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ABSTRACT. The variation of spectral subspaces for linear self-adjoint oper-
ators under an additive bounded semidefinite perturbation is considered. A
variant of the Davis–Kahan sin 2Θ theorem adapted to this situation is proved.
Under a certain additional geometric assumption on the separation of the
spectrum of the unperturbed operator, this leads to a sharp estimate on the
norm of the difference of the spectral projections associated with isolated com-
ponents of the spectrum of the perturbed and unperturbed operators, respec-
tively. Without this additional geometric assumption on the isolated compo-
nents of the spectrum of the unperturbed operator, a corresponding estimate
is obtained by transferring a known optimization approach for general per-
turbations to the present situation.
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1. INTRODUCTION

The subspace perturbation problem deals with the variation of spectral sub-
spaces for a self-adjoint operator under an additive perturbation and has previ-
ously been discussed in several recent works such as [3], [9], [11], [12], [13], [15],
[16]. In the present work, we continue these considerations and study the prob-
lem in the particular case of semidefinite perturbations.

Let A be a self-adjoint, not necessarily bounded, operator on a separable
Hilbert space H. Moreover, let V be a bounded self-adjoint operator on H which
is non-negative, that is, V > 0. The consideration of non-positive perturbations
V, that is, V 6 0, is analogous and can also be reduced to the case of non-negative
perturbations by means of the identity −(A + V) = −A + (−V).

It is well known that a semidefinite perturbation moves the spectrum only
in one direction. More precisely, if (a, b) ⊂ R, a < b, is an interval in the resolvent
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set of A and V > 0 satisfies ‖V‖ < b − a, then the interval (a + ‖V‖, b) is con-
tained in the resolvent set of the perturbed operator A + V, see, e.g., Theorem 3.2
in [18] and also Proposition 2.1 below. As a consequence, if the spectrum of A is
separated into two disjoint components, that is,

(1.1) spec(A) = σ ∪ Σ with d := dist(σ, Σ) > 0,

and if the norm of the perturbation satisfies

(1.2) ‖V‖ < d,

then the spectrum of the perturbed operator A +V is likewise separated into two
disjoint components,

(1.3) spec(A + V) = ω ∪Ω with dist(ω, Ω) > d− ‖V‖ > 0,

where ω and Ω are contained in certain “right-side” neighbourhoods of σ and Σ,
respectively. Namely,

(1.4) ω = spec(A + V) ∩ (σ + [0, ‖V‖])
and analogously for Ω (with σ replaced by Σ); here we used the short-hand no-
tation σ + [0, ‖V‖] := {λ + t : λ ∈ σ , 0 6 t 6 ‖V‖}. Clearly, the gap non-closing
condition (1.2) is sharp.

The variation of the spectral subspaces associated with the components of
the spectrum is studied in terms of the corresponding spectral projections EA(σ)
and EA+V(ω), where EA and EA+V denote the projection-valued spectral mea-
sures for the self-adjoint operators A and A + V, respectively. Here, the quantity

(1.5) θ := arcsin(‖EA(σ)− EA+V(ω)‖)
is called the maximal angle between the two spectral subspaces RanEA(σ) and
RanEA+V(ω). Recall that always ‖EA(σ) − EA+V(ω)‖ 6 1, so that θ in (1.5) is
well defined. Moreover, if ‖EA(σ) − EA+V(ω)‖ < 1, that is, if θ < π

2 , then the
projections EA(σ) and EA+V(ω) are unitarily equivalent, see, e.g., Theorem I.6.32
in [8]. In this case, the perturbed subspace RanEA+V(ω) can be understood as a
rotation of the unperturbed subspace RanEA(σ) and the maximal angle θ serves
as a measure for this rotation.

In this context, it is a natural question whether the condition (1.2) is suffi-
cient to ensure that θ < π

2 . More specifically, we ask for the best possible constant
copt-sem ∈ (0, 1] such that

(1.6) θ <
π

2
whenever ‖V‖ < copt-sem · d.

The analogous problem has previously been discussed for off-diagonal per-
turbations (see [11], [12], [15] and the references therein) and for general, not
necessarily semidefinite or off-diagonal, perturbations, see [3], [9], [12], [16]. For
the latter, the (sharp) gap non-closing condition reads ‖V‖ < d

2 , in which case
instead of ω in (1.4) the component of spec(A + V) in Od/2(σ), the open d

2 -
neighbourhood of σ, is considered (and similarily for Ω). Here, one is interested
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in the best possible constant copt ∈ (0, 1
2 ] analogous to copt-sem in (1.6). Under a

certain additional geometric assumption on the spectrum of A it is known that
copt =

1
2 and a corresponding (sharp) estimate on the maximal angle reads

arcsin(‖EA(σ)− EA+V(Od/2(σ))‖) 6
1
2

arcsin
(

2
‖V‖

d

)
<

π

4

if ‖V‖ < d
2 , see, e.g., Remark 2.9 in [13]. Astonishingly, in the present situa-

tion of semidefinite perturbations and with Od/2(σ) replaced by ω as in (1.4), the
term ‖V‖ in this estimate can formally be replaced by ‖V‖2 , thereby allowing the
whole scope of semidefinite perturbations satisfying (1.2). The precise statement
is given in the following theorem.

THEOREM 1.1. Let A be a self-adjoint operator on a separable Hilbert space H
such that the spectrum of A is separated as in (1.1). Let V be a non-negative bounded
self-adjoint operator onH with ‖V‖ < d, and choose ω ⊂ spec(A + V) as in (1.4).

If, in addition, the convex hull of one of the components σ and Σ is disjoint from
the other component, that is, conv(σ) ∩ Σ = ∅ or vice versa, then

(1.7) arcsin(‖EA(σ)− EA+V(ω)‖) 6 1
2

arcsin
(‖V‖

d

)
<

π

4
,

and this estimate is sharp.

As a consequence, under the additional geometric assumption on the spec-
trum of A in Theorem 1.1, namely conv(σ)∩Σ = ∅ or σ ∩ conv(Σ) = ∅, one has
copt-sem = 1. However, without any additional hypotheses on the spectrum of A,
that is, under the sole assumption (1.1), the value of copt-sem is still unknown. In
the case where A is assumed to be bounded and V has rank one, it has recently
been shown in Theorem 2.10 of [7] that

‖EA(σ)− EA+V(ω)‖ 6 ‖V‖
d

< 1 if ‖V‖ < d,

yielding copt-sem = 1 in this very particular situation. However, it is also ac-
knowledged there that the corresponding proof only works for rank one pertur-
bations. For general semidefinite perturbations, only lower bounds on copt-sem
can be given so far. This is quite similar to the case of general, not necessarily
semidefinite perturbations mentioned above. There, the currently best known
result from Theorem 1 in [16] states that

copt > ccrit =
1
2
− 1

2

(
1−
√

3
π

)3
= 0.4548399 . . . and

arcsin(‖EA(σ)− EA+V(Od/2(σ))‖) 6 N
(‖V‖

d

)
<

π

2
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if ‖V‖ < ccrit · d, where N : [0, ccrit]→ [0, π
2 ] is given by

(1.8) N(x) =



1
2 arcsin(πx) for 0 6 x 6 4

π2+4 ,

arcsin
(√

2π2x−4
π2−4

)
for 4

π2+4 < x < 4 π2−2
π4 ,

arcsin(π
2 (1−

√
1− 2x)) for 4 π2−2

π4 6 x 6 κ,
3
2 arcsin(π

2 (1−
3
√

1− 2x)) for κ < x 6 ccrit.

Here, κ ∈ (4 π2−2
π4 , 2 π−1

π2 ) is the unique solution to the equation

arcsin
(π

2
(1−

√
1− 2κ)

)
=

3
2

arcsin
(π

2
(1− 3

√
1− 2κ)

)
in the interval (0, 2 π−1

π2 ].
As in the case of Theorem 1.1, it turns out that this result can just as well

be adapted to the present situation of semidefinite perturbations by formally re-
placingOd/2(σ) and ‖V‖ by ω and ‖V‖2 , respectively. This leads to the conclusion
that copt-sem > 2ccrit, the second principal result in this work.

THEOREM 1.2 (cf. Theorem 1 in [16]). Let A be a self-adjoint operator on a sep-
arable Hilbert spaceH such that the spectrum of A is separated as in (1.1), and let V and
ω be as in Theorem 1.1. If, in addition, V satisfies

‖V‖ < ccrit-sem · d
with

ccrit-sem = 1−
(

1−
√

3
π

)3
= 0.9096799 . . . ,

then

(1.9) arcsin(‖EA(σ)− EA+V(ω))‖) 6 N
(‖V‖

2d

)
<

π

2
,

where N is given by (1.8).

A more detailed discussion on the function N can be found in [16].
The proofs of Theorems 1.1 and 1.2 rely on the following variant of the

Davis–Kahan sin 2Θ theorem for semidefinite perturbations:

(1.10) ‖ sin 2Θ‖ 6 π

2
‖V‖

d
,

where Θ = arcsin |EA(σ) − EA+V(ω)| with ‖Θ‖ = θ is the operator angle as-
sociated with EA(σ) and EA+V(ω); the constant π

2 here can be replaced by 1 if
conv(σ) ∩ Σ = ∅ or σ ∩ conv(Σ) = ∅, see Proposition 2.4 below. The esti-
mate (1.10) differs from the corresponding variant for general perturbations in
[13] (cf. [6]) by the lack of a factor 2 on its right-hand side, which is the result of a
suitable adaptation to the proof presented in [13].

The paper is organized as follows:
Section 2.1 is devoted to preliminaries regarding the perturbation of the

spectrum by semidefinite perturbations.
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In Section 2.2, a variant of the Davis–Kahan sin 2Θ theorem for semidefinite
perturbations is proved and Theorem 1.1 is deduced.

The proof of Theorem 1.2 is presented in Section 2.3.
Finally, an alternative, direct proof for a variant of the sin 2θ estimate, re-

lated to (1.10) by sin 2θ 6 ‖ sin 2Θ‖, is discussed in Appendix A. This proof
is the result of an adaptation to the corresponding direct proof of the generic
sin 2θ estimate from Proposition 3.3 in [13]. The key ingredient in this adapta-
tion, Lemma A.2 below, may also be of independent interest.

2. SEMIDEFINITE PERTURBATIONS

2.1. PERTURBATION OF THE SPECTRUM. The following result is extracted from
the more general statement of Theorem 3.2 in [18]; cf. also (9.4.4) in [4].

PROPOSITION 2.1. Let A be a self-adjoint operator on the Hilbert space H such
that its resolvent set contains a finite interval (a, b) ⊂ R, a < b. Moreover, let V be a
non-negative (respectively non-positive) bounded self-adjoint operator onH.

If ‖V‖ < b− a, then the interval (a+ ‖V‖, b) (respectively (a, b−‖V‖)) belongs
to the resolvent set of the perturbed operator A + V.

Proof. For the sake of completeness, we reproduce the proof.
Let ‖V‖ < b− a and assume that V is non-negative. The case where V is

non-positive can be reduced to this case by considering −(A + V) = −A−V.
Denote H− := RanEA((−∞, a]) and H+ := RanEA([b, ∞)), and denote by

A± :=A|H± the parts of A associated withH±. Decompose the perturbation V as

V = Vdiag + Voff,

where Vdiag = V− ⊕V+ is the diagonal part of V and Voff is the off-diagonal part
of V with respect to the orthogonal decompositionH = H− ⊕H+.

Since V is non-negative, the diagonal part Vdiag of V is non-negative as well,
that is, V± > 0. Thus, taking into account that a + ‖V‖ < b, one has

A− + V− 6 a + ‖V‖ < b 6 A+ + V+.

In particular, the interval (a + ‖V‖, b) belongs to the resolvent set of the oper-
ator A + Vdiag = (A− + V−) ⊕ (A+ + V+), and the subspaces H− and H+ are
the spectral subspaces for A + Vdiag associated with the sets (−∞, a + ‖V‖] and
[b, ∞), respectively. Now, by Theorem 2.1 in [1] (see also Theorem 8.1 in [6]),
the gap (a + ‖V‖, b) in the spectrum is preserved under the off-diagonal pertur-
bation Voff, that is, the interval (a + ‖V‖, b) also belongs to the resolvent set of
A + V = (A + Vdiag) + Voff.

As a direct consequence of Proposition 2.1, semidefinite perturbations move
the spectrum only in one direction. More precisely, using the short-hand notation
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∆+ [0, ‖V‖] := {λ + t : λ ∈ ∆ , 0 6 t 6 ‖V‖} for a Borel set ∆ ⊂ R, we have the
following corollary to Proposition 2.1.

COROLLARY 2.2. Let A be a self-adjoint operator on the Hilbert space H, and let
V be a non-negative bounded self-adjoint operator onH. Then,

spec(A + V) ⊂ spec(A) + [0, ‖V‖].

Proof. Let λ ∈ spec(A + V) be arbitrary. We have to show that spec(A) and
the interval [λ− ‖V‖, λ] intersect.

Assume the contrary, that is, [λ− ‖V‖, λ] ⊂ ρ(A). Since ρ(A) is open, there
is ε > 0 such that (λ − ‖V‖ − ε, λ + ε) ⊂ ρ(A). Proposition 2.1 then implies
that (λ − ε, λ + ε) ⊂ ρ(A + V), which contradicts λ ∈ spec(A + V). Hence,
spec(A) ∩ [λ− ‖V‖, λ] 6= ∅, and the proof is complete.

In the situation of Theorems 1.1 and 1.2, it is easy to see from Corollary 2.2
that the spectrum of the perturbed operator A + V is separated as in (1.3) and
(1.4), where ω and Ω are non-empty and contained in one-sided neighbourhoods
of σ and Σ, respectively.

In the same way, for each t ∈ [0, 1] the spectrum of the operator A + tV is
separated into two disjoint components ωt and Ωt defined analogously to ω and
Ω above, respectively, that is,

ωt = spec(A + tV) ∩ (σ + [0, t‖V‖]) and(2.1)

Ωt = spec(A + tV) ∩ (Σ + [0, t‖V‖]).(2.2)

In this context, we need the following result for future reference.

LEMMA 2.3 (cf. Theorem 3.5 in [3]). Let A be as in Theorem 1.2, and let V be
a non-negative bounded self-adjoint operator on H satisfying ‖V‖ < d. For t ∈ [0, 1]
consider the spectral component ωt ⊂ spec(A + tV) as in (2.1). Then, the operator path
[0, 1] 3 t 7→ EA+tV(ωt) of spectral projections is continuous in norm.

Proof. It is easy to see that for 0 6 s 6 t 6 1 the spectral components (2.1)
and (2.2) satisfy

dist(ωs, Ωt) > d− t‖V‖ and dist(Ωs, ωt) > d− t‖V‖.

Taking into account that A + tV = (A + sV) + (t − s)V, the symmetric sin Θ
theorem from Proposition 2.3 in [13] (see also, e.g., the proof of Theorem 3.5 in
[3]) then implies that

‖EA+sV(ωs)− EA+tV(ωt)‖ 6
π

2
|t− s|‖V‖
d− t‖V‖ for 0 6 s 6 t 6 1,

which immediately proves the claim.
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2.2. THE sin 2Θ THEOREM FOR SEMIDEFINITE PERTURBATIONS. The following
result provides a variant of the Davis–Kahan sin 2Θ theorem (see, e.g., [6] and
[13]) for semidefinite perturbations. This is the core of the proofs of both Theo-
rems 1.1 and 1.2.

PROPOSITION 2.4 (cf. Theorem 1 in [13]). Let A be as in Theorem 1.2. Moreover,
let V be a bounded non-negative operator on H and Q be an orthogonal projection in H
onto a reducing subspace for A + V. Then, the operator angle Θ = arcsin |EA(σ)−Q|
associated with EA(σ) and Q satisfies

(2.3) ‖ sin 2Θ‖ 6 π

2
‖V‖

d
.

If, in addition, conv(σ)∩Σ = ∅ or σ∩ conv(Σ) = ∅, then the constant π
2 in (2.3) can

be replaced by 1.

Proof. Recall from the proof of Theorem 1 in [13] that

‖ sin 2Θ‖ 6 π

2
‖V − KVK‖

d
,

where K = Q − Q⊥ = 2Q − IH is self-adjoint and unitary. Also recall that the
constant π

2 in this estimate can be replaced by 1 if one has conv(σ) ∩ Σ = ∅
or σ ∩ conv(Σ) = ∅, see, e.g., Remark 2.5 in [13]. It only remains to show that
‖V − KVK‖ 6 ‖V‖.

Indeed, since V is non-negative, the operator KVK is non-negative as well
and, thus,

−KVK 6 V − KVK 6 V.
Hence, ‖V − KVK‖ 6 max{‖V‖, ‖KVK‖} = ‖V‖, where we have taken into
account that K is unitary. This completes the proof.

We are now able to prove Theorem 1.1 by taking Q = EA+V(ω) in Proposi-
tion 2.4.

Proof of Theorem 1.1. Recall that the maximal angle θ in (1.5) agrees with the
norm of the operator angle Θ = arcsin |EA(σ)− EA+V(ω)| associated with EA(σ)
and EA+V(ω), see, e.g., equation (2.6) in [13]. Thus, it follows from Proposi-
tion 2.4 that

(2.4) sin 2θ 6 ‖ sin 2Θ‖ 6 ‖V‖
d

.

Moreover, combining (2.4) and Lemma 2.3, the same continuity argument as in
the proof of Lemma 2.7 in [13] shows that θ 6 π

4 . Inequality (2.4) then agrees
with estimate (1.7).

The sharpness of estimate (1.7) can be seen from the following example of
2× 2 matrices (cf. Remark 2.9 in [13]): for arbitrary 0 6 v < 1 consider

A :=
(
− 1

2 0
0 1

2

)
and V :=

( v(v+1)
2

v
√

1−v2

2
v
√

1−v2

2
v(1−v)

2

)
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with σ := {− 1
2}, Σ := { 1

2}, and d := dist(σ, Σ) = 1.
It is easy to verify that spec(V) = {0, v}, hence V > 0 and ‖V‖ = v, and

that the spectrum of A + V is given by spec(A + V) = { v±
√

1−v2

2 }.
Denote ω := { v−

√
1−v2

2 } ⊂ [− 1
2 ,− 1

2 + v] and θ := arcsin(v)
2 . Using the iden-

tities
1−
√

1− v2

v
= tan θ =

v
1 +
√

1− v2
for 0 < v < 1,

it is then straightforward to show that

(A + V)

(
cos θ
− sin θ

)
=

v−
√

1− v2

2

(
cos θ
− sin θ

)
,

and, therefore,

arcsin(‖EA(σ)− EA+V(ω)‖) = θ =
1
2

arcsin
(‖V‖

d

)
.

Hence, estimate (1.7) is sharp, which completes the proof.

Analogously to the proof of Theorem 1.1, we obtain the following corollary
to Proposition 2.4 in the situation where no additional assumptions on the spec-
trum of A are imposed. This result plays a crucial role in the proof of Theorem 1.2,
see Section 2.3 below.

COROLLARY 2.5 (cf. Corollary 2 in [13]). In the situation of Theorem 1.2 one has

θ 6
1
2

arcsin
(π

2
‖V‖

d

)
6

π

4
whenever ‖V‖ 6 2d

π
.

It is interesting to note that also the alternative, direct proof of the sin 2θ
estimate from Proposition 3.3 in [13], which is related to Proposition 2.4 by the
inequality sin 2θ 6 ‖ sin 2Θ‖ (cf. (2.4) above), can be adapted to the case of semi-
definite perturbations. This is discussed in Appendix A below.

2.3. PROOF OF THEOREM 1.2. For t ∈ [0, 1] let Pt := EA+tV(ωt) denote the spec-
tral projection for A + tV associated with the spectral component ωt in (2.1).
Clearly, one has P0 = EA(σ) and P1 = EA+V(ω).

Let 0 = t0 6 · · · 6 tn = 1, n ∈ N, be a finite partition of the interval [0, 1].
As in [3], [15], and [16], the triangle inequality for the maximal angle (see, e.g.,
Corollary 4 in [5]) yields

(2.5) arcsin(‖EA(σ)− EA+V(ω)‖) 6
n−1

∑
j=0

arcsin(‖Ptj − Ptj+1‖).

Moreover, one has dist(ωtj , Ωtj) > d− tj‖V‖ and, therefore,

(tj+1 − tj)‖V‖
dist(ωtj , Ωtj)

6
(tj+1 − tj)‖V‖

d− tj‖V‖
=: λj < 1, j = 0, . . . , n− 1.
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Hence, considering A + tj+1V = (A + tjV) + (tj+1 − tj)V as a perturbation of
A + tjV with (tj+1 − tj)V > 0 and taking into account that

ωtj+1 = spec(A + tj+1V) ∩ (ωtj + [0, (tj+1 − tj)‖V‖]),

it follows from Corollary 2.5 that

(2.6) arcsin(‖Ptj − Ptj+1‖) 6
1
2

arcsin
(πλj

2

)
whenever λj 6

2
π

.

Combining inequalities (2.5) and (2.6) suggests to estimate the maximal angle
between the subspaces RanEA(σ) and RanEA+V(ω) as

(2.7) arcsin(‖EA(σ)− EA+V(ω)‖) 6 1
2

n−1

∑
j=0

arcsin
(πλj

2

)
,

provided that λj 6
2
π . The task then is to minimize the right-hand side of (2.7)

over all corresponding choices of partitions of the interval [0, 1].
In this context, the consideration of partitions of the interval [0, 1] with ar-

bitrarily small mesh size allows one to obtain an analogue to the bounds from
Theorems 3.2 and 3.3 in [12] in the current case of semidefinite perturbations.

REMARK 2.6 (cf. Section 2 in [16] and Remark 2.1 in [15]). If the mesh size
of the partition of the interval [0, 1] is sufficiently small, then the Riemann sum

n−1

∑
j=0

λj =
n−1

∑
j=0

(tj+1 − tj)‖V‖
d− tj‖V‖

is close to the integral
1∫

0

‖V‖
d−t‖V‖dt. Since at the same time each λj is small and

arcsin(x)
x → 1 as x → 0, we conclude from (2.7) that

arcsin(‖EA(σ)− EA+V(ω)‖) 6 π

4

1∫
0

‖V‖
d− t‖V‖dt =

π

4
log

d
d− ‖V‖ .

Here, the right-hand side of the latter inequality is strictly less than π
2 whenever

‖V‖
d < 2 sinh(1)

exp(1) = 0.86466 . . . < ccrit-sem.

Clearly, one has
(tj+1−tj)‖V‖

d =
(

1− tj‖V‖
d

)
λj by definition of λj, which can

equivalently be rewritten as

1− tj+1
‖V‖

d
=
(

1− tj
‖V‖

d

)
(1− λj), j = 0, . . . , n− 1.

Since t0 = 0 and tn = 1, this implies that

(2.8) 1− ‖V‖
d

=
n−1

∏
j=0

(1− λj).
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The right-hand side of (2.7) may therefore equivalently be minimized over all
choices of n ∈ N and parameters λj ∈ [0, 2

π ], j = 0, . . . , n− 1, satisfying (2.8). It
turns out that this optimization problem is in fact just the same as the one in [16]:

Proof of Theorem 1.2. Recall from [16] that the function N in (1.8) is given by

N(x) = inf
{1

2

n−1

∑
j=0

arcsin(πλj) : n ∈ N, 0 6 λj 6
1
π

,
n−1

∏
j=0

(1− 2λj) = 1− 2x
}

for 0 6 x 6 ccrit =
1−(1−

√
3/π)3

2 . Hence, replacing 2λj with λj, one obviously has

N
( x

2

)
= inf

{1
2

n−1

∑
j=0

arcsin
(πλj

2

)
: n ∈ N, 0 6 λj 6

2
π

,
n−1

∏
j=0

(1− λj) = 1− x
}

for 0 6 x 6 2ccrit = ccrit-sem. Taking into account (2.7) and (2.8), this proves (1.9)
and, thus, the claim.

Appendix A. THE sin 2θ ESTIMATE

The aim of this section is to show how the direct proof of Proposition 3.3
in [13] can be adapted to obtain the following variant of the sin 2θ estimate for
semidefinite perturbations.

PROPOSITION A.1 (cf. Proposition 3.3 in [13]). Let A, V, and Q be as in Propo-
sition 2.4. Then,

(A.1) sin 2θ 6
π

2
‖V‖

d
,

where θ := arcsin(‖EA(σ) − Q‖) is the maximal angle associated with the subspaces
RanEA(σ) and Ran Q.

If, in addition, conv(σ) ∩ Σ = ∅ or σ ∩ conv(Σ) = ∅, then the constant π
2 in

(A.1) can be replaced by 1.

The key to obtain this variant from the proof of Proposition 3.3 in [13] is the
following observation for semidefinite bounded operators, which might also be
of independent interest.

LEMMA A.2. Let V be a non-negative bounded self-adjoint operator on H given
by the 2× 2 block operator matrix

V =

(
V0 W
W∗ V1

)
with respect to an orthogonal decompositionH = H0 ⊕H1. Then, one has

(A.2) 2‖W‖ 6 ‖V‖ 6 2 max{‖V0‖, ‖V1‖}.
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Proof. For arbitrary normalized vectors f ∈ H0 and g ∈ H1 define the Her-
mitian 2× 2 scalar matrix

Tf ,g :=
(
〈 f , V0 f 〉 〈 f , Wg〉
〈g, W∗ f 〉 〈g, V1g〉

)
.

This matrix is again non-negative and one has

sup
‖ f ‖=1=‖g‖

‖Tf ,g‖ = ‖V‖,

which can be seen from the identity(
α β

)
Tf ,g

(
α
β

)
= 〈x, Vx〉

for arbitary scalars α, β and x := α f ⊕ βg ∈ H, see, e.g., Theorem 1.1.8 in [17].
It now follows by straightforward elementary calculations for 2× 2 matrices

that
2|〈 f , Wg〉| 6 ‖Tf ,g‖ 6 2 max{〈 f , V0 f 〉, 〈g, V1g〉}

and, therefore,

2|〈 f , Wg〉| 6 ‖V‖ as well as ‖Tf ,g‖ 6 2 max{‖V0‖, ‖V1‖}.

Taking the supremum over all normalized f and g proves (A.2).

REMARK A.3. Lemma A.2 is optimal in the sense that ‖W‖ = ‖V‖
2 is possi-

ble and, at the same time, max{‖V0‖, ‖V1‖}may take any value between ‖V‖2 and
‖V‖. This can be seen from the following example.

Let x > 0, y ∈ [ x
2 , x], and consider the entries

V0 :=
(

y 0
0 x

2

)
, V1 :=

( x
2 0
0 y

)
, W :=

(
0 0
x
2 0

)
.

Then, V > 0, 2‖W‖ = x = ‖V‖, and ‖V0‖ = ‖V1‖ = y.

Proof of Proposition A.1. The case θ = π
2 is obvious, so let θ < π

2 . Recall from
the proof of Proposition 3.3 in [13] that in this case one has

sin 2θ 6 π
‖EA(Σ)U∗VUEA(σ)‖

d
with a certain unitary operator U satisfying U∗QU = EA(σ). Also recall that the
constant π in this estimate can be replaced by 2 if one has conv(σ) ∩ Σ = ∅ or
σ ∩ conv(Σ) = ∅, see, e.g., Remark 3.2 in [13]. In order to complete the proof it
only remains to observe that

2‖EA(Σ)U∗VUEA(σ)‖ 6 ‖U∗VU‖ = ‖V‖,

where the inequality follows from Lemma A.2 by considering U∗VU > 0 with
respect to the orthogonal decompositionH = RanEA(σ)⊕ RanEA(Σ).



332 ALBRECHT SEELMANN

Acknowledgements. Parts of the material presented in this work are contained in the
author’s Ph.D. Dissertation [14]. The author is grateful to Julian Großmann for helpful
remarks on the manuscript.

REFERENCES

[1] V.M. ADAMJAN, H. LANGER, Spectral properties of a class of rational operator val-
ued functions, J. Operator Theory 33(1995), 259–277.

[2] S. ALBEVERIO, K.A. MAKAROV, A.K. MOTOVILOV, Graph subspaces and the spec-
tral shift function, Canad. J. Math. 55(2003), 449–503.

[3] S. ALBEVERIO, A.K. MOTOVILOV, Sharpening the norm bound in the subspace per-
turbation theory, Complex Anal. Oper. Theory 7(2013), 1389–1416.

[4] M.S. BIRMAN, M.Z. SOLOMJAK, Spectral Theory of Self-Adjoint Operators in Hilbert
Space, Math. Appl. (Soviet Ser.), D. Reidel Publ. Co., Dordrecht 1987.

[5] L.G. BROWN, The rectifiable metric on the set of closed subspaces of Hilbert space,
Trans. Amer. Math. Soc. 337(1993), 279–289.

[6] C. DAVIS, W.M. KAHAN, The rotation of eigenvectors by a perturbation. III, SIAM J.
Numer. Anal. 7(1970), 1–46.

[7] M. GEBERT, On an integral formula for Fredholm determinants related to pairs of
spectral projections, Integral Equations Operator Theory 90(2018), no. 35.

[8] T. KATO, Perturbation Theory for Linear Operators, Springer, Berlin 1966.

[9] V. KOSTRYKIN, K.A. MAKAROV, A.K. MOTOVILOV, On a subspace perturbation
problem, Proc. Amer. Math. Soc. 131(2003), 3469–3476.

[10] V. KOSTRYKIN, K.A. MAKAROV, A.K. MOTOVILOV, On the existence of solutions to
the operator Riccati equation and the tan Θ theorem, Integral Equations Operator Theory
51(2005), 121–140.

[11] V. KOSTRYKIN, K.A. MAKAROV, A.K. MOTOVILOV, Perturbation of spectra and
spectral subspaces, Trans. Amer. Math. Soc. 359(2007), 77–89.

[12] K.A. MAKAROV, A. SEELMANN, The length metric on the set of orthogonal projec-
tions and new estimates in the subspace perturbation problem, J. Reine Angew. Math.
708(2015), 1–15.

[13] A. SEELMANN, Notes on the sin 2Θ theorem, Integral Equations Operator Theory
79(2014), 579–597.

[14] A. SEELMANN, Perturbation theory for spectral subspaces, Ph.D. Dissertation, Jo-
hannes Gutenberg-Universität Mainz, Mainz 2014.

[15] A. SEELMANN, Notes on the subspace perturbation problem for off-diagonal pertur-
bations, Proc. Amer. Math. Soc. 144(2016), 3825–3832.

[16] A. SEELMANN, On an estimate in the subspace perturbation problem, J. Anal. Math.
135(2018), 313–343.

[17] C. TRETTER, Spectral Theory of Block Operator Matrices and Applications, Imperial Col-
lege Press, London 2008.



SEMIDEFINITE PERTURBATIONS IN THE SUBSPACE PERTURBATION PROBLEM 333
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