenevera € (Lg)x.

LEMMA 7.8. Let Q be a countable graph, p € [1,00) and z € S'. Then the map
extends to an isometric isomorphism 7y, : OP(Q) — OF(Q). Moreover, the map

7(a):S' = OP(Q), wr Ful(a)

is continuous for each fixed a € OF (Q).

Proof. Let:: Lo — OF(Q) be the inclusion and let p : OF(Q) — L(LF(X))
be an isometric embedding. If z € S!, then piv, is a spatial representation by
Example hence it gives rise to a contractive homomorphism 7, : O7(Q) —
OF(Q). Because S — Aut(Lg), z + 7 is a group homomorphism, 7 is an iso-
metric isomorphism with inverse 7. This proves the first assertion of the lemma.
The second assertion follows as in the proof of Proposition 2.1 in [19]. &
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As pointed out above, the reverse of a 2-spatial partial isometry is just its ad-
joint. It follows from this that any 2-spatial representation of L is a *-representa—
tion. Hence O?(Q) is a C*-algebra and we have a canonical *-homomorphism

(7.4) o : C*(Q) — O%(Q).

We shall show that 77 is an isomorphism. For the proof we need the desingular-
ization of a singular graph whose definition we shall presently recall. Let Q be a
countable, singular graph. Recall from Section 5 of [2] that the desingularization of
Q is a nonsingular graph Q5 obtained from Q as follows. For each sink v, add an
infinite tail

(7.5) v=vg B Bo, B
For each infinite emitter v, number the elements of s~ (v) = {ej,eo,...} and

add a tail and an arrow g; : v; — r(e;) (1 < i). There is a canonical *-
monomorphism ([2]], Proposition 5.5)

(76) (Pa : LQ — LQa/

- e s(e) € reg(Q),
$a(v) =0, ¢o(e) {fl - figi e=e;

PROPOSITION 7.9. Let Q be a countable graph. Then the map g in isa
C*-algebra isomorphism.

Proof. The image of 7 is a closed subalgebra containing the image Lg,
which is dense, so the map is surjective. If moreover, Q is row-finite, then g
is injective by Lemma(7.8|and the gauge invariant uniqueness theorem ([19], The-
orem 2.2). Hence for general Q, 7g, is an isomorphism. Thus the top row of
the following commutative diagram, whose columns are induced by (7.6), is an
isomorphism:

7.7) C*(Qo) —2 02(Qy)

]

c*(Q) g 0*(Q).

Moreover, the first vertical map is injective by Theorem 2.11 of [7]. It follows that
the bottom row of (7.7) is injective. This concludes the proof. 1

REMARK 7.10. Let p : O?(Q) — L(L?(X)) be a representation and p its
restriction to Lg. It follows from Propositions[6.4/and[7.9)and the universal prop-
erty of C*(Q), that p is contractive if and only if p is a *-homomorphism if and
only of p is a *-homomorphism.
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Let S(Q) be the semigroup of andletp € (1,0). Let Fgght (8(Q)) be the
standard LP-operator algebra of Definition 6.7 in [9]; Fg ght(S (Q)) is universal for

tight LP-representations of S(Q) which are spatial in the sense of Definition 4.6
in [9] and take values in LP-spaces of standard Borel spaces.

COROLLARY 7.11. Let S(Q) be the semigroup generated by Q. Then there is a
C*-algebra isomorphism thight(S(Q)) =~ 0%(Q).

Proof. A partial isometry s : L2(X) — L?(X) of a standard L?-space is spa-
tial in the sense of Definition 4.6 in [9] if and only if s = s*ss*. Hence F3 ght(S (Q)

is universal for tight *-representations of S(Q) on Hilbert space, which by Lem-
ma are the same as the *-representations of Ly. Since C*(Q) has the same
universal property, we have C*(Q) = thight( Q). Now apply Proposition ]

As pointed out above, the spatiality notion of [9] agrees with ours for p # 2.
Hence by Lemma [3.1)and the universal property of O7(Q), for p € (1,00) \ {2},
we have a canonical contractive homomorphism

(7~8) OP(Q) - Ft’ijght(s(Q))'

Moreover, since the p-operator space structure on Ft?ght(S( Q)) is defined in [9]
so that Mn(Fgght(S(Q)) = Fgght(S(MnQ)), the induced map M,(O?(Q)) —
Mn(Fgght(S(Q))) is also contractive, by Proposition In other words is

p-completely contractive.

PROPOSITION 7.12. Let p € [1,00) \ {2}. Then the map (7.8) is a p-completely
isometric isomorphism.

Proof. It suffices to show that Fgght(S (Q)) is universal for all o-finite spatial
representations. Let X be a o-finite measure space and letp : Lo — L(LP(X))bea
spatial representation; we have to show that p factors through Ly — Fgght (S(Q)).
An argument similar to that of the proof of Theorem shows that p factors
through a nondegenerate representation p’ : Lo — L(LP(Y)) with Y standard

Borel. Thus p factors through Ly — Fg ght(S (Q)), as required. 1

8. SPATIAL SEMINORMS, DESINGULARIZATION, AND SOURCE REMOVAL

If Q is a graph such that sour(Q) # @, we may embed it in the source-free
graph Q. obtained by adding an infinite head

8.1) w=woLw, Lw, &
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at each w € sour(Q). The obvious inclusion Q C Q. induces an algebra mono—
morphism

(82) (Pt : LQ — LQ\.

Recall from Section[/]that if Q is a singular graph, we write Q, for its desin-
gularization.

PROPOSITION 8.1. Let Q be a countable graph, p € [1,00), and # € {v,0}.
Then for every nonzero spatial representation p : Lo — L(LP(X)) there exist a spatial
representation py : Lo, — L(LP(Y)) and a spatial isometry s : LV (X) — LP(Y) with
reverse t, with both Y and s depending on p and #, such that for the map o : L(LP (X)) —
L(LP(Y)), 0(A) = sAt, the following diagram commutes:

(8.3) Lo —% £(LP(X))

% l

Lo, — L(LP(Y).
Proof. We begin by the case # = t. If &« € P(Q), we write X, for the sup-
port of the spatial projection p(xa*). Regard N as a measure space with counting

measure; set Y := XU || (Xp x N). Let s and ¢ be the inverse isometries
wesour(Q)

induced by the inclusion X C Y. The canonical identification X, — Xq X {n}
induces an isometric spatial isomorphism 7, : LP(Xy) — LP(Xy x {n}). Extend
p along ¢ to a map pe : Lo, — L(LP(Y)) by setting pe(wn) := Idpp(x,x{n})/
pe(fn) == T”Tn_—ll’ pe(fi) = Ty_17,!. One checks that p, is well-defined and
makes commute.
Next we consider the case # = 9. The measure space Y will be a coproduct
Yy=xu J] Y%

vesing(Q),n>1

n’

the isometries s, t will be those induced by the inclusion X C Y. For v € sink(Q),
we set Y, = Xy x {n}, 7, : Xo =, X, x {n} the obvious bijection, and put
o
po(fn) = 17, L. If v € inf(Q) and X}, = Xp \ [] X;, we set
i=1

Yy, = XU [ Xe
izn
and let pp (f,) be induced by the inclusion Yy, C Y,, | and py(gx) by the compos-
ite of p(en) : L (X, (e,)) — LP(Xe,) followed by the inclusion LP(X,,) C LP(Yy, ).
One checks that this prescription defines a spatial representation pp : Lo, —
L(LP(Y)) that makes commute. 1

COROLLARY 8.2. The canonical homomorphisms and induce isometric
homomorphisms OP (Q) — OF(Qy) and OP(Q) — OF(Q.).
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REMARK 8.3. One may wonder whether other standard graph transforma-
tions also induce isometric embeddings of the corresponding L”-operator alge-
bras. We show in Remark [0.7] that such is indeed the case of the standard graph
transformations described in Chapter 6, Section 3 of [1]], at least in the simple case.

9. A UNIQUENESS THEOREM

The purpose of this section is to prove the following theorem.

THEOREM 9.1. Let Q be a countable graph, p € [1,00) and p : Lo — L(LF(X))
a nonzero spatial representation. If Lg is simple, then the natural map is an isometric
isomorphism

07(Q) = plLg).
The proof of Theorem [9.1| will be given at the end of the section, after a

series of propositions, definitions, and lemmas, which adapt and extend those in
Section 8 of [15].

DEFINITION 9.2. Let Q be a countable row-finite graph, p € [1,00), X =
(X, B, u) a o-finite measure space, and p : Lo — £(LP(X)) a representation.

(i) We say that p is free if there is a partition X = || E;;, E; € B, such that
mez
forallm € Z, e € Q', we have

O p(e)(LP(Em)) C LP(Ens1) and  p(e")(LF(En)) C LP(Ep-1)-

(i) We say that p is approximately free if for every N € N, there aren > N and a
partition X = |_| Em, Em € B, such that form = 0,...,n —1and alle € Q!
holds if we set En =FEyand E_1 =E, 1.

LEMMA 9.3. Let p > 1, X = (X, B,u) and Y = (Y,C,v) be o-finite measure
spaces, Q a row-finite graph, p : Lg — L(LP(X)) a representation, and u € L(LF(Y))
an invertible operator. Then, there is a unique representation p* : Lo — L(LF(X x Y))
such that, for all e € Q', we have p*(e) = p(e) @ u and p*(e*) = p(e*) @ u~1.

Moreover, p" has the following properties:

(i) if & € L is homogeneous of degree k with respect to the Z-grading of (2.3), then
P (a) = p(a) @ u;
(if) if u is isometric, p # 2 and p is spatial, then p" is spatial;
(iii) if there is a partition Y = [ Fy, Fn € C, such that u(LP(Fy)) = LP(F41) for

meZ
all m € Z, then p" is free in the sense of Definition

The proof is analogous to that of Lemma 8.2 in [15] using Lemma2.3]instead
of Lemmas 2.18, 2.19 and 2.20 in [15]].
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PROPOSITION 9.4. Let p, X, Q, and p be as in Lemma[9.3] Let u € L((F(Z))
be the shift operator, (u(x))(m) := x(m — 1) (x € €P(Z)). Let p" be as in Lemma[9.3]
Then, for all a € Lg, we have ||p*(a)|| = [|o(a)]|.

The proof is analogous to that of Proposition 8.3 in [15], using Lemma
instead of Lemma 8.2 in [15].

LEMMA 9.5. Let Q be a nonsingular countable graph such that L is simple. Let
X = (X, B, u) be a o-finite measure space. Let {Xo},eqo C B be a family of sets of

nonzero measure, {Xe}t,eqn C B a disjoint family such that X = [ Xo and X, =
veQO
I X. (forallve Q°),and
{e:s(e)=0}

. 1
Set (Xr(e) By oHix,, ) = (Xea Bl omyy,) (€€ Q)

a bijective measurable set transformation. If x = ay - - - &y, is a path, write Sy = Sy, ©
-+ 08Sy,. Then, for eachn > 0 and each v € QO there is a set E, € B\xv such that
#(Ey) # 0, and such that the following family is disjoint:

{Su(Ey) : r(a) = v, |a] < n}.

Proof. We shall use the fact that, because Lgis simple, Q is cofinal, i.e. for
every v € Q¥ and each cycle c there is a path starting at v and ending at some
vertex in ¢ (see Theorem 2.9.7 of []). Letv € Q°. If v € QU is not in any cycle,
we set E, = Xy; observe that u(E;) # 0 by hypothesis. Because v is not in any
cycle, any two distinct paths ending in v are incomparable, and so E, satisfies the
disjointness condition of the lemma. Next assume that v belongs to a cycle. Let
® 1= ay, be a cycle based at v and let  be a closed path with s(8) = v that agrees
with & up to an exit, goes out following the exit, returns to ¢ (which is possible by
cofinality) and follows it till it gets back to v. Consider the infinite path

7= apanppunappp - .

It is long, but straightforward to check that

(9.2) 76 € P(Q) suchthatff > v.

Letn € Nand v € EV. Fori > 1, let ; be the i-th edge of y. Put
B3 Ey:= Xy iy

Then u(E,) # 0 because u(Xy) # 0 for allw € QU. Let 5 and T be different
paths such that 7(y) = r(1) = v, of lengths k and [ respectively (k < | < n).
We have to check that S, (Ey) and S¢(Ey) are disjoint. If k = 0 this is clear from
Remark because S¢(Ey) = Xy, and the paths 71 - - - 72, and 1 - - - 72n
are incomparable, by . So assume that 0 < k < [; if # and T are incomparable,
we are done. Otherwise, we must have 7 > T; say T = #J. Hence S,,(Ez,) N
St(Ev) = Sy(Ey N S5(Ey)) has measure zero because E, N S5(Ey) does. 1
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Let (X, B, 1) be a o-finite measure space and t,..., T, € L(LP(X)) spa-
tial partial isometries with reverses o1, ...,0,. Call 7y, ..., T, orthogonal if Tjo; =
0;Tj = 0 whenever i # j.

LEMMA 9.6. Let X be a o-finite measure space, p € [1,0), 7, ..., T, € L(LP (X))

n
orthogonal spatial partial isometries, A € C", and Ty = Y A;T;. Then || Ty || = || A ||co-
i=1

The proof is straightforward.

REMARK 9.7. Let Q and Q' be countable graphs and let ¢ : Lo — Ly be a
*-homomorphism with the property that for any x € Q°[[Q!, ¢(x) decomposes
as a sum Y x; of elements of S(Q’) such that xix]’f = x]’fxi = 0 whenever i #
j. Then for every spatial representation p’ : Ly — L(LP(X)), p'¢ is spatial,
by Lemma Hence ¢ induces a contractive homomorphism ¢ : OF(Q) —
O (Q'), which, by Theorem is isometric whenever Lg is simple. This applies,
in particular, when Q is finite, Ly is simple, and Q' is obtained from Q by any
of the three expansive standard graph transformations described in Definitions
6.3.1,6.3.17, 6.3.20 and 6.3.23 of [1]], and ¢ is the canonical homomorphism.

PROPOSITION 9.8. Let Q be a nonsingular countable graph without sources. Let
p € [1,00)\ {2}, and let X and Y be measure spaces and p : Lo — L(LF(X)) and
¢ : Lo — L(LP(Y)) spatial representations. Assume that Lg is simple and that p is
approximately free. Then

lo(@)[l < llg(a)ll (a € Lg).

Proof. This proposition generalizes Proposition 8.6 of [15]; we shall adapt

the argument therein using Lemma 9.5]instead of Lemma 8.5 in [15]. Let
X'= 1] Xo;
veQl

observe that the corestriction p’ of p to £L(LP(X")) is approximately free. Hence
by Lemma |4.7| we may assume that p and ¢ are both nondegenerate. For each
x € P = P(Q), let Ry and S, be the bijective measurable set transformations
Xr(a) = Xu, Yy(a) = Ya associated to p(a) and ¢(a), as in Remark4.5. We have to
show thatifa € L issuch that ||o(a)|| = 1, then ||¢(a)|| > 1. By Lemma there
are Ny > 0, a finite set Fy C P and a finitely supported function AV Fy x Pn, —

C such that
a=Y Y Aglﬁzxﬁ*.

a€F /SE'PNO

Because sour(Q) = @ by hypothesis, for each v € s(Fy) we may choose a path
T, € PN, Withr(7,) = v. Put

x= Y T, b=na.
ves(FRy)
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Because every path in the set 7r, = {7, : v € s(F)} is of length Np, any two
of them are incomparable. Hence by Remark the elements of p(7f,) are or-
thogonal spatial partial isometries. Therefore ||p(x)|| = 1, by Lemma sim-

ilarly, ||o(x*)|]| = 1. Hence ||p(b)|| = ||p(a)|| = 1 and by the same argument,
llp(D)|| = ||¢(a)]|. Therefore it suffices to show that for every € > 0,
9.3) lp(0)[| > 1 —e.
For B € Py, and a € F, let
Az W8P = A

Put F = {ta : @ € Fo}; themap Fy — F, a = Ty, is clearly surjective.
Moreover, because 7, € Py, for all v € s(Fy), it is also injective. Using this in the
third step, we obtain

b=( L (L T Aipes)

ves(Fy) aeFy BEPN,

= 2 XY A

ves(Fy) s(a)=v,aeFy PEPN,

Y. ) Aapapt.

acF ePy,

Let Ny = max{|a| : « € Fy}; then Ny < |a| < Ng+ Nj forallw € F. If

No = Nj = 0, then b is a linear combination of vertices, b = ) A,v, whence by
v

Lemmal9.6 we have

@) = IAlleo = llo(B)]| = 1.
Hence holds in this case. So we may assume Ny + N; > 0, and takej > (Np+
Njp)(2/¢)P. By our hypothesis on p, there are N > j(Np + Nj ) and a partition

N-1
(9.4) X =] Dx
n=0

such that for the remainder 7 of # modulo N, we have p(e) (L (Dz)) C LP(D;77)
and p(e*)(LP(Dy)) C LP(D,=;). By the argument of pages 54-55 in [15], after
cyclic permutation of the D, if necessary, there exists

-1 N-1
Z= nge@m Dy) = LP(X)
=0 m=0

with &, = 0 form < Ny —1 and for m > N — N, and such that ||]| < 1 and
llo(0)¢|| > 1 —e. For each v € P, put

Dy = Rq(X,(,y N Do) = D}y N X,

Because Q is nonsingular by hypothesis, and because we have assumed that p is
nondegenerate, for each I > 0 we have a decomposition {.6). It follows from this
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that
(9.5) Dyn= [] D, forallme [0,N—1].
[v[=m
Let W =Pn_1 = I P Itfollows from ©.4) and @.5) that X = [] D,.
0<ISN—1 yEW

Hence we can write any y € LP(X) asasumn = Y #,withy, € LP(D,).
YEW

Next, by Lemma for each v € QU there is a measurable set E, C Y of nonzero
measure such that the family {S,(E,,)) : 7 € W} is disjoint. Choose a norm-one
element {, € LP(E,) for each v € Q°. Let

w:LP(X) = LP(X % Y),

um = Z P 77“/ Q¢ 'Y)gr('y)
yeW
One checks, as in the proof of Proposition 8.6 in [15], that u is an isometry. Let
p=1®¢: Lo — L(LP(X xY)),beasin Lemma Observe that

(9.6) lp®)| = [l$(B)]l-

A calculation similar to that of the proof of Proposition 8.6 in [15] shows that for
¢ as above,

©7) up(b)Z = p(b)uc.
It follows from and that holds. This completes the proof. 1

Proof of Theorem 0.1} Because Lg is simple by hypothesis, the C*-algebra
C*(Q) is simple; thus every nonzero *-representation Lo — £(L?*(X)) induces
the same norm. But by Remark [4.4|every spatial representation is a *-represen-
tation, so the theorem is clear for p = 2. Assume p # 2. By Proposition
and Corollary [8.2) we may assume that Q is nonsingular and has no sources. By
Lemma and Propositions and every spatial seminorm is associated
to a free spatial representation. Applying Proposition 9.8/ again, we get that any
two nonzero approximately free spatial representations induce the same semi-
norm. |

10. A SIMPLICITY THEOREM

THEOREM 10.1. Let p € [1,00). The following are equivalent for a countable
graph Q:
(i) Lg is simple;
(ii) every spatial nonzero LP-representation of Lg is injective;
(ii") every spatial nonzero representation Lo — L(£F(N)) is injective;
(ii") every nondegenerate spatial nonzero representation Lo — L(¢P(N)) is injective;
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(iii) every nondegenerate, contractive, nonzero LP-representation of OF (Q) is injec-
tive;

(iii") every nondegenerate, contractive, nonzero representation OF (Q) — L(¢P(N)) is
injective.

If in addition we assume either that p # 1 or that Q° is finite, then the above

conditions are also equivalent to the following:

(iv) every nonzero contractive homomorphism from OF(Q) to another LP-operator
algebra is injective.

Proof. If either p # 1 or QY is finite, then (iii) and (iv) are equivalent, by
Theorem [7.6| and Remark For p € [1,00) \ {2} the implication (i) = (iii)
follows from Theorems|7.6{and It is well-known that C*(Q) is simple if and
only if Lg is; using this and Remark [7.10] we obtain (i) = (iii) = (ii) for p = 2.
It follows from Lemma [4.7]and Theorem [7.6] that (iii) = (ii) for p # 2. Similarly,
(iii") = (ii"). It is clear that (ii) = (ii") = (ii") and that (iii) = (iii’).

It remains to show that (ii") = (i). By Theorem 2.9.1 of [1], Lg is simple if
and only if Q° is the only nonempty hereditary and saturated subset of vertices,
and every cycle in Q has an exit. We shall show that if any of these two conditions
does not hold, then (ii") does not hold either.

So suppose there is a proper hereditary and saturated subset H C Q. Let
Q/ H be the quotient graph described in Definition 2.4.11 of [1]. Then the natu-
ral map 7w : Lo — Lg/py is a nonzero surjection with nonzero kernel the ideal
generated by H. Hence if p is an injective nondegenerate spatial representation
Lo/a — L(€7(N)) (which exists by Proposition then p7 is a nondegenerate
nonzero spatial representation Ly — £(¢”(N)) which is not injective.

So assume that QU is the only nonempty saturated and hereditary set of ver-
tices, or equivalently, by Lemma 2.9.6 of [}, that Q is cofinal in the sense of Defi-
nitions 2.9.4 in [1] and that it has a cycle c without exits. Cofinality implies that ¢
is the only cycle of Q modulo cycle rotation (by Lemma 2.7.1 and Theorem 2.7.3
of [1]), and that sink(Q) = @ (by Lemma 2.9.5 of [1]]). Moreover, Q cannot have
any infinite emitters. For this suppose v € inf(Q); then v cannot be in any cycle,
since any cycle containing v would have exits. In particularife € Q! and s(e) = v
then r(e) # v and by Lemma 2.0.7 of [1] the hereditary and saturated closure of
{r(e)} does not contain v, a contradiction. Hence Q = reg(Q), and therefore the
space X of consists of the infinite paths of Q. If s(c) = w, then any such
path is of the form ac® for some finite path « € P with r(a) = w. In particular
X is countable and X, = X = {¢®} for all n > 1. Hence for the counting mea-
sure y. on X, there is a spatial isometric isomorphism L? (X, 1) = (F(N), and the
nondegenerate representation p, of Example 4.8 maps ¢ — c? to zero, so it is not
injective. This concludes the proof. 1

REMARK 10.2. By [10], an LP-operator algebra may admit Banach algebra
quotients which are not again LP-operator algebras. Thus Phillips’ theorem that
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the LP-Cuntz algebra (95 is simple as a Banach algebra for d € [2,c0) ([17], The-
orem 5.14) does not follow from Theorem above. We expect OF(Q) to be
simple as a Banach algebra whenever L is simple. We intend to investigate this
in a forthcoming joint paper.

11. OP(Q) VS. 0¥ (Q)

For each integer n € [1, 00|, let R, be the countable graph with exactly one

vertex and 1 loops. We write L,, = L(R), oF = or (Ry). In particular,
Lo = C{xi, x;k 1< Z}/<X;kx] - 51’]>

LEMMA 11.1. Let Q be a countable graph and let p € [1,00). Assume that Lg
is purely infinite simple. Then there is a homomorphism Le — Lg which induces an
isometry O, — OF(Q).

Proof. Let a be a cycle in Q and let v = s(a). Choose a closed path g with
s(B) = vso that « and p are not comparable under the preorder of paths, as in the
proof of Lemma[9.5] Then f*a« = a*B = 0 and, of course, a*a = f* = v. Hence
there is a *-homomorphism ¢ : Lo — Lg such that ¢(x;) = p'a. Observe that if
p: Lo — L(LF(X)) is any spatial representation, then p¢ is again spatial. Hence
¢ induces a contractive homomorphism ¢ : Ok, — OF(Q). By Theorem if
p : Lo — L(LP(X)) is a nonzero spatial representation, then ¢ agrees, up to
isometric isomorphism, with the isometric inclusion p¢ (L) C p(Lg). 1

THEOREM 11.2. Let Q, Q' be countable graphs and let p,p’ € [1,00), p # p'.
Assume that Lq is purely infinite simple. If in addition, any of the following conditions
holds, then there is no nonzero continuous homomorphism OF (Q) — OF (Q'):

() Ly is simple;
(i) p' <2and p & (p',2];
(iii) p’ > 2 # p.

Proof. Assume that there is a nonzero continuous homomorphism f : O7(Q)
— OF'(Q’). Because the inclusion Lo € OF(Q) is dense, f(Lg) # 0, which in
view of the simplicity of Ly implies that f is injective on L. Let ¢ : Lo — L be
as in Lemma Then f¢ is injective, whence f¢ : OF, — OF'(Q') is a nonzero
continuous homomorphism. Hence by Theorem 9 of Chapter 15, Section 3 of [20]
there exists X € {N,[0,1]} and a spatial representation p’ : Ly — L(LV' (X))
such that o’ f : OF, — L(L¥' (X)) is nonzero. By Lemma 9.1 of [15] this implies
that L” (X) contains a subspace isomorphic to /7 (N). If X = N, this cannot be,
as noted in the proof of Theorem 9.2 in [15] and by page 54 in [14]; if X = [0, 1]
and either (ii) or (iii) holds, this cannot happen either, by Theorem 6.4.19 of [4].



LP-OPERATOR ALGEBRAS ASSOCIATED WITH ORIENTED GRAPHS 253

Thus parts (ii) and (iii) of the theorem are proved. Part (i) also follows, using

Proposition and Theorem 1
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