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ABSTRACT. We investigate some consequences of a recent stabilization result
of Ionescu, Kumjian, Sims, and Williams, which says that every Fell bundle
C∗-algebra is Morita equivalent to a canonical groupoid crossed product. First
we use the theorem to give conditions that guarantee the C∗-algebras associ-
ated to a Fell bundle are either nuclear or exact. We then show that a groupoid
is exact if and only if it is “Fell exact” in an appropriate sense. As an appli-
cation, we show that extensions of exact groupoids are exact by adapting a
recent iterated Fell bundle construction due to Buss and Meyer.
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1. INTRODUCTION

Fell bundles over groupoids provide what is perhaps the most general no-
tion of a groupoid action on a C∗-algebra. In particular, one can use Fell bundles
to encode many different kinds of dynamical systems and C∗-algebraic construc-
tions associated to groups and groupoids, including crossed products, twisted
groupoid C∗-algebras and twisted crossed products, and C∗-algebras of graphs
and higher-rank graphs. Consequently, Fell bundles provide a unifying frame-
work that allows one to study many different kinds of C∗-algebras simultane-
ously, and results generally “trickle down” to the various types of C∗-algebras
that are modeled by them.

The ability to work in such a far-reaching setting comes at a price. There
are often technical obstacles to overcome when proving results for Fell bundles,
many of which involve delicate analyses of upper semicontinuous Banach bun-
dles over groupoids. These issues are apparent in many of the recent papers on
the subject [7], [19], [26], [27], which deal with amenability, ideal structure, and
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the much-needed extensions of Renault’s disintegration theorem and Renault’s
equivalence theorem to Fell bundles, among other topics.

There is some hope, however, in the form a recent stabilization trick of
Ionescu, Kumjian, Sims, and Williams [6]. Inspired by the work of Packer and
Raeburn on twisted crossed products [21] and earlier work of Kumjian on étale
groupoids ([10], Corollary 4.5) the authors constructed a canonical groupoid dy-
namical system (A, G, α) from an arbitrary Fell bundle p : B → G in such a way
that the Fell bundle associated to (A, G, α) is equivalent to B. It is an immediate
consequence of this result and the equivalence theorems of [19] and [27] that any
Fell bundle C∗-algebra is Morita equivalent to a groupoid crossed product. As
a result, one can now prove theorems for groupoid crossed products and then
quickly extend them to analogous results for Fell bundles, provided the proper-
ties in question are compatible with Morita equivalence in a suitable way.

The goal of this paper is to exploit the stabilization theorem in the manner
described above, with an eye toward Fell bundles over exact groupoids. We begin
with a discussion of nuclearity and exactness for Fell bundle C∗-algebras, with the
main results following almost immediately from the stabilization theorem and
the author’s previous work on groupoid crossed products [13]. More specifically,
we show that if p : B → G is a Fell bundle over an amenable groupoid G and
the C∗-algebra A = Γ0(G(0),B) is nuclear, then C∗(G,B) is nuclear. Likewise,
C∗r (G,B) is exact provided A is exact and G is an exact groupoid. We then show
that a groupoid G is exact if and only if it is “Fell exact”, in the sense that invariant
ideals always yield short exact sequences of reduced Fell bundle C∗-algebras.
We then use this result and an iterated crossed product construction of Buss and
Meyer to show that extensions of exact groupoids are again exact.

The paper is organized as follows. We begin with some background on
groupoids and Fell bundles in Section 2. In Section 3 we present our results on
nuclearity and exactness, followed by a discussion on some special cases. We
shift our focus to exact groupoids in Section 4, and we show that a groupoid is
exact if and only if it is Fell exact. Finally, Section 5 is devoted to extensions of
exact groupoids.

2. PRELIMINARIES

In this section we outline the necessary background information on Fell
bundles over groupoids. For a groupoid G, we let G(0) denote its unit space,
G(2) the set of composable pairs, and r, s : G → G(0) the range and source maps,
respectively. Unless otherwise specified, we assume that all groupoids are locally
compact, Hausdorff, second countable, and come equipped with a continuous
Haar system.

Let G be a groupoid, and suppose p : B → G is an upper semicontinuous
Banach bundle over G. For each x ∈ G, we denote the fiber of B over x by B(x).
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We say that p : B → G is a Fell bundle over G if there is a continuous, bilinear,
associative map m : B(2) → B, where

B(2) = {(a, b) ∈ B × B : (p(a), p(b)) ∈ G(2)},

and a continuous involution b 7→ b∗ from B to B such that:

(i) p(m(a, b)) = p(a)p(b) for all (a, b) ∈ B(2);
(ii) p(b∗) = p(b)−1 for all b ∈ B;

(iii) m(a, b)∗ = m(b∗, a∗) for all (a, b) ∈ B(2);
(iv) for each u ∈ G(0), B(u) is a C∗-algebra with respect to the operations inher-

ited from B;
(v) for each x ∈ G, B(x) is a B(r(x))-B(s(x))-imprimitivity bimodule with

respect to the module actions induced from m and the inner products

B(r(x))〈a, b〉 = m(a, b∗) and 〈a, b〉B(s(x)) = m(a∗, b).

Since the map m represents a partially-defined multiplication on B, we will
generally suppress it and simply write ab in place of m(a, b). We will also fre-
quently use the shorthand s(b) and r(b) for b ∈ B to mean s(p(b)) and r(p(b)),
respectively.

Since the fibers over units are C∗-algebras, p : B|G(0) → G(0) is an upper se-
micontinuous C∗-bundle. Consequently, the section algebra A = Γ0(G(0),B|G(0))
is also a C∗-algebra. We will refer to A as the C∗-algebra over the unit space, or more
simply, the unit C∗-algebra of B. Given the special nature of the fibers over units,
we will write A(u) when thinking of the fiber as a C∗-algebra, and B(u) when we
want to emphasize its role as an A(u)-A(u)-imprimitivity bimodule.

It is worth noting that the Fell bundle axioms guarantee B(x)B(y) ⊆ B(xy)
whenever (x, y) ∈ G(2). In fact, axiom (v) guarantees that multiplication in-
duces an isomorphism B(x)⊗A(s(x)) B(y) ∼= B(xy) by Lemma 1.2 of [19]. In other
words, our Fell bundles are always saturated. We also assume that all Fell bundles
are separable, in the sense that B(x) is a separable Banach space for all x ∈ G.

EXAMPLE 2.1. There is one example of a Fell bundle that will be crucial
throughout the paper. Let (A, G, α) be a separable groupoid dynamical system,
meaning that A is an upper semicontinuous C∗-bundle over G(0) upon which G
acts via fiberwise isomorphisms αx : A(s(x)) → A(r(x)). In order to build a Fell
bundle, we need an upper semicontinuous Banach bundle over G. The natural
choice is the pullback bundle B = r∗A. Note that for each x ∈ G the fiber B(x)
is naturally isomorphic to B(r(x)) = A(r(x)). We define the multiplication on
B(2) by

(a, x)(b, y) = (aαx(b), xy),

and the involution is given by

(a, x)∗ = (α−1
x (a∗), x−1).
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It is then easy to check that axioms (i), (ii), and (iii) in the definition of a Fell bun-
dle are satisfied. (See Example 2.1 of [19].) Axiom (iv) is automatic, though one
does need to verify that the natural operations on A(u) line up with those inher-
ited from B for all u ∈ G(0). Finally, for all x ∈ G we have B(x) = B(r(x)), hence
B(x) ∼= B(s(x)) via α−1

x . Thus B(x) is naturally an A(r(x))-A(s(x))-imprimitivity
bimodule, and one easily checks that the module actions and inner products agree
with the ones inherited from B. Thus B is the total space of a Fell bundle which
encodes the dynamical system (A, G, α).

Given a Fell bundle p : B → G, we can turn the set Γc(G,B) of continuous,
compactly supported sections into a convolution algebra as follows: if {λu}u∈G(0)

denotes the Haar system on G and f , g ∈ Γc(G,B), we set

f ∗ g(y) =
∫
G

f (x)g(x−1y)dλu(x).

We can also define an involution on Γc(G,B) by

f ∗(x) = ( f (x−1))∗.

One then equips Γc(G,B) with a universal norm via ‖ f ‖ = sup ‖L( f )‖, where L
ranges over all ∗-representations of Γc(G,B) on Hilbert space that are bounded
with respect to the I-norm (equation (1.3) of [19]). The associated completion is
called the Fell bundle C∗-algebra of B, denoted by C∗(G,B).

There is also a reduced norm on Γc(G,B), which is defined via regular rep-
resentations. A detailed treatment of induced representations for Fell bundle C∗-
algebras can be found in Section 4.1 of [27], so we present only the necessary
details here. Let A = Γ0(G(0),B|G(0)) be the unit C∗-algebra, and suppose π :
A → B(H) is a nondegenerate representation. Put X0 = Γc(G,B). Then X0 is a
right pre-Hilbert A-module under the action

( f · a)(x) = f (x)a(s(x))

and inner product

〈 f , g〉A(u) =
∫
G

f (x)∗g(x)dλu(x).

We use X to denote the Hilbert A-module obtained by completing X0. Note that
Γc(G,B) acts on X0 by left convolution:

( f · g)(x) =
∫
G

f (y)g(y−1x)dλu(x).

This action extends to an action of C∗(G,B) on X by adjointable operators. The
induced representation Ind π then acts on the completion of X�H with respect
to the inner product

(ξ ⊗ h | ζ ⊗ h) = (π(〈ζ, ξ〉A)h | k)
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by

(Ind π)( f )(ξ ⊗ h) = ( f · ξ)⊗ h.

If π is taken to be faithful, then

‖ f ‖r = ‖ Ind π( f )‖

defines a norm on Γc(G,B), called the reduced norm. The resulting completion is
the reduced Fell bundle C∗-algebra, denoted by C∗r (G,B).

REMARK 2.2. If p : B → G is the Fell bundle associated to a groupoid
dynamical system as in Example 2.1, then C∗(G,B) ∼= Aoα G ([19], Example 2.8)
and C∗r (G,B) ∼= Aoα,r G ([27], Example 11).

The final concept we will need is that of an equivalence between Fell bun-
dles. Let G and H be groupoids endowed with Haar systems {λu

G}u∈G(0) and
{λu

H}u∈H(0) , respectively. We say G and H are equivalent if there is a locally com-
pact Hausdorff space Z such that:

(•) G and H act freely and properly on the left and right of Z, respectively;
(•) the actions of G and H commute; and
(•) the anchor maps rZ : Z → G(0) and sZ : Z → H(0) for the actions induce

homeomorphisms Z/H ∼= G(0) and G\Z ∼= H(0).

In this case we say that Z is a G-H-equivalence. Note that any groupoid G is
equivalent to itself via Z = G.

Suppose pB : B → G and pD : D → H are Fell bundles. A B-D-equivalence
consists of a G-H-equivalence Z and an upper semicontinuous Banach bundle
q : E → Z such that:

(i) there are commuting left and right actions of B and D, respectively, on E ;
(ii) there are continuous sesquilinear maps (e, f ) 7→ B〈e, f 〉 from E ∗sZ E to B

and (e, f ) 7→ 〈e, f 〉D from E ∗rZ E to D such that:
(a) pG(B〈e, f 〉) = G[p(e), p( f )] and pH(〈e, f 〉C) = [p(e), p( f )]H ;
(b) B〈e, f 〉∗ = B〈 f , e〉 and 〈e, f 〉∗D = 〈 f , e〉D ;
(c) B〈b · e, f 〉 = b · B〈e, f 〉 and 〈e, f · c〉D = 〈e, f 〉D · c;
(d) B〈e, f 〉 · h = e · 〈 f , h〉D ;

(iii) for all z ∈ Z, E(z) is a B(r(z))-C(s(z))-imprimitivity bimodule with respect
to the operations defined in (b).

If q : E → Z is a B-D-equivalence, then X0 = Γc(Z, E) is a C∗(G,B)-C∗(H,D)-
pre-imprimitivity bimodule with respect to the following operations:

f · ξ(z) =
∫
G

f (x)ξ(x−1 · z)dλ
r(z)
G (x),

ξ · g(z) =
∫
H

ξ(z · y)g(y−1)dλ
s(z)
H (y),
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C∗(G,B)〈〈ξ, η〉〉 =
∫
H

B〈ξ(x · z · y), η(z · y)〉dλ
s(z)
H (y),

〈〈ξ, η〉〉C∗(H,D) =
∫
G

〈ξ(x−1 · z), η(x−1 · z · y)〉C dλ
r(z)
G (x).

Consequently, C∗(G,B) and C∗(H,D) are Morita equivalent; this is Renault’s
equivalence theorem for Fell bundles ([19], Theorem 6.4).

Sims and Williams later showed in Theorem 14 of [27] that C∗r (G,B) and
C∗r (H,D) are Morita equivalent as well. They did so by constructing a linking
Fell bundle L(E) over the linking groupoid L associated to the G-H-equivalence
Z. They then exhibited complementary full multiplier projections pG and pH sat-
isfying

pGC∗r (L, L(E))pG ∼= C∗r (G,B), pHC∗r (L, L(E))pH ∼= C∗r (H,D).

Hence C∗r (G,B) and C∗r (H,D) sit inside C∗r (L, L(E)) as complementary full cor-
ners, so C∗r (L, L(E)) serves as a linking algebra implementing the Morita equiv-
alence. Indeed, Γc(Z, E) sits naturally inside Γc(L, L(E)), and the imprimitivity
bimodule pGC∗r (L, L(E))pH coming from the linking algebra is precisely the com-
pletion of Γc(Z, E) inside C∗r (L, L(E)).

This Sims–Williams construction also works at the level of the full Fell bun-
dle C∗-algebras, so C∗(L, L(E)) serves as a linking algebra for the Morita equiv-
alence between C∗(G,B) and C∗(H,D). Their argument also shows that the
C∗r (G,B)-C∗r (H,D)-imprimitivity bimodule pGC∗r (L, L(E))pH can be obtained by
taking the quotient of pGC∗(L, L(E))pH by the closed submodule correspond-
ing to the kernels of the quotient maps C∗(G,B) → C∗r (G,B) and C∗(H,D) →
C∗r (H,D). At the risk of being overly pedantic, we now check that this construc-
tion is compatible with the one from [19], so we can safely work with quotients
of the usual C∗(G,B)-C∗(H,D)-imprimitivity bimodule.

PROPOSITION 2.3. The inclusion of Γc(G, Z) into Γc(L, L(E)) extends to a bi-
module isomorphism of the C∗(G,B)-C∗(H,D)-imprimitivity bimodule X of [19] onto
the imprimitivity bimodule pGC∗(L, L(E))pH of [27]. Consequently, the quotient of X
by the closed submodule corresponding to the kernel of the quotient map C∗(G,B) →
C∗r (G,B) is a C∗r (G,B)-C∗r (H,D)-imprimitivity bimodule.

Proof. It is clear from [27] that pGΓc(L, L(E))pH = Γc(Z, E), so it follows that
pGC∗(L, L(E))pH is the completion of Γc(Z, E) with respect to the universal norm
on C∗(L, L(E)). Therefore, it suffices to show that the inclusion of Γc(Z, E) into
Γc(L, L(E)) is isometric and respects the module actions and inner products.

Let {σu
Z}u∈G(0) be the family of Radon measures on Z defined in equation

(2.1) of [25], and let {κu}u∈L(0) denote the associated Haar system on L, as defined
in Lemma 2.2 of [25]. Suppose f ∈ Γc(G,B) and ξ ∈ Γc(Z, E), and view both as
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elements of Γc(L, L(E)). Then inside Γc(L, L(E)), we have

f ∗ ξ(z) =
∫
L

f (x)ξ(x−1 · z)dκr(z)(x) =
∫
G

f (x)ξ(x−1 · z)dλr(z)(x)

for z ∈ Z, since the integrand is zero unless x ∈ G and z ∈ Z. This is precisely
the formula for the left Γc(G,B)-action on Γc(Z, E) given in Theorem 6.4 of [19].
A similar proof works for the right action.

Now we turn to the inner products. If ξ, η ∈ Γc(Z, E), then the Γc(G,B)-
valued inner product is

ξ ∗ η∗(x) =
∫
L

ξ(z)η∗(z−1 · x)dκr(x)(z) =
∫
Z

ξ(z)η(x−1 · z)dσ
r(x)
Z (z)

=
∫
H

ξ(z · y)η(x−1 · z · y)dλs(z)(y),

where z is any element of Z satisfying r(z) = r(x). However, for any z ∈ Z with
r(z) = s(x), we have r(x · z) = r(x), so we can rewrite the last integral as

ξ ∗ η∗(x) =
∫
H

ξ(x · z · y)η(z · y)dλs(z)(y) =
∫
H

B〈ξ(x · z · y), η(z · y)〉dλs(z)(y),

which agrees with the inner product from [19]. The proof for the C∗(H,D)-valued
inner product is similar. It follows that the inclusion of Γc(Z, E) into Γc(L, L(E))
respects the norms induced from C∗(G,B) (or from C∗(H,D)). Thus the inclusion
is isometric and extends to an isomorphism of imprimitivity bimodules.

The upshot of Proposition 2.3 is that we have the ability to construct a
C∗r (G,B)-C∗r (H,D)-imprimitivity bimodule without appealing to a linking alge-
bra. That is, we may work with Γc(Z, E) endowed with the operations defined
in [19], and simply complete it with respect to the norm induced by the reduced
norm on Γc(G,B).

3. STABILIZATION, NUCLEARITY AND EXACTNESS

Throughout this section, G denotes a second countable, locally compact
Hausdorff groupoid with Haar system {λu}u∈G(0) , and p : B → G is a separa-
ble saturated Fell bundle. We let A = Γ0(G(0),B) denote the unit C∗-algebra of B.

In [6], Ionescu, Kumjian, Sims, and Williams showed that the full and re-
duced C∗-algebras associated to the Fell bundle B are Morita equivalent to the full
and reduced crossed products, respectively, coming from a canonical groupoid
dynamical system. In particular, they constructed an upper semicontinuous Ba-
nach bundle V over G(0) such that the following conditions hold:

(•) Each fiber V(u) is a full right Hilbert A(u)-module.
(•) The section algebra V = Γ0(G(0),V) is a full right Hilbert A-module.
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(•) There is a natural action α of G on K(V), the upper semicontinuous C∗-
bundle over G(0) whose fibers are

K(V)(u) = K(V(u)),

where K(V(u)) is the set of generalized compact operators on V(u).
(•) The section algebra of K(V) can be identified with K(V), the algebra of

generalized compact operators on V. Note that K(V) is Morita equivalent to A
via the imprimitivity bimodule V.

The stabilization theorem ([6], Theorem 3.7) then says that there is an equivalence
between B and the Fell bundle associated to the dynamical system (K(V), G, α).
Consequently, C∗(G,B) is Morita equivalent to K(V)oα G, and C∗r (G,B) is Mor-
ita equivalent to K(V)oα,r G by the equivalence theorems for full and reduced
Fell bundle C∗-algebras [19], [27].

The stabilization theorem offers the possibility that certain questions re-
garding Fell bundles can be answered by instead looking at the simpler case of
groupoid crossed products. To wit, one can perhaps prove results for groupoid
crossed products and then extend those results to Fell bundles via the stabiliza-
tion theorem. Of course this line of attack is particularly effective for properties
that are preserved under Morita equivalence. As our first examples, we can eas-
ily extend two of the author’s previous results ([13], Theorems 5.1 and 6.14) for
groupoid crossed products to obtain conditions that guarantee a Fell bundle C∗-
algebra is nuclear or exact.

The following nuclearity result is already known in the special case of con-
tinuous Fell bundles over étale groupoids by a result of Takeishi ([28], Theo-
rem 4.1).

THEOREM 3.1. Let G be a second countable locally compact Hausdorff groupoid
endowed with a Haar system, p : B → G a separable saturated Fell bundle over G,
and A = Γ0(G(0),B) the unit C∗-algebra of B. If A is nuclear and G is measurewise
amenable, then C∗(G,B) is nuclear.

Proof. Let (K(V), G, α) denote the groupoid dynamical system afforded by
the stabilization theorem of [6]. Since K(V) and A are Morita equivalent and A is
nuclear, ([5], Theorem 15) guarantees that K(V) is nuclear. Since G is amenable,
K(V)oα G is nuclear by Theorem 5.1 of [13]. But C∗(G,B) and K(V)oα G are
Morita equivalent by Corollary 3.8 of [6], so C∗(G,B) is nuclear.

A nearly identical argument gives us conditions for exactness of the reduced
Fell bundle C∗-algebra C∗r (G,B). First recall that if (A, G, α) is a groupoid dynam-
ical system, an ideal I ⊆ A = Γ0(G(0),A) is said to be invariant if

αx(I(s(x))) = I(r(x))
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for all x ∈ G. We say G is exact if for any dynamical system (A, G, α) and any
invariant ideal I ⊆ A, the sequence

0→ I oα|I ,r G → Aoα,r G → A/I oαI ,r G → 0

of reduced crossed products is exact.

THEOREM 3.2. Let G be a second countable locally compact Hausdorff groupoid
endowed with a Haar system, p : B → G a separable saturated Fell bundle over G, and
A = Γ0(G(0),B) the unit C∗-algebra of B. If A is exact and G is an exact groupoid, then
C∗r (G,B) is exact.

Proof. Assume A is exact and G is exact. Since K(V) and A are Morita
equivalent, K(V) is exact by a theorem of Katsura ([9], Proposition A.10). If we
assume G is exact, then K(V)oα G is exact by Theorem 6.14 of [13]. It then fol-
lows again from Corollary 3.8 of [6] that C∗r (G,B) is exact.

As mentioned above, Fell bundles provide a convenient setting in which
to work, since results will immediately descend to many different types of C∗-
algebras. For example, Theorems 3.1 and 3.2 have immediate implications for
twisted groupoid C∗-algebras and, more generally, twisted crossed products.

3.1. TWISTED CROSSED PRODUCTS. One construction that is subsumed by Fell
bundles is the twisted groupoid crossed product, as introduced by Renault in [23] and
described further in [16], [19]. Suppose we have a central extension of groupoids

(3.1) G(0) // S i // E
j
// G // G(0),

where S is a bundle of abelian groups, and thatA → G(0) is an upper semicontin-
uous C∗-bundle. Suppose further that E acts on A via a family of isomorphisms
α = {αe}e∈E, and that there is a homomorphism χ : S → ⊔

u∈G(0)
M(A(u)) im-

plementing the resulting action of S. More specifically, we assume that the map
(t, a) 7→ χ(t)a is continuous and

αt(a) = χ(t)aχ(t)∗, χ(ete−1) = αe(χ(t))

for all t ∈ S, a ∈ A(s(t)), and e ∈ E with s(e) = r(t). We call (A, G, E, α) a twisted
dynamical system. (Note that if S = G(0), we recover the usual notion of a groupoid
dynamical system.) Renault then considers continuous A-valued functions on E
that have “compact support modulo S”, i.e., sections f : E→ r∗A satisfying

f (te) = f (e)χ(t−1)

for all t ∈ S. Such functions form a ∗-algebra under the operations

f ∗ g(e) =
∫
G

f (e′)αy(g(e′−1e))dλr(e)(j(e′)), f ∗(e) = αe( f (e−1))∗,
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and we equip this ∗-algebra with a norm by taking the supremum over all ap-
propriately bounded representations (as in the untwisted case). The completion
is the twisted crossed product, denoted by C∗(G, E,A).

By adapting the setup from Example 2.1, we can bring twisted crossed prod-
ucts under the Fell bundle umbrella. Start with the bundle r∗A → E, upon which
S acts naturally via

(a, e) · t = (aχ(t)∗, te).

If we put B = (r∗A)/S, then Lemmas 2.6 and 2.7 of [19] show that p : B → G is
a Fell bundle, where p([a, e]) = j(e) and the operations are defined by

[a, e][b, e′] = [aαe(b), ee′], [a, e] = [α−1
e (a∗), e−1].

Furthermore, C∗(G,B) is isomorphic to the twisted crossed product C∗(G, E,A)
by Example 2.10 of [19].

It is also fairly straightforward to check that the unit C∗-algebra of B is iso-
morphic to A. Notice first that if [a, e] ∈ B|G(0) , then we have p([a, e]) = j(e) ∈
G(0), so e ∈ S. This observation gives us a way of identifying the fibers of B over
units.

LEMMA 3.3. For each u ∈ G(0), define ϕu : B(u)→ A(u) by

ϕu([a, t]) = (aχ(t), u),

where t is any element of Su. Then ϕu defines an isomorphism of B(u) onto A(u).

Proof. First note that ϕu is well-defined: if t′ ∈ Su, then [aχ(t′)∗, t′t] =
[a, t], and

ϕu([aχ(t′)∗, t′t]) = (aχ(t′)∗χ(t′t), u) = (aχ(t), u) = ϕu([a, t]).

Clearly ϕu is linear, and we have

ϕu([a, t][b, t′]) = ϕu([aαt(b), tt′]) = (aχ(t)bχ(t)∗χ(tt′), u)

= (aχ(t)bχ(t′), u) = ϕu([a, t])ϕu([b, t′]) and

ϕu([a, t]∗) = (α−1
t (a∗)χ(t)∗, u) = (χ(t)∗a∗, u) = ϕu([a, t]).

Thus ϕu is a ∗-homomorphism. If ϕu([a, t]) = 0, then aχ(t) = 0, so a = 0 and ϕu
is injective. It is clearly surjective, hence an isomorphism.

By gluing together the fiberwise homomorphisms ϕu, we obtain a bundle
map ϕ̂ : B|G(0) → A given by ϕ̂|B(u) = ϕu. Moreover, it is not hard to check that ϕ̂

is continuous. If [ai, ti]→ [a, t], then we can pass to a subnet, relabel, and assume
(ai, ti) → (a, t) in r∗A. Then ai → a in A, so aiχ(ti) → aχ(t) by the continuity
requirement on χ. Hence

ϕ̂([ai, ti]) = (aiχ(ti), s(ti))→ (aχ(t), s(t)) = ϕ̂([a, t]).
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As discussed in Remark 3.6 of [13], the bundle map ϕ̂ induces a C0(G(0))-linear
isomorphism Φ : Γ0(G(0),B|G(0)) → A. With this fact in hand, we have the fol-
lowing immediate corollary of Theorem 3.1.

THEOREM 3.4. Let (A, G, E, α) be a twisted groupoid dynamical system. If G is
amenable and A is nuclear, then the twisted crossed product C∗(G, E,A) is nuclear.

We should point out that Theorem 3.4 is not really new. Indeed, it fol-
lows from Lemme 3.3(i) of [23] that C∗(G, E,A) is a quotient of the (untwisted)
crossed product Aoα E. Since S is an abelian group bundle (hence amenable)
and amenability is preserved under taking extensions of groupoids ([1], Theo-
rem 5.3.14) it follows that E is amenable whenever G is. Hence Aoα G is nuclear
if A is nuclear and G is amenable, so C∗(G, E,A) is also nuclear under these hy-
potheses.

On the other hand, the special case of Theorem 3.2 for twisted dynamical
systems does appear to be new. In fact, there does not even seem to be a notion
of reduced twisted groupoid crossed products in the literature. Therefore, for a
twisted dynamical system (A, G, E) we define the reduced twisted crossed product
C∗r (G, E,A) to be C∗r (G,B), where B is the Fell bundle associated to (A, G, E).

THEOREM 3.5. Let (A, G, E, α) be a twisted groupoid dynamical system. If G is
exact and A is exact, then the reduced twisted crossed product C∗r (G, E,A) is exact.

As a special case of twisted crossed products, we can also study twists,
which were initially defined by Kumjian in [10]. Several other authors [17], [18],
[19], [24], [29] have since discussed twists over groupoids and their relationship
to Fell bundles. If G is a locally compact Hausdorff groupoid, a twist over G
(sometimes called a T-groupoid) is a central groupoid extension

G(0) // G(0) × T i // Σ
j
// G // G(0).

In other words, we take S = G(0) × T in (3.1). It is worth noting that any continu-
ous cocycle ω : G(2) → T gives rise to a twist, though the discussion in Section 2
of [17] shows that the theory of twists is more general.

The authors of [17] describe how to construct the C∗-algebra C∗(G, Σ) asso-
ciated to a twist, but one can also realize C∗(G, Σ) as a twisted crossed product.
Start with the trivial dynamical system (C×G(0), Σ, lt), and define χ : G(0)×T→
G(0) × C by χ(t) = t. We obtain a twisted dynamical system (C× G(0), G, Σ, lt),
and it is not hard to check that the associated Fell bundle agrees with the one built
in Example 2.3 of [29] and Section 4 of [24]. Hence C∗(G, Σ, C×G(0)) = C∗(G, Σ)

and C∗r (G, Σ, C× G(0)) = C∗r (G, Σ). In light of this discussion, Theorems 3.1 and
3.2 yield the following results for twists.

THEOREM 3.6. Let G be a second countable locally compact Hausdorff groupoid,
and suppose Σ is a twist over G.

(i) If G is measurewise amenable, then C∗(G, Σ) is nuclear.
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(ii) If G is exact, then C∗r (G, Σ) is exact.

Again, statement (i) in Theorem 3.6 is already known, since C∗(G, Σ) is a
quotient of the groupoid C∗-algebra C∗(Σ).

4. FELL EXACT GROUPOIDS

We now turn our attention toward a more refined analysis of Fell bundles
over exact groupoids. In particular, we will use the stabilization theorem to show
that if G is exact, then an invariant ideal in the unit C∗-algebra of any Fell bundle
over G gives rise to a short exact sequence of reduced Fell bundle C∗-algebras.

Let G be a second countable, locally compact Hausdorff groupoid, and sup-
pose pB : B → G is a separable Fell bundle over G with A = Γ0(G(0),B).
While G does not necessarily act on the C∗-bundle B|G(0) associated to A, it does
act naturally on Prim A as follows. We identify Prim A with the disjoint union⊔
u∈G(0)

Prim A(u) via Proposition C.5 of [22], and for each x ∈ G the Rieffel cor-

respondence associated to B(x) induces a homeomorphism hx : Prim A(s(x)) →
A(r(x)). We then set

(4.1) x · (s(x), P) = (r(x), hx(P)).

It is shown in Proposition 2.2 of [7] that (4.1) defines a continuous action of G on
Prim A. We then say an ideal I ⊆ A is invariant if

hull(I) = {P ∈ Prim A : I ⊆ P}

is a G-invariant subset of Prim A.
If the Fell bundle pB : B → G does come from a groupoid dynamical sys-

tem, then we have two competing notions of invariance for ideals. However, it is
straightforward to check that the two definitions are equivalent in this case.

PROPOSITION 4.1. Let (A, G, α) be a groupoid dynamical system. An ideal I ⊆
A is invariant if and only if hull(I) is a G-invariant subset of Prim A.

Proof. Suppose first that hull(I) is G-invariant, and let x ∈ G. Then by
definition hull(I(r(x))) = αx(hull(I(s(x)))), and since I(r(x)) is equal to the
intersection of all the primitive ideals containing it, we have

I(r(x)) =
⋂

P∈hull(I(s(x)))

αx(P) = αx

( ⋂
P∈hull(I(s(x)))

P
)
= αx(I(s(x))).

On the other hand, suppose I is invariant, and let P ∈ hull(I). Identify P with
the pair (s(x), P), where P ∈ Prim A(s(x)). We have I(s(x)) ⊆ P, so

I(r(x)) = αx(I(s(x))) ⊆ αx(P).

Thus (r(x), αx(P)) belongs to hull(I). Hence hull(I) is G-invariant.
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It is shown in [7] that if I is an invariant ideal, then there are Fell bundles BI
and B I over G with I = Γ0(G(0),BI) and A/I = Γ0(G(0),B I). Furthermore, there
is a short exact sequence of Fell bundle C∗-algebras

0→ C∗(G,BI)→ C∗(G,B)→ C∗(G,B I)→ 0

by Theorem 3.7 of [7]. The same cannot be said for the reduced C∗-algebras,
since exactness is known to fail for reduced crossed products associated to certain
groupoids (or even some groups). Therefore, we will focus on the sequence of
reduced Fell bundle C∗-algebras

(4.2) 0→ C∗r (G,BI)→ C∗r (G,B)→ C∗r (G,B I)→ 0,

and attempt to determine when it is guaranteed to be exact. In light of the stabi-
lization theorem, one might guess that it suffices to require G to be exact.

Before proceeding any further, we first need to make sure that sequences
like the one in (4.2) actually make sense. That is, we need to verify that there is a
natural inclusion C∗r (G,BI) ↪→ C∗r (G,B) and a surjection C∗r (G,B) → C∗r (G,B I).
In Lemma 3.5 of [7], the authors show that the inclusion I ⊆ A (and subsequent
embedding of BI into B) yields a natural inclusion

ι : Γc(G,BI) ↪→ Γc(G,B)

which extends to an isomorphism of C∗(G,BI) onto an ideal of C∗(G,B). We
desire an analogous result for reduced C∗-algebras, so we need to show that ι is
isometric with respect to the reduced norms on Γc(G,BI) and Γc(G,B).

PROPOSITION 4.2. The inclusion map ι : Γc(G,BI) ↪→ Γc(G,B) extends to an
isomorphism of C∗r (G,BI) onto an ideal of C∗r (G,B).

Proof. The spirit of the proof is similar to that of Lemma 6.9 in [14]. Let
π : A → B(Hπ) be a faithful representation on a separable Hilbert space Hπ ,
and form the associated regular representation Ind π of C∗(G,B). Then for any
f ∈ Γc(G,BI),

‖ι( f )‖r = ‖ Ind π(ι( f ))‖.
We are tempted at this point to say that (Ind π)|C∗(G,BI)

= Ind π|I , so that the
above norm is just ‖ f ‖r. However, the representations (Ind π)|C∗(G,BI)

and π|I
might be degenerate, which complicates the matter.

To work around these issues, let H denote the essential subspace of π|I .
Then π|I is a faithful, nondegenerate representation of I onH. Also, the subspace
H ⊆ Hπ is invariant for all the operators in π(A), so we obtain a nondegenerate
subrepresentation ρ of A on H. Notice that ρ|I is faithful, since π|I = ρ|I ⊕ 0.
Moreover, ρ is faithful on A: if a ∈ A and b ∈ I, then

ρ(a)ρ(b) = ρ(ab) 6= 0,

since ab ∈ I and ρ|I is faithful. Thus ρ(a) 6= 0 and ρ is faithful. Therefore, if
we form the induced representation Ind ρ of C∗(G,B) on X = Γc(G,B)�H, then
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‖ f ‖r = ‖ Ind ρ( f )‖ for all f ∈ Γc(G,B). On the other hand, we can form the
induced representation Ind ρ|I on XI = Γc(G,BI)�H, and for all f ∈ Γc(G,BI),

‖ f ‖r = ‖ Ind ρ|I( f )‖.

Now observe that Γc(G,BI)�H sits naturally inside Γc(G,B)�H, and this em-
bedding is isometric: for all ξ ∈ Γc(G,BI) and h ∈ H, we have

(ξ ⊗ h | ξ ⊗ h)X = (ρ(〈ξ, ξ〉A)h | h) = (π|I(〈ξ, ξ〉I)h | h) = (ξ ⊗ h | ξ ⊗ h)XI .

Thus XI embeds isometrically into X. We claim that XI is the essential subspace
for the possibly degenerate representation (Ind ρ)|C∗(G,BI)

. To see this, let ξ ∈
Γc(G,B), h ∈ H, and f ∈ Γc(G,BI). Then

Ind ρ( f )(ξ ⊗ h) = f · ξ ⊗ h,

where f · ξ = f ∗ ξ ∈ Γc(G,BI), since Γc(G,BI) is an ideal in Γc(G,B). Thus
f · ξ ⊗ h ∈ Γc(G,BI)�H. It follows that

span{Ind ρ( f )x : f ∈ C∗(G,BI), x ∈ X} = XI ,

and the left hand side is precisely the essential subspace for (Ind ρ)|C∗(G,BI)
. It is

then clear that (Ind ρ)|C∗(G,BI)
◦ ι and Ind ρ|I agree on XI . It now follows that for

all f ∈ Γc(G,BI),

‖ι( f )‖r = ‖(Ind ρ)|C∗(G,BI)
(ι( f ))‖ = ‖ Ind ρ|I( f )‖ = ‖ f ‖r.

Therefore, ι is isometric for the reduced norms, so it extends to an isomorphism
of C∗r (G,BI) onto an ideal of C∗r (G,B).

It is shown in Lemma 3.6 of [7] that the quotient homomorphism qI : A →
A/I induces a natural surjective homomorphism q : Γc(G,B) → Γc(G,B I) via
the fiberwise quotient maps qx : B(x) → BI(x), which extends to a surjection
of C∗(G,B) onto C∗(G,B I). We will now verify the analogous result for the re-
duced Fell bundle C∗-algebras. Fortunately, the proof does not require the same
machinations with degenerate representations that were necessary for the previ-
ous proposition.

PROPOSITION 4.3. The map q : Γc(G,B) → Γc(G,B I) extends to a surjective
homomorphism q : C∗r (G,B)→ C∗r (G,B I).

Proof. Since the authors of [7] already verified that q : Γc(G,B)→ Γc(G,B I)
is a ∗-homomorphism, it only remains to show that q is bounded with respect to
the reduced norms. Let π : A/I → B(H) be a faithful representation, and form
the induced representation Ind π of C∗r (G,B I) on XI = Γc(G,B I)�H. On the
other hand, π ◦ qI is a nondegenerate representation of A onH, and the associated
induced representation Ind(π ◦ qI) of C∗r (G,B) acts on X = Γc(G,B)�H. Define
U0 : Γc(G,B)�H → Γc(G,B I)�H by

U0(ξ ⊗ h) = q(ξ)⊗ h.
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We claim that U0 extends to a unitary U : X → XI . To see this, observe that if
ξ, η ∈ Γc(G,B) and h, k ∈ H, then

(U0(ξ ⊗ h) |U0(η ⊗ k)) = (q(ξ)⊗ h | q(η)⊗ k) = (π(〈q(η), q(ξ)〉A/I)h | k),

where

〈q(η), q(ξ)〉A/I(u) =
∫
G

q(η)(x)∗q(ξ)(x)dλu(x) =
∫
G

qx−1(η(x))∗qx(ξ(x))dλu(x)

=
∫
G

qs(x)(η(x)∗ξ(x))dλu(x) = qu

( ∫
G

η(x)∗ξ(x)dλu(x)
)

= qu(〈η, ξ〉A(u)).

Therefore,

(U0(ξ ⊗ h) |U0(η ⊗ k)) = ((π ◦ qI)(〈η, ξ〉A)h | k) = (ξ ⊗ h | η ⊗ k),

so U0 is isometric. It is clear that U0 has dense range, thus it extends to a unitary
U : X→ XI . Furthermore, U intertwines Ind(π ◦ qI) and (Ind π) ◦ q:

Ind π(q( f ))U(ξ ⊗ h) = q( f ) · q(ξ)⊗ h = q( f · ξ)⊗ h = U( f · ξ ⊗ h)

= U(Ind(π ◦ qI)( f )(ξ ⊗ h))

for all f , ξ ∈ Γc(G,B) and h ∈ H. Therefore, for all f ∈ Γc(G,B) we have

‖q( f )‖r = ‖ Ind π(q( f ))‖ = ‖ Ind(π ◦ qI)( f )‖ 6 ‖ f ‖r.

Hence q is norm-decreasing, so it extends to a homomorphism q : C∗r (G,B) →
C∗r (G,B I), which is surjective since q has dense range.

Now we proceed with determining when sequences like the one in (4.2) are
exact. Instead of working directly with the dynamical system afforded by the
stabilization theorem, the details are a little nicer if we work in a slightly more
abstract setting at first. Let pD : D → G be another Fell bundle over G, and let
C = Γ0(G(0),D) denote its unit C∗-algebra. Furthermore, suppose q : E → G is a
B-D-equivalence over the trivial G-G-equivalence G. It is then straightforward to
check that the restriction E|G(0) is a B|G(0) -D|G(0) -imprimitivity bimodule bundle
(as defined in Definition 2.17 of [11] and discussed further in Definition 6.14 of
[2]), so E = Γ0(G(0), E) is an A-C-imprimitivity bimodule. We let h : I(C) →
I(A) denote the associated Rieffel correspondence between the ideal lattices of C
and A, respectively.

Now suppose J ⊆ C is an invariant ideal, and let I = h(J) be the corre-
sponding ideal in A. We intend to prove that the sequence

(4.3) 0→ C∗r (G,BI)→ C∗r (G,B)→ C∗r (B I)→ 0

is exact if and only if

(4.4) 0→ C∗r (G,DJ)→ C∗r (G,D)→ C∗r (G,D J)→ 0
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is exact. Of course we first need to know that I is an invariant ideal for this
conjecture to even make sense. Before we begin the proof, it will be helpful to
introduce some additional notation. For each x ∈ G we let

hA
x : I(A(s(x)))→ I(A(r(x))), hC

x : I(C(s(x)))→ I(C(r(x)))

denote the Rieffel correspondences coming from the imprimitivity bimodules
B(x) and D(x), respectively. Also, note that for each u ∈ G(0), the Rieffel cor-
respondence h : I(C) → I(A) descends to a bijection hu : I(C(u)) → I(A(u))
à la Remark 3.26 of [22]. It is then straightforward to check that we have a com-
muting diagram:

I(A(r(x))) I(C(r(x)))
hr(x)
oo

I(A(s(x)))

hA
x

OO

I(C(s(x))).

hC
x

OO

hs(x)
oo

Indeed, this diagram commutes thanks to Lemma 6.2 of [19], which guarantees
that we have natural isomorphisms

B(x)⊗A(s(x)) E(s(x)) ∼= E(x · s(x)) = E(x) and

E(r(x))⊗C(r(x)) D(x) ∼= E(r(x) · x) = E(x)

of A(r(x))-C(s(x))-imprimitivity bimodules.

PROPOSITION 4.4. Let J ⊆ C be an invariant ideal, and let I = h(J) be the
corresponding ideal in A. Then I is invariant.

Proof. We need to show that hull(I) is a G-invariant subset of Prim A. First
observe that

hull(I) = {P ∈ Prim A : I ⊆ P} = {h(Q) ∈ Prim A : I = h(J) ⊆ h(Q)}
= h({Q ∈ Prim C : J ⊆ Q}) = h(hull(J)).

Now let x ∈ G and suppose P ∈ hull(I) is lifted from the fiber A(s(x)), so we can
identify P with (s(x), P). As in the proof of Corollary 3.9 of [6], we have

x · P = h(x · h−1(P))

since

x · (s(x), P) = (r(x), hA
x (P)) = (r(x), hr(x)(h

C
x (h
−1
s(x)(P))))

= h(r(x), hC
x (h
−1
s(x)(P))) = h(x · h−1(P)).

Since P ∈ hull(I), h−1(P) ∈ hull(J), so x · h−1(P) ∈ hull(J) since hull(J) is a G-
invariant subset of Prim C. It is then clear that x · P ∈ hull(I), so I is invariant.
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Now we proceed with the proof that (4.3) is exact if and only if (4.4) is.
The key to the argument is verifying that the ideals C∗r (G,BI) and C∗r (G,DJ) are
paired under the Morita equivalence of C∗r (G,B) and C∗r (G,D). Indeed, it suf-
fices to show that this Morita equivalence induces one between C∗r (G,BI) and
C∗r (G,DJ), and likewise between C∗r (G,B I) and C∗r (G,D J). The trick is to cut
down the bundle q : E → G that implements the B-D-equivalence in order to
form a BI-DJ-equivalence EI,J → G. By taking fiberwise quotients of E , we can
also form a B I-D J-equivalence E I,J → G. We begin by defining

EI,J = {e ∈ E : 〈e, e〉D ∈ DJ(s(e))}

where we have written s(e) in place of s(q(e)). Notice that for each x ∈ G,

EI,J(x) = {e ∈ E(x) : 〈e, e〉D ∈ CJ(s(x))}.

Since E(x) is an A(r(x))-C(s(x))-imprimitivity bimodule, it should follow that
the submodule EI,J(x) is an I(r(x))-J(s(x))-imprimitivity bimodule. Indeed, an
argument along the lines of Lemma 3.1 in [7] shows this to be the case.

LEMMA 4.5. For each x ∈ G, we have

I(r(x)) · E(x) = EI,J(x) = E(x) · J(s(x)).

In other words, EI,J(x) is the closed submodule of E(x) associated to I(r(x)) and J(s(x))
under the Rieffel correspondence. Thus EI,J(x) is an I(r(x))-J(s(x))-imprimitivity bi-
module for each x ∈ G.

Proof. By definition (and Lemma 3.23 of [22]), we have EI,J(x) = E(x) ·
J(s(x)). Let hE

x = hr(x) ◦ hC
x denote the Rieffel correspondence induced by E(x).

It suffices to show that I(r(x)) = hE
x (J(s(x))). If P ∈ Prim A(r(x)), then we

have I(r(x)) ⊆ P if and only if I ⊆ (r(x), P), which in turn holds if and only if
J ⊆ h−1(r(x), P). However,

h−1(r(x), P) = (s(x), (hC
x )
−1(h−1

r(x)(P))) = (s(x), (hE
x )
−1(P)),

so J ⊆ h−1(r(x), P) if and only if J(s(x)) ⊆ (hE
x )
−1(P). It then follows that

hull(I(r(x))) = hE
x (hull(J(s(x)))), so I(r(x)) = hE

x (J(s(x))).

Lemma 4.5 shows that the fibers of EI,J are imprimitivity bimodules be-
tween the appropriate fibers of BI and DJ . With this result in hand, we can
proceed with the verification that EI,J is a BI-DJ-equivalence.

PROPOSITION 4.6. The bundle qI,J : EI,J → G is an upper semicontinuous Ba-
nach bundle, which is furthermore a BI-DJ-equivalence. Consequently, C∗(G,BI) and
C∗(G,DJ) are Morita equivalent, as are C∗r (G,BI) and C∗r (G,DJ).

Proof. We equip the total space EI,J with the topology inherited from E . It is
then necessary to check that the resulting bundle is upper semicontinuous, and
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that the restriction of q to EI,J is an open map. Upper semicontinuity is fairly easy
to verify. We just need to show that the set

Ur = {e ∈ EI,J : ‖e‖ < r}

is open for all r ∈ R. Well,

Ur = {e ∈ E : ‖e‖ < r} ∩ EI,J ,

and {e ∈ E : ‖e‖ < r} is open in E since E is an upper semicontinuous Banach
bundle. Thus Ur is open for all r ∈ R, so e → ‖e‖ is upper semicontinuous from
EI,J to R.

The openness of qI,J is a little harder to verify, though the proof is very
similar to that of Proposition 3.3 in [7]. The argument relies upon Lemma 1.15
of [30]. Let e ∈ EI,J and put x = qI,J(e). Suppose xi → x in G. Since EI,J(x) =
E(x) · J(s(x)), we can write e = f · a(s(x)) for some f ∈ E(x) and a ∈ J. Since
the bundle map q : E → G is open, we can pass to a subnet, relabel, and find
elements fi ∈ E with q( fi) = xi and fi → f . Since a ∈ J = Γ0(G(0),DJ) is
continuous, a(s(xi))→ a(s(x)). Thus

fi · a(s(xi))→ f · a(s(x)) = e,

since the action of D on E is continuous. Since fi · a(s(xi)) ∈ EI,J for all i, it
follows that the restriction of q to EI,J is open. Therefore, qI,J : EI,J → G is an
upper semicontinuous Banach bundle.

Now we show that qI,J : EI,J → G is a BI-DJ-equivalence. Clearly the
bundle qI,J : EI,J → G should inherit natural actions and inner products from E ,
provided the restrictions of the maps defining those operations take values in the
correct places. In particular, we first need to check that the actions of B and D on
E restrict to actions of BI and DJ , respectively, on EI,J . Let e ∈ EI,J and a ∈ DJ
with s(e) = r(a), and x = q(e) and y = p(a). Since a ∈ DJ(y) = D(y) · J(s(y)),
we can write a = a′ · b for some a′ ∈ D(y) and b ∈ J(s(x)). Then

e · a′b = (e · a′) · b ∈ E(xy) · J(s(y)) = E(xy) · J(s(xy)) ⊆ EI,J .

Since we also know that EI,J(x) = I(r(x)) · E(x) for all x ∈ G, the proof for the
BI-action is similar.

Now we check that the B- and D-valued sesquilinear forms on E restrict
to forms BI 〈·, ·〉 : EI,J ∗s EI,J → BI and 〈·, ·〉DJ : EI,J ∗r EI,J → DJ . Let (e, f ) ∈
EI,J ∗r EI,J , and write f = f ′ · a for some f ′ ∈ E(q( f )) and a ∈ J(s( f )). Then

〈e, f 〉DJ = 〈e, f 〉D = 〈e, f ′ · a〉D = 〈e, f ′〉D · a ∈ J(s( f )) ⊆ DJ .

Again, the proof for the BI-valued form is similar. Also, it is clear that all the
required axioms for the actions and inner products hold, since they hold in E .

Finally, we know from Lemma 4.5 that EI,J(x) is an I(r(x))-J(s(x))-impri-
mitivity bimodule for each x ∈ G. Therefore, all the axioms of Definition 6.1 in
[19] are satisfied, and qI,J : EI,J → G is a BI-DJ-equivalence.
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Now we let X and Xr denote the C∗(G,B)-C∗(G,D)- and C∗r (G,B)-C∗r (G,D)-
imprimitivity bimodules arising from E . Likewise, we write XJ and XJ,r for the
C∗(G,BI)-C∗(G,DJ)- and C∗r (G,BI)-C∗r (G,DJ)-imprimitivity bimodules afforded
by EI,J . If we refer back to the equivalence results of [19] and [27], we see that
XJ and XJ,r both arise as completions of Γc(G, EI,J) with respect to the norms
induced from the full and reduced norms, respectively, on Γc(G,BI) (or equiv-
alently, Γc(G,DJ)). Observe also that Γc(G, EI,J) embeds naturally into Γc(G, E),
and it is not hard to see that this embedding is isometric for both norms. It fol-
lows that we have inclusions XJ ↪→ X and XJ,r ↪→ Xr of imprimitivity bimodules.
Furthermore, it is easy to check that

C∗(G,BI) · X = XJ = X · C∗(G,DJ) and

C∗r (G,BI) · Xr = XJ,r = Xr · C∗r (G,DJ).

Therefore, we have proven the following proposition.

PROPOSITION 4.7. The two ideals C∗(G,BI)⊆C∗(G,B) and C∗(G,DJ)⊆C∗(G,D)
are paired under the Rieffel correspondence induced from the C∗(G,B)-C∗(G,D)-impri-
mitivity bimodule X. The analogous statement holds for the reduced Fell bundle C∗-
algebras.

Now we turn our attention to the quotient Fell bundles B I and D J . As in
[7], for each x ∈ G we define

EI,J(x) = E(x)/EI,J(x).

Then EI,J(x) is automatically a BI(r(x))-D J(s(x))-imprimitivity bimodule by
Proposition 3.25 of [22]. Now define

E I,J =
⊔

x∈G
EI,J(x),

and let qI,J : E I,J → G be the natural projection map. Our goal is to turn E I,J

into a B I-D J-equivalence. We first need to equip E I,J with a topology that makes
it into an upper semicontinuous Banach bundle over G. We will follow the lead
of Proposition 3.4 of [7] and specify a collection of sections of E I,J , and then use
them to generate a topology.

For each x ∈ G, let σx : E(x) → EI,J(x) denote the quotient map. We can
then define a bundle map σ̂ : E → E I,J by

σ̂(e) = σq(e)(e).

Given f ∈ Γc(G, E), define a section σ( f ) : G → E I,J by

σ( f )(x) = σ̂( f (x)).

PROPOSITION 4.8. The total space E I,J can be endowed with a topology making it
into an upper semicontinuous Banach bundle such that

Γ = {σ( f ) : f ∈ Γc(G, E)}
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is dense in Γc(G, E I,J) with respect to the inductive limit topology.

Proof. The proof is nearly identical to that of Proposition 3.4 in [7]. In light
of the Hofmann–Fell theorem ([7], Theorem 1.2) it suffices to prove the following:

(i) for all f ∈ Γ, x 7→ ‖ f (x)‖ is upper semicontinuous from G to R;
(ii) for all x ∈ G, { f (x) : f ∈ Γ} is dense in EI,J(x).

The second assertion follows immediately from the fact that E has enough sec-
tions and σx : E(x)→EI,J(x) is surjective. Therefore, we will focus on proving (i).

Notice first that we can write

‖σ( f )(x)‖2 = ‖(A/I)(r(x))〈σ( f )(x), σ( f )(x)〉‖ = ‖ρr(x)(A(r(x))〈 f (x), f (x)〉)‖,

where ρr(x) : A(r(x)) → (A/I)(r(x)) ∼= A(r(x))/I(r(x)) is the quotient map.
(The latter equality holds due to Proposition 3.25 of [22].) If we let ρ : A → A/I
denote the quotient map, then ρ is easily seen to be C0(G(0))-linear. Thus ρ in-
duces a continuous C∗-bundle homomorphism ρ̂ : A → A/I ([12], Proposi-
tion 3.4.16) whose restriction to A(r(x)) is ρr(x). Thus the map

(4.5) x 7→ ‖σ( f )(x)‖2

is the composition of the continuous map G → A defined by

x 7→ A(r(x))〈 f (x), f (x)〉

with the continuous map A → A/I given by a 7→ ρ̂(a) and the upper semi-
continuous map a 7→ ‖a‖ from A/I to R. Thus (4.5) is upper semicontinuous
from G to R. It follows from Theorem 1.2 of [7] that we can equip E I,J with a
unique topology making it into an upper semicontinuous Banach bundle with
Γ ⊆ Γ0(G, E I,J).

Since Γ is a C0(G)-module, ([19], Lemma A.4) implies that Γ is dense in
Γ0(G, E I,J). We claim that Γ is actually dense in Γc(G, E I,J) with respect to the
inductive limit topology. To see why, let g ∈ Γc(G, E I,J) ⊆ Γ0(G, E I,J) and find a
net fi ∈ Γc(G, E) such that σ( fi)→ g uniformly. Let K = supp(g), and choose ϕ ∈
Cc(G)+ such that ϕ|K ≡ 1 and ϕ(x) < 1 for all x 6∈ K. Put gi = ϕ · σ( fi) = σ(ϕ ·
fi). Notice that ϕ · g = g, so we have gi → g uniformly. Moreover, supp(gi) ⊆
supp(ϕ) for all i, so gi → g in the inductive limit topology. Since gi ∈ Γ for
all i, it follows that Γ is dense in Γc(G, E I,J) with respect to the inductive limit
topology.

Before we can finish proving that qI,J : E I,J → G is a B I-D J-equivalence, we
need a quick lemma.

LEMMA 4.9. The bundle map σ̂ : E → E I,J is continuous.

Proof. The proof is nearly identical to the third paragraph of the proof of
Proposition 3.4 in [7]. Let e ∈ E and suppose ei → e. Put xi = q(ei) and x = q(e),
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and choose f ∈ Γc(G, E) with f (x) = e. Then f (xi) → e, so ‖ f (xi)− ei‖ → 0 by
Lemma C.18 of [30]. Note that

‖σ̂( f (xi))− σ̂(ei)‖ = ‖σ̂( f (xi)− ei)‖ 6 ‖ f (xi)− ei‖ → 0

and that σ̂( f (xi)) = σ( f )(xi). Since σ( f ) ∈ Γc(G, E I,J), we have σ( f )(xi) →
σ( f )(x) = σ̂(e). Therefore, it follows from Proposition C.20 of [30] that σ̂(ei) →
σ̂(e). Hence σ̂ is continuous.

PROPOSITION 4.10. The bundle qI,J : E I,J → G is a B I-D J-equivalence.

Proof. First we need to produce commuting actions of B I and D J on the left
and right, respectively, of E I,J . Let ρ̂B : B → B I and ρ̂D : D → D J denote the
bundle maps coming from the canonical fiberwise quotient maps. We define

ρ̂B(b) · σ̂(e) = σ̂(b · e)
for b ∈ B and e ∈ E with s(b) = r(e) and

σ̂(e) · ρ̂D(d) = σ̂(e · d)
for e ∈ E and d ∈ D with s(e) = r(d). These formulas will clearly define com-
muting actions once we know that they are well-defined. We will prove the left
B I-action is well-defined, and the proof for the right D J action is similar.

In order to keep the notation manageable throughout the remainder of the
proof, we will write [·] to denote the class of a bundle element in the appropriate
quotient bundle. That is, [b] = ρ̂B(b) for b ∈ B, [d] = ρ̂D(d) for d ∈ D, and
[e] = σ̂(e) for e ∈ E . Thus our actions look like

[b] · [e] = [b · e], (b, e) ∈ B ∗ E and [e] · [d] = [e · d], (e, d) ∈ E ∗ D.

Let b ∈ B and e ∈ E , set x = p(b) and y = q(e), and suppose s(x) = r(y). Let
b′ ∈ BI(x) and e′ ∈ EI,J(y). Then

[b + b′] · [e + e′] = [(b + b′) · (e + e′)] = [b · e + b · e′ + b′ · e + b′ · e′].
Observe that b · e′ ∈ B(x) · EI,J(y), where

B(x) · EI,J(y) = B(x) · E(y) · J(s(y)) = E(xy) · J(s(xy)) = EI,J(xy)

by Lemma 6.2 of [19]. Similar arguments show that BI(x) · E(y) = EI,J(xy) and
BI(x) · EI,J(y) = EI,J(xy), so b · e′, b′ · e, and b′ · e′ all belong to EI,J(xy). Therefore,

(b + b′) · (e + e′) ∈ b · e + EI,J(xy),

so
[(b + b′) · (e + e′)] = [b · e] = [b] · [e],

and the action is well-defined.
We also need to check that the actions are continuous. Again, we do it for

the B I-action, and the D J-action is similar. Suppose [bi]→ [b] in B I and [ei]→ [e]
in E I,J , where s(bi) = r(ei) for all i and s(b) = r(e). Put xi = s(bi), x = s(b),
yi = q(ei), and y = q(e). Choose sections f ∈ Γc(G,B) and g ∈ Γc(G, E) such
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that ρB( f )(x) = [ f (x)] = [b] and σ(g)(y) = [e], where ρB : Γc(G,B) → Γc(G,B I)
denotes the quotient map. Since f (xi)→ f (x) and g(yi)→ g(y), we have

ρB( f )(xi) · σ(g)(yi) = [ f (xi) · g(yi)]→ [ f (x) · g(y)] = [b] · [e]
by Lemma 4.9. Also,

‖ρB( f )(xi) · σ(g)(yi)− [bi] · [ei]‖
6 ‖[ f (xi)] · [g(yi)]− [bi] · [g(yi)]‖+ ‖[bi] · [g(yi)]− [bi] · [ei]‖
6 ‖[ f (xi)]− [bi]‖‖[g(yi)]‖+ ‖[g(yi)]− [ei]‖‖[bi]‖.

Since [ f (xi)] → [b] and [bi] → [b], we know that ‖[ f (xi)]− [bi]‖ → 0. Similarly,
‖[g(yi)]− [ei]‖ → 0. Moreover, ‖[g(yi)]‖ and ‖[bi]‖ are eventually bounded (they
converge and the norm is upper semicontinuous), so

‖ρB( f )(xi) · σ(g)(yi)− [bi] · [ei]‖ = ‖[ f (xi)] · [g(yi)]− [bi] · [ei]‖ → 0.

It follows from Proposition C.20 of [30] that [bi] · [ei] → [b] · [e]. Therefore, the
B I-action is continuous.

Now we need to define sesquilinear forms on E I,J . For e, f ∈ E with s(e) =
s( f ), we define

B I 〈[e], [ f ]〉 = [B〈e, f 〉].
Similarly, if r(e) = r( f ), we set

〈[e], [ f ]〉D J = [〈e, f 〉D ].
Again, we need to check that these forms are well-defined. Let e, f ∈ E with
r(e) = r( f ), and put x = q(e) and y = q( f ). If e′ ∈ EI,J(x) and f ′ ∈ EI,J(y), then

B〈e + e′, f + f ′〉 = B〈e, f 〉+ B〈e′, f 〉+ B〈e, f ′〉+ B〈e′, f ′〉.
Since EI,J(x) = I(r(x)) · E(x), we can write e′ = a · e′′ for some a ∈ I(r(x)) and
e′′ ∈ E(x). Thus

B〈e′, f 〉 = B〈a · e′′, f 〉 = aB〈e′′, f 〉 ∈ I(r(x)) · B(xy−1) = BI,J(xy−1).

Similarly, f ′ = b · f ′′ for some b ∈ I(r(y)) and f ′′ ∈ E(y), so

B〈e, f ′〉 = B〈e, b · f ′′〉 = b∗B〈e, f ′′〉 ∈ I(r(x)) · B(xy−1) = BI,J(xy−1).

Finally, B〈e′, f ′〉 ∈ BI,J(xy−1) since e′, f ′ ∈ EI,J , so

B〈e + e′, f + f ′〉 ∈ B〈e, f 〉+ BI,J(xy−1).

Thus [B〈e + e′, f + f ′〉] = [B〈e, f 〉] in B I , and the form is well-defined. The proof
for the D J-valued sesquilinear form is similar.

Now we show the forms are continuous. Suppose [ei] → [e] and [ fi] → [ f ]
in E I,J , where s(ei) = s( fi) for all i and s(e) = s( f ). Let xi = q(ei), x = q(e),
yi = q( fi), and y = q( f ), and choose sections ξ, η ∈ Γc(G, E) such that [ξ(x)] = [e]
and [η(y)] = f . Then ξ(xi)→ ξ(x) and η(yi)→ η(y), so

B〈ξ(xi), η(yi)〉 → B〈ξ(x), ξ(y)〉.
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Hence
[B〈ξ(xi), η(yi)〉]→ [B〈ξ(x), ξ(y)〉]

or equivalently,

B I 〈[ξ(xi)], [η(yi)]〉 → B I 〈[ξ(x)], [η(y)]〉 = B I 〈[e], [ f ]〉.
Moreover,

‖B I 〈[ξ(xi)], [η(yi)]〉 − B I 〈[ei], [ fi]〉‖
6 ‖B I 〈[ξ(xi)], [η(yi)]〉 − B I 〈[ξ(xi)], [ fi]〉‖+ ‖B I 〈[ξ(xi)], [ fi]〉 − B I 〈[ei], [ fi]〉‖
= ‖B I 〈[ξ(xi)], [η(yi)]− [ fi]〉‖+ ‖B I 〈[ξ(xi)]− [ei], [ fi]〉‖
6 ‖[ξ(xi)]‖‖[η(yi)]− [ fi]‖+ ‖[ξ(xi)]− [ei]‖‖[ fi]‖,

which tends to 0 by the same reasoning as that for the module actions. Therefore,

B I 〈[ei], [ fi]〉 → B I 〈[e], [ f ]〉 by Proposition C.20 of [30].
We also have some algebraic conditions to verify, which are fairly straight-

forward. First notice that if (e, f ) ∈ E ∗s E ,

B I 〈[e], [ f ]〉∗ = [B〈e, f 〉∗] = [B〈 f , e〉] = B I 〈[ f ], [e]〉.
Furthermore, if b ∈ B with s(b) = r(e), then

[b] · B I 〈[e], [ f ]〉 = [b · B〈e, f 〉] = [B〈b · e, f 〉] = B I 〈[b] · [e], [ f ]〉,
and similarly for the right D J-action. Also, if g ∈ E with r(g) = r( f ), then

B I 〈[e], [ f ]〉 · [g] = [B〈e, f 〉 · g] = [e · 〈 f , g〉D ] = [e] · 〈[e], [ f ]〉D J ,

as required.
Finally, we have already argued that EI,J(x) is an A(r(x))-C(s(x))-imprim-

itivity bimodule for all x ∈ G. Therefore, E I,J is a B I-D J-equivalence.

Since E I,J is a B I-D J-equivalence, we know that Γc(G, E I,J) completes to a
C∗r (G,B I)-C∗r (G,D J)-imprimitivity bimodule XI,J . We would like to know that
this module is compatible with the C∗r (G,B)-C∗r (G,D)-imprimitivity bimodule
X = Γc(G, E) in a certain sense. We claim that the continuous bundle map σ̂ :
E → EI,J induces a linear map σ : X→ XI,J , which is characterized by

σ( f )(x) = σ̂( f (x))

for f ∈ Γc(G, E). Moreover, σ respects the module actions on X and XI,J .

PROPOSITION 4.11. The map σ : Γc(G, E) → Γc(G, E I,J) defined above extends
to a surjective linear map σ : X→ XI,J . Moreover, for all x, y ∈ X, a ∈ C∗r (G,B I), and
b ∈ C∗r (G,D J), we have

σ(a · x) = ρB(a) · σ(x), σ(x · b) = σ(x) · ρD(b) and

ρB(∗〈x, y〉) = ∗〈σ(x), σ(y)〉, ρD(〈x, y〉∗) = 〈σ(x), σ(y)〉∗,

where ρB : C∗r (G,B) → C∗r (G,B I) and ρD : C∗r (G,D) → C∗r (G,D J) denote the
quotient maps.
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Proof. The topology on E I,J was defined in such a way to ensure that

Γ = {σ( f ) : f ∈ Γc(G, E)}

is contained in Γc(G, E I,J). Therefore, σ defines a map from Γc(G, E) to Γc(G, E I,J),
which is easily seen to be linear. If we let f ∈ Γc(G,B) and ξ ∈ Γc(G, E), then

σ( f · ξ)(x) = σ̂( f · ξ(x)) = σ̂
( ∫

G

f (y) · ξ(y−1x)dλr(x)(y)
)

=
∫
G

σx( f (y) · ξ(y−1x))dλr(x)(y)

=
∫
G

ρBy ( f (y)) · σy−1x(ξ(y
−1x))dλr(x)(y) = (ρB( f ) · σ(ξ))(x).

A similar computation shows that σ(ξ · g) = σ(ξ) · ρD(g) for all ξ ∈ Γc(G, E) and
g ∈ Γc(G,D). Now suppose ξ, η ∈ Γc(G, E). Then

ρB(∗〈ξ, η〉) = ρBx (∗〈ξ, η〉(x)) = ρBx

( ∫
G

B〈ξ(xy), η(y)〉dλs(x)(y)
)

=
∫
G

ρBx (B〈ξ(xy), η(y)〉)dλs(x)(y)

=
∫
G
B I 〈σxy(ξ(xy)), σy(η(y))〉dλs(x)(y) = ∗〈σ(ξ), σ(η)〉(x).

Similarly, ρD(〈ξ, η〉∗) = 〈σ(ξ), σ(η)〉∗ for all (ξ, η) ∈ E ∗r E . Using the latter fact,
it is fairly easy to show that σ is bounded:

‖σ( f )‖∗ = ‖〈σ( f ), σ( f )〉∗‖1/2 = ‖ρD(〈 f , f 〉∗)‖
1/2

6 ‖〈 f , f 〉∗‖1/2 = ‖ f ‖.

Thus σ extends to a module map σ : X→ XI,J .
All that remains is to see that σ is surjective. We already know that the range

of σ is dense in Γc(G, E I,J) with respect to the inductive limit topology, so we just
need to show that density in norm follows. Suppose ξi → ξ in Γc(G, E I,J) in the
inductive limit topology. Then arguments like those of Lemma 8.1(b) in [20] and
Lemma 5.5 in [13] show that 〈ξi − ξ, ξi − ξ〉∗ → 0 in Γc(G,D J) with respect to the
inductive limit topology. It is straightforward to show that 〈ξi − ξ, ξi − ξ〉∗ → 0
uniformly: observe that

‖〈ξi − ξ, ξi − ξ〉∗‖∞ = sup
x∈G
‖〈ξi − ξ, ξi − ξ〉∗(x)‖,

where

‖〈ξi − ξ, ξi − ξ〉∗(x)‖ =
∥∥∥ ∫

G

〈(ξi − ξ)(y−1), (ξi − ξ)(y−1x)〉∗ dλr(x)(y)
∥∥∥
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6
∫
G

‖〈(ξi − ξ)(y−1), (ξi − ξ)(y−1x)〉∗‖dλr(x)(y)

6
∫
G

‖(ξi − ξ)(y−1)‖‖(ξi − ξ)(y−1x)‖dλr(x)(y).

For sufficiently large i, the sets supp(ξi − ξ) are contained in a fixed compact set
K, so we eventually have

‖〈ξi − ξ, ξi − ξ〉∗(x)‖ 6 ‖ξi − ξ‖2
∞ · λr(x)(K).

Thus

‖〈ξi − ξ, ξi − ξ〉∗‖∞ 6 sup
x∈G
‖ξi − ξ‖2

∞ · λr(x)(K) = ‖ξi − ξ‖2
∞ · sup

u∈G(0)
λu(K).

Since K is compact, the supremum is finite. Thus ξi → ξ uniformly implies that
〈ξi − ξ, ξi − ξ〉∗ → 0 uniformly in Γc(G,D J). It remains to see that the functions
〈ξi − ξ, ξi − ξ〉∗ are eventually supported in a fixed compact set. Since ξi → ξ

in the inductive limit topology on Γc(G, E I,J), there is a compact set K0 ⊆ G that
eventually contains supp(ξi) and supp(ξ). Form the compact set K0 ∗r K0 ⊆ G ∗r
G, and let ϕ : G ∗r G → G be the map defined by ϕ(z, w) = z−1w. Notice that
K = ϕ(K0 ∗r K0) is compact. Furthermore,

〈ξi − ξ, ξi − ξ〉∗(x) =
∫
G

〈(ξi − ξ)(y−1), (ξi − ξ)(y−1x)〉∗ dλr(x)(y),

and the integrand is nonzero only when y−1, y−1x ∈ K0. Suppose y−1x = z ∈ K0,
or x = yz. Then x ∈ K. Therefore, 〈ξi − ξ, ξi − ξ〉∗(x) is zero whenever x 6∈ K,
and it follows that supp(〈ξi − ξ, ξi − ξ〉∗) is eventually contained in K. Thus
〈ξi − ξ, ξi − ξ〉∗ → 0 in the inductive limit topology. It is then straightforward to
see that

‖ξi − ξ‖2 = ‖〈ξi − ξ, ξi − ξ〉‖r 6 ‖〈ξi − ξ, ξi − ξ〉‖ → 0,

so ξi → ξ with respect to the norm on XI,J . Thus density with respect to the induc-
tive limit topology implies norm density, so the range of σ is dense in Γc(G, E I,J).
Thus σ : X→ XI,J is surjective.

With the last proposition in hand, we are almost ready to prove our main
result. There is one lemma regarding Morita equivalence that we need first, how-
ever. It is likely evident to experts, but we present a complete proof here. One
can think of it as a partial converse to Proposition 3.25 of [22].

LEMMA 4.12. Let A and B be C∗-algebras and suppose I ⊆ A and J ⊆ B are
ideals. Suppose further that X is an A-B-imprimitivity bimodule, Y is an A/I-B/J-
imprimitivity bimodule, and there is a surjective linear map q : X→ Y satisfying

q(a · x) = pA(a) · q(x), q(x · b) = q(x) · pB(b),

pA(A〈x, y〉) = A/I〈q(x), q(y)〉, pB(〈x, y〉B) = 〈q(x), q(y)〉B/J ,
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for all x, y ∈ X, a ∈ A, and b ∈ B, where pA : A → A/I and pB : B → B/J denote
the canonical quotient maps. Then I and J are paired under the Rieffel correspondence
associated to X.

Proof. Let π : B/J → B(H) be a faithful representation, and put π̃ = π ◦ pB.
Then π̃ is a representation of B on H with kernel J. Form the induced represen-
tation ρ = Y-Ind π of A/I on Y ⊗H, and note that ρ is faithful. Thus ρ̃ = ρ ◦ pA

is a representation of A on Y ⊗H with kernel I. It will therefore suffice to show
that ρ̃ is unitarily equivalent to X-Ind π̃, which acts on X⊗H.

Define U0 : X�H → Y�H on elementary tensors by U0(x⊗ h) = q(x)⊗ h.
Observe that

(U0(x⊗ h) |U0(y⊗ k))=(q(x)⊗ h | q(y)⊗ k) = (π(〈q(y), q(x)〉B/I)h | k)

=(π(pB(〈y, x〉B))h | k)=(π̃(〈y, x〉B)h | k)=(x⊗ h | y⊗ k),

where the last inner product is taken in X⊗ H. Thus U0 is isometric. It maps
X�H onto Y�H since q is surjective. Thus U0 extends to a unitary U : X⊗H →
Y⊗H.

We now claim that U intertwines ρ̃ and X-Ind π̃. If a ∈ A and x⊗ h ∈ X⊗H,
then

ρ̃(a)U(x⊗ h) = ρ̃(a)(q(x)⊗ h) = ρ(pA(a))(q(x)⊗ h) = pA(a) · q(x)⊗ h

= q(a · x)⊗ h = U(a · x⊗ h) = U · X- Ind π̃(a)(x⊗ h).

Thus ρ̃(a)U = U(X-Ind π̃(a)) for all a ∈ A. Consequently, ker(X-Ind π̃) =
ker ρ̃ = I. Since ker π̃ = J, we can conclude that I = X-Ind J.

THEOREM 4.13. Let pB : B → G and pD : D → G be Fell bundles over a
groupoid G, and let q : E → G be a B-D-equivalence over the trivial G-G-equivalence.
Suppose J ⊆ C = Γ0(G(0),D) is a G-invariant ideal, and let I be the corresponding ideal
in Γ0(G(0),B). Then the sequence

0→ C∗r (G,BI)→ C∗r (G,B)→ C∗r (G,B I)→ 0

is exact if and only if

0→ C∗r (G,DJ)→ C∗r (G,D)→ C∗r (G,D J)→ 0

is exact.

Proof. Let X denote the C∗r (G,B)-C∗r (G,D)-imprimitivity bimodule arising
from E . We have shown that there is a BI-DJ-equivalence qI,J : EI,J → G, and that
the resulting C∗r (G,BI)-C∗r (G,DJ)-imprimitivity bimodule XI,J embeds naturally
into X. Thus the Rieffel correspondence associated to X pairs the ideals C∗r (G,BI)
and C∗r (G,DJ). Likewise, we have a B I-D J-equivalence qI,J : E I,J → G, which
yields a C∗r (G,B I)-C∗r (G,D J)-imprimitivity bimodule XI,J . Furthermore, the map
σ : X → XI,J satisfies all the conditions of Lemma 4.12, so the kernels of the
quotient maps C∗r (G,B) → C∗r (G,B I) and C∗r (G,D) → C∗r (G,D J) are matched
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up by the Rieffel correspondence. Hence the sequence associated to B is exact if
and only if the sequence arising from D is.

The main application that we have had in mind all along is the following
theorem.

THEOREM 4.14. Let G be a second countable locally compact Hausdorff groupoid,
and let p : B → G be a Fell bundle over G. If G is exact, then given any invariant ideal
I ⊆ A = Γ0(G,B), the sequence

0→ C∗r (G,BI)→ C∗r (G,B)→ C∗r (G,B I)→ 0

is exact.

Proof. Let (K(V), G, α) be the groupoid dynamical system associated to B
under the stabilization theorem of [6]. Then the Fell bundle arising from the
dynamical system (K(V), G, α) is equivalent to B. Let J ⊆ K(V) be the ideal
corresponding to I. Then our main theorem tells us that

0→ C∗r (G,BI)→ C∗r (G,B)→ C∗r (G,B I)→ 0

is exact if and only if

0→ J oαJ ,r G → K(V)oα,r G → K(V)/J oαJ ,r G → 0

is exact. But the latter sequence is exact since G is an exact groupoid.

By specializing to ideals coming from open invariant subsets of G(0), we
have the following analogue of Lemma 9 in [26] as a special case of Theorem 4.14.

COROLLARY 4.15. Suppose G is an exact groupoid, and let p : B → G be a
separable Fell bundle over G. Suppose U ⊆ G(0) is open and invariant, and put F =

G(0)\U. Then the sequence

0→ C∗r (G|U ,B)→ C∗r (G,B)→ C∗r (G|F,B)→ 0

is exact.

Proof. Let A = Γ0(G(0),B) be the unit C∗-algebra of B. It is observed in [26]
that

I = {a ∈ A : a(u) = 0 for all u ∈ F}

is a G-invariant ideal of A. Moreover, the associated Fell bundle BI can be iden-
tified with B|G|U , and likewise for B I and B|G|F . Since G is exact, the result now
follows from Theorem 4.14.

We also obtain a reduced version of Corollary 10 in [26], which will be useful
in the next section.
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COROLLARY 4.16. Suppose G is an exact groupoid, and let p : B → G be a
separable Fell bundle over G. If the orbit space G\G(0) is Hausdorff, then C∗r (G,B) is a
C0(G\G(0))-algebra with fibers

C∗r (G,B)[u] = C∗r (G|[u],B)

for each u ∈ G(0).

Proof. Notice that C∗r (G,B) is a quotient of C∗(G,B), which is a C0(G\G(0))-
algebra by Corollary 10 of [26]. Hence C∗r (G,B) is itself a C0(G\G(0))-algebra by
Lemma 1.3 of [7].

Now let u ∈ G(0). Since G\G(0) is Hausdorff, the orbit [u] is closed, so U =

G(0)\[u] is open and invariant. The fiber C∗r (G,B)[u] is the quotient of C∗r (G,B)
by the ideal

J[u] = span{ϕ · a : ϕ ∈ C0(G\G(0)), ϕ([u]) = 0, and a ∈ C∗r (G,B)},

which we can identify with C∗r (G|U ,B). Since G is exact, we have C∗r (G,B)/J[u] =
C∗r (G|[u],B) by Corollary 4.15.

REMARK 4.17. Note that in order to use the stabilization theorem, it was
necessary only to work with equivalent Fell bundles over a common groupoid
G. It is likely that one can extend Theorem 4.13 to a result for equivalent Fell
bundles B → G and D → H over different groupoids (indeed, Theorem 3.3 of [14]
is a special case), though one likely needs to consider a more refined notion of
Morita equivalence. The proof we have given here breaks down at the very first
step in general, as illustrated by a fairly simple example.

Let G and H be groupoids, and suppose Z is a G-H-equivalence. Let B =
G×C and D = H×C denote the trivial line bundles over G and H, respectively.
Then C∗(G,B) = C∗(G) and C∗(H,D) = C∗(H), and likewise for the reduced
algebras. If we let E = Z× C, then E is a B-D-equivalence (see Example 5.10 of
[20], for example). However, notice that A = C0(G(0)) and C = C0(H(0)), which
are Morita equivalent if and only if G(0) and H(0) are homeomorphic. Thus the
unit C∗-algebras need not be Morita equivalent in general.

5. AN APPLICATION TO GROUPOID EXTENSIONS

As an application of our main result from the last section, we show that any
extension of an exact groupoid by an exact groupoid is again exact. Aside from
being interesting in its own right, this theorem provides a significant strengthen-
ing of the exactness results for twisted crossed products in Section 3. The proof
requires us to first adapt a recent construction involving iterated Fell bundle C∗-
algebras, due to Buss and Meyer, to the reduced setting. In this sense, our ar-
gument is in the same spirit as the original proof for groups by Kirchberg and
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Wassermann, which involved some delicate manipulation of iterated twisted re-
duced crossed products. It is worth noting that there are already some partial
results in this direction, namely Theorem 3.4 of [4] (for certain Fell bundles over
étale groupoids) and Theorem 3.8 of [15] (for dynamical systems associated to
transformation groupoids).

Suppose we have an extension of locally compact Hausdorff groupoids:

G(0) // S i // E
j
// G // G(0) .

Here we require that i is a homeomorphism onto a closed subgroupoid of E and
j is a continuous open surjection. It is implicit that S(0) = E(0) = G(0) and that
i(S) ⊆ Iso(E), so S is necessarily a group bundle. (Unlike the extensions in Sec-
tion 3, we do not assume the groups are abelian.) We also assume that S and G are
equipped with Haar systems {µu}u∈S(0) and {λu}u∈G(0) , respectively. It follows
from Theorem 5.1 of [3] that E can be endowed with a Haar system {νu}u∈E(0)

characterized by

(5.1)
∫
E

f (e)dνu(e) =
∫
G

∫
S

f (e′g)dµs(e′)(g)dλu(j(e′))

for f ∈ Cc(E), where e′ ∈ E is any element satisfying r(e′) = u. We will al-
ways assume that E is equipped with this Haar system. Note that (5.1) is a direct
generalization of the natural Haar system on a twist, as defined in [18].

Given a Fell bundle p : B → E, Buss and Meyer [3] showed how to de-
compose C∗(E,B) as an “iterated crossed product” by producing a Fell bundle
C over G with Γ0(G(0), C) = C∗(S,B|S) and C∗(G, C) ∼= C∗(E,B). This result
can be thought of as a far-reaching generalization of classical theorems (such as
Proposition 7.28 of [30]) for decomposing crossed products by groups into iter-
ated twisted crossed products. We first present an outline of this construction,
and then we show how it can be adapted (under certain circumstances) to re-
duced Fell bundle C∗-algebras. Notice first that C∗(S,B|S) is a C0(G(0))-algebra
with fibers

C∗(S,B|S)u = C∗(Su,B|u)

for all u ∈ G(0), by Corollary 10 of [26]. Thus we set Cu = C∗(Su,B|u) for each
u ∈ G(0). Next, for each x ∈ G the set Ex = j−1(x) is a Sr(x)-Ss(x)-equivalence,
and B|Ex implements an equivalence between the Fell bundles B|Sr(x)

and B|Ss(x)
.

Consequently Γc(Ex,B|Ex ) completes to a C∗(Sr(x),B|Sr(x)
)-C∗(Ss(x),B|Ss(x)

)-im-
primitivity bimodule, which we call Cx. Now given f ∈ Γc(Ex,B|Ex ) and g ∈
Γc(Ey,B|Ey) with (x, y) ∈ G(2), we define f ∗ g ∈ Γc(Exy,B|Exy) by

f ∗ g(e) =
∫
G

f (e′y)dλs(e′)(y)
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for any e′ ∈ E with j(e′) = x. Moreover, this multiplication map is bilinear and
extends to the completions Cx and Cy. We can also define an involution as follows:
given f ∈ Γc(Ex,B|Ex ), define f ∗ ∈ Γc(Ex−1 ,B|Ex−1 ) by

f ∗(e) = ( f (e−1))∗.

Again, this definition extends to the completion Cx. Finally, C can be equipped
with a topology that makes it into the total space of a Fell bundle over G. The
map ξ 7→ ξ̃ from Γc(E,B)→ Γc(G, C), where

ξ̃(x) = ξ|Ex ,

extends to an isomorphism of C∗(E,B) onto C∗(G, C) ([3], Theorem 6.2).
Now we set about producing a reduced version of the Buss–Meyer con-

struction. We will attempt to do so in a way that allows us to avoid rechecking
all the details in the reduced setting, and whose proofs are in the same spirit as
some of the others in this paper.

PROPOSITION 5.1. The reduced Fell bundle C∗-algebra C∗r (S,B|S) is a C0(G(0))-
algebra. Moreover, if S is exact then

C∗r (S,B|S)u = C∗r (Su,B|Su)

for all u ∈ G(0).

Proof. Since S is a group bundle, its orbit space is precisely S(0) = G(0). The
result now follows immediately from Corollaries 4.15 and 4.16.

Now let q : C → G be the Fell bundle over G with Γ0(G(0), C) = C∗(S,B|S)
and C∗(G, C) ∼= C∗(E,B), à la Buss and Meyer. We will build our reduced iterated
Fell bundle essentially by taking a quotient of this Fell bundle. To get us started,
let I denote the kernel of the natural quotient map C∗(S,B|S)→ C∗r (S,B|S). Then
I is a C0(G(0))-algebra, and it is not hard to see that I(u) is the kernel of the
quotient map C∗(Su,B)→ C∗r (Su,B) for each u ∈ G(0). Indeed, the quotient map
κ : C∗(S,B|S) → C∗r (S,B|S) is clearly C0(G(0))-linear, so it induces surjective
homomorphisms κu : C∗(Su,B)→ C∗r (Su,B) for each u ∈ G(0). The diagram

C∗(S,B|S)
κ //

��

C∗r (S,B|S)

��

C∗(Su,B) κu // C∗r (Su,B)

commutes, and it follows that Iu = ker κu.

PROPOSITION 5.2. If we view C∗(S,B|S) as the unit C∗-algebra of the Fell bundle
q : C → G, then I = ker κ is a G-invariant ideal.

Proof. Suppose P ∈ hull(I), and let x ∈ G. Recall that B|Ss(x)
and B|Sr(x)

are
equivalent via B|Ex , hence C∗r (Ss(x),B) and C∗r (Sr(x),B) are Morita equivalent.
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Then I(s(x)) and I(r(x)) are clearly matched under the Rieffel correspondence
hx as a consequence of the equivalence theorem for reduced C∗-algebras [27].
Hence P ⊇ I(s(x)) if and only if hx(P) ⊇ I(r(x)), so I is invariant.

Since I is a G-invariant ideal, there is a Fell bundle C I over G associated to
the quotient C∗r (S,B|S) = C∗(S,B|S)/I by Proposition 3.4 of [7]. In particular,
Γ0(G(0), C I) = C∗r (S,B|S). We aim to show that the isomorphism C∗(G, C) ∼=
C∗(E,B) of Buss and Meyer descends to an isomorphism C∗r (G, C I) ∼= C∗r (E,B).
In other words, we claim that the map Γc(E,B) → Γc(G, C I) given by ξ 7→ ξ̃,
where

ξ̃(x)(e) = ξ(e),

is isometric with respect to the reduced norms. We do so by carefully manipulat-
ing induced representations.

Begin with a faithful representation π of A = Γ0(G(0),B) on a Hilbert
spaceH. The associated induced representation IndS

S(0) π of C∗r (S,B|S) is faithful

and acts on the Hilbert space X = Γc(S,B|S)�H. Recalling that C∗r (S,B|S) =
Γ0(G, C I), we can now induce up to C∗r (G, C I) to obtain a faithful representa-
tion IndG

G(0)(IndS
S(0) π) on Γc(G, C I)� X. On the other hand, we can invoke The-

orem 2.4 of [8] and build a faithful representation of C∗r (E,B) using induction
in stages. That is, we form the representation IndE

S (IndS
S(0) π) of C∗r (E,B) on the

completion of Γc(E,B)� X. We claim that there is a unitary U : Γc(E,B)� X →
Γc(G, C I)� X that implements the desired isomorphism between C∗r (E,B) and
C∗r (G, C I).

PROPOSITION 5.3. The map

U0 : Γc(E,B)� Γc(S,B|S)�H → Γc(G, C I)� Γc(S,B|S)�H

given by
U0(ξ ⊗ σ⊗ h) = ξ̃ ⊗ σ⊗ h

extends to a unitary U : Γc(E,B)� X→ Γc(G, C I)� X, which spatially implements an
isomorphism between C∗r (E,B) and C∗r (G, C I).

Proof. Clearly U0 has dense range, so we just need to check that it preserves
inner products. In fact, it really only suffices to check that

(5.2) 〈〈ξ, ζ〉〉C∗r (S,B) = 〈〈ξ̃, ζ̃〉〉C∗r (S,B)

for all ξ, ζ ∈ Γc(E,B). To see why this condition is enough, observe that it implies

(U0(ξ ⊗ σ⊗ h) |U0(ζ ⊗ τ ⊗ k)) = (ξ̃ ⊗ σ⊗ h | ζ̃ ⊗ τ ⊗ k)

= (IndS
S(0) π(〈〈ζ̃, ξ̃〉〉)(σ⊗ h) | τ ⊗ k)

= (〈〈ζ̃, ξ̃〉〉 · σ⊗ h | τ ⊗ k)

= (IndS
S(0) π(〈〈ζ, ξ〉〉)(σ⊗ h) | τ ⊗ k)
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= (ξ ⊗ σ⊗ h | ζ ⊗ τ ⊗ k),

so U0 preserves inner products. Therefore, we will focus on proving (5.2).
Let ξ, ζ ∈ Γc(E,B). Then for all t ∈ S we have

〈〈ζ, ξ〉〉(t) =
∫
E

ζ(e)∗ξ(et)dνu(e) =
∫
E

ζ(e−1)∗ξ(e−1t)dνu(e)

=
∫
G

∫
S

ζ((et′)−1)∗ξ((et′)−1h)dµs(e)(t′)dλu(j(e))

=
∫
G

∫
S

ζ(t′−1e−1)∗ξ(t′−1e−1t)dµs(e)(t′)dλu(j(e)).

On the other hand,

〈〈ζ̃, ξ̃〉〉(u)(t) =
( ∫

G

ζ̃(x)∗ ξ̃(x)dλu(x)
)
(t) =

∫
G

(ζ̃(x)∗ ξ̃(x))(t)dλu(x),

where

(ζ̃(x)∗ ξ̃(x))(t) =
∫
S

ζ̃(x)∗(et′)ξ̃(x)((et′)−1t)dµs(e)(t′)

=
∫
S

ζ(t′−1e−1)∗ξ(t′−1e−1t)dµs(e)(t′).

Putting everything together, the result follows. It is fairly clear that U implements
the desired isomorphism, so C∗r (G, C I) ∼= C∗r (E,B).

Now we arrive at our intended application, showing that extensions of exact
groupoids are exact. Suppose

G(0) → S→ E→ G → G(0)

is an extension of groupoids, and let p : B → E be a Fell bundle. Put A =

Γ0(G(0),B), and let I ⊆ A be an E-invariant ideal. Then we have an associ-
ated Fell bundle BI over E, and C∗r (E,BI) and C∗r (S,BI |S) sit inside C∗r (E,B) and
C∗r (S,B|S), respectively, as ideals. We also have a Fell bundle q : D → G with
Γ0(G,D) = C∗r (S,B|S), and we claim that J = C∗r (S,BI |S) is a G-invariant ideal
of its unit C∗-algebra. Well, if x ∈ G and e ∈ Ex, then

he(I(s(x))) = I(r(x))

since I is invariant. Proposition 4.7 implies that if hx is the Rieffel correspondence
induced by Dx, then we have

hx(C∗r (Ss(x),BI)) = C∗r (Sr(x),BI),

or hx(J(s(x))) = J(r(x)). Thus J is a G-invariant ideal.
Now assume S is exact. Then the sequence

0→ C∗r (S,BI |S)→ C∗r (S,B)→ C∗r (S,B I |S)→ 0
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is exact. Since J = C∗r (S,BI |S) is a G-invariant ideal, we get a sequence

0→ C∗r (G,DJ)→ C∗r (G,D)→ C∗r (G,D J)→ 0,

which is exact provided G is exact. It is not hard to convince oneself that DJ and
D J are precisely the Buss–Meyer Fell bundles coming from BI and B I , respec-
tively, so we get a commuting diagram

0 // C∗r (E,BI) //

��

C∗r (E,B) //

��

C∗r (E,B I) //

��

0

0 // C∗r (G,DI) // C∗r (G,D) // C∗r (G,D J) // 0

where the vertical arrows are isomorphisms. Since the bottom row is exact when-
ever S and G are exact, it follows that the top row is also exact. Thus we have
proven the following result.

THEOREM 5.4. Suppose G(0) → S → E → G → G(0) is an extension of second
countable, locally compact Hausdorff groupoids. If S and G are exact, then so is E.

A groupoid G is said to be inner exact if for any open, invariant set U ⊆ G(0),
the sequence

0→ C∗r (G|U)→ C∗r (G)→ C∗r (G|F)→ 0

is exact, where F = G(0)\U. If we take B to be the trivial Fell line bundle over
E (so that C∗r (E,B) = C∗r (E)), then the same arguments as above can be used to
establish a result for inner exactness of groupoid extensions.

THEOREM 5.5. Suppose G(0) → S → E → G → G(0) is an extension of second
countable, locally compact Hausdorff groupoids. If S is inner exact and G is exact, then
E is inner exact.
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