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ABSTRACT. In this note we define two functors Ext and Extu which capture
unitary equivalence classes of extensions in a manner which is finer than KK1.

We prove that for every separable nuclear C∗-algebra A, and for every σ-
unital nonunital simple continuous scale C∗-algebra B, Ext(A,B) is an abelian
group. We have a similar result for Extu. We study some functorial proper-
ties of the covariant functor X 7→ Extu(C(X),B), where X ranges over the
category of compact metric spaces.
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1. INTRODUCTION

Motivated by the goal of classifying essentially normal operators using Fred-
holm indices, Brown, Douglas and Fillmore (BDF) classified all extensions of the
form

0→ K → E → C(X)→ 0

where X is a compact subset of the plane ([3]; see also [4]).
Perhaps one reason for the success of their theory is that the Calkin algebra

B(l2)/K has particularly nice structure. Among other things, B(l2)/K is a simple
purely infinite C∗-algebra, and, for example, the BDF–Voiculescu result ([1], [3],
[28]), which roughly says that every essential extension is absorbing, would not
be true if B(l2)/K were not simple.

In fact, comparison theory and structure theory for multiplier algebras and
corona algebras have dotted the landscape of this subject even from the very be-
ginning — though oftentimes these considerations were only present implicitly.
(See, for example, [1], [3], [4], [6], [11], [12], [16], [20], [26], [28].) For example, it
is by now clear, that for the classical theory of absorbing extensions, “niceness”
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of the extension theory corresponds to “niceness” of the corona algebra structure.
(E.g., see [7].)

Recall that a σ-unital simple C∗-algebra B is said to have continuous scale if
B has an approximate unit {en}∞

n=1 such that (i) en+1en = en for all n, and (ii) for
all b ∈ B+ − {0}, there exists N > 1 such that for all m > n > N,

em − en � b.

Lin proved that for every σ-unital simple C∗-algebra B, M(B)/B is simple if
and only ifM(B)/B is simple purely infinite if and only if either B ∼= K or B has
continuous scale. (See [14], [21].) The class of simple continuous scale C∗-algebras
is an ideal first context for a generalization of BDF theory, and such a theory was
first definitively constructed in [16] (see also [17] and [18]). We note that in this
context,M(B) can be too small to admit infinite repeats, and certain portions of
the classical theory of absorbing extensions are no longer available. Thus, one
needs to develop a type of nonstable absorption theory, where the fine structure
of the additional K-theory is taken into account. This is part of the interesting
new technical challenges which were first addressed in [16] and related papers.

In this paper, we continue the work of previous authors. Our first result
shows that Ext(A,B) is always an abelian group when A is separable nuclear
and B is simple continuous scale. We also have a result for the unital case. We
note that similar, but independent, results were proven in [23] for the case where
A is unital commutative butM(B)/B is purely infinite without the requirement
of simplicity. Moreover, the argument of [23] gives an explicit construction of
the neutral element, whereas the proof of the present paper only gives existence.
Functorial properties are then proven for the unital case whenA is commutative.
The proof techniques for the latter, which are similar in spirit to those in the orig-
inal BDF paper ([3]), extensively involve real rank zero, and seem to also to play
a role for classifying extensions in the setting of nonsimple purely infinite corona
algebras.

This paper is part of a series of papers. In [10], we characterize (not nec-
essarily simple) purely infinite corona algebras. I.e., under mild conditions on a
simple separable nonunital finite C∗-algebra B, we show that the following state-
ments are equivalent:

(i) B has quasicontinuous scale;
(ii)M(B) has strict comparison;

(iii)M(B)/B is purely infinite;
(iv)M(B)/Imin is purely infinite;
(v)M(B) has finitely many ideals;

(vi) Imin = Ifin;
(vii) V(M(B)) has finitely many order ideals.

Moreover, under the conditions of the previous paragraph, M(B)/B has
real rank zero ([25]).
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In a future paper, we will use the ideas from this paper to classify all exten-
sions of the form

0→ B → E → C(X)→ 0

where B is a nonunital simple real rank zero continuous scale C∗-algebra and X
is a compact subset of the plane. We note that extensions of the above form have
already been classified for the case where X is a finite CW complex but with no
restriction on the topological dimension ([24]).

2. WHEN Ext IS A GROUP

Good references for extension theory, continuous scale algebras and some
of the notation here used are [2], [6], [9], [14], [15], [16], [19], and [21]. Though
KK-theory is not explicitly used, it nonetheless is spiritually present, and we refer
the reader to the good references [2], [12] and [19].

We begin by fixing some notation. For a C∗-algebra A, we let A∼ denote
the unitization of A if A is nonunital, and A⊕C if A is unital. If A is unital then
U(A) denotes the unitary group of A and U0(A) the elements of U(A) that are
in the connected component of the identity. Proj(A) denotes the projections inA.
For a nonunital simple C∗-algebra B, we let T(B) be the collection of all (norm)
lower semicontinuous densely defined traces on B which are normalized on a
fixed nonzero element of Ped(B)+ (Ped(B) is the Pedersen ideal of B). For stably
finite B, we will always assume that all quasitraces are traces. We let Aff(T(B))
denote the affine continuous functions T(B) → R, and Aff(T(B))++ denote the
strictly positive elements of Aff(T(B)). M(B) and C(B) denote the multiplier
algebra and corona algebra of B, respectively. For A ∈ M(B)+, Â : T(A) →
[0, ∞] is the affine lower semicontinuous function given by Â(τ) =df τ(A) for all
τ ∈ T(B). We let χ : K0(B) → Aff(T(B)) denote the map induced by χ([p]) =df
p̂ for all p ∈ Proj(B ⊗K).

For a continuous map ρ : X → Y between compact Hausdorff topological
spaces, we let φρ : C(Y) → C(X) denote the corresponding ∗-homomorphism
(i.e., φρ( f ) =df f ◦ ρ for all f ∈ C(X)).

For A ∈ M(B)+, we let Her(A) =df AM(B)A and her(A) =df ABA, the
hereditary subalgebras ofM(B) and B, respectively, generated by A.

Recall that to each extension 0 → B → E → A → 0, we can associate a
∗-homomorphism φ : A → C(B) called the Busby invariant of the extension ([2],
15.2). Recall that φ determines the extension up to “strong isomorphism” (in the
terminology of Blackadar; [2], 15.4). Moreover, the extension is essential if and
only if φ is injective. Throughout this paper, we will be identifying an extension
with its Busby invariant.

Let φ, ψ : A → C(B) be two extensions. We say that φ and ψ are weakly
unitarily equivalent if there exists a unitary u ∈ C(B) such that φ(a) = uψ(a)u∗
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for all a ∈ A. We say that φ and ψ are unitarily equivalent or strongly unitarily
equivalent if there exists a unitary U ∈ M(B) such that φ(a) = π(U)ψ(a)π(U∗)
for all a ∈ A, where π : M(B) → C(B) is the standard quotient map. We write
φ ∼ ψ to mean that both φ and ψ are unitarily equivalent.

If A, C are C∗-algebras with C unital, then we say that a ∗-homomorphism
φ : A → C is nonunital if 1C /∈ Ran(φ).

PROPOSITION 2.1. Let A be a σ-unital C∗-algebra, and let B be a σ-unital sim-
ple continuous scale C∗-algebra. Suppose that φ, ψ : A → C(B) are two nonunital
∗-homomorphisms. If φ and ψ are weakly unitarily equivalent then they are unitarily
equivalent.

Proof. Firstly, we prove that there is a nonzero projection p ∈ C(B) such that
p ⊥ ψ(A).

Since A is σ-unital, let c be a strictly positive element of A. Since ψ is
nonunital, her(ψ(c)) =df ψ(c)C(B)ψ(c) is a proper hereditary C∗-subalgebra of
C(B). By Theorem 7.7 of [27] her(ψ(c))⊥⊥ = her(ψ(c)). Hence, her(ψ(c))⊥ 6=
0. Hence, since C(B) has real rank zero, there exists a nonzero projection p ∈
her(ψ(c))⊥.

Since φ and ψ are weakly unitarily equivalent, let u ∈ U(C(B)) be such
that φ(a) = uψ(a)u∗ for all a ∈ A. Hence, since C(B) is simple purely infinite,
there exists a v ∈ U(pC(B)p) such that u′ =df u(v + 1− p) is in the connected
component of 1 in U(C(B)). Clearly, φ(a) = u′ψ(a)(u′)∗ for all a ∈ A and u′ lifts
to a unitary in U(M(B)).

Under additional hypotheses, we will prove that Proposition 2.1 holds for
unital extensions.

LEMMA 2.2. LetA be a C∗-algebra with no one-dimensional hereditary C∗-subal-
gebras, and let B1,B2, . . . ,Bn be finitely many nonzero hereditary C∗-subalgebras of A.

Then for every ε > 0 and for every finite subset S ⊂ A, there exist norm one
positive elements bj ∈ Bj (1 6 j 6 n) such that

‖bjxbk‖ < ε

for all x ∈ S and for all j 6= k.

The proof follows from [5] and an induction argument.

LEMMA 2.3. Let D be a unital simple purely infinite C∗-algebra.
Then for every ε > 0, for every finitely many a1, a2, . . . , an ∈ D+ with norm one,

and for every finite subset S ⊂ D, there exist contractions r1, r2, . . . , rn ∈ D such that

‖rjajr∗j − 1‖ < ε and ‖rjxr∗k‖ < ε

for all j 6= k and for all x ∈ S.
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Proof. Let f : [0, 1]→ [0, 1] be the unique continuous function satisfying

f (t) =


0 t 6 1− ε/3,
1 t > 1− ε/6,
linear on [1− ε/3, 1− ε/6].

For all j, let Bj =df her( f (aj)). By Lemma 2.2, for all j, let bj ∈ (Bj)+ with
‖bj‖ = 1 be such that every element of bjSbk has norm less than ε for all j 6= k.

For all j, since 1− ε/3 6 ‖bjajbj‖ 6 1 and since D is simple purely infinite,
let xj ∈ D with ‖xj‖ = 1 be such that ‖xjbjajbjx∗j − 1‖ < ε.

For all j, let rj =df xjbj.

Versions of the next two results were proven in [23] for the case where A is
commutative, but C(B) can be a nonsimple purely infinite corona algebra.

THEOREM 2.4. Let B be a nonunital simple σ-unital continuous scale C∗-algebra,
A be a unital separable nuclear C∗-algebra, and φ : A → C(B) be a unital ∗-monomor-
phism.

Suppose that ψ : A → C(B) is a c.p.c. map. (“c.p.c.” abbreviates “completely
positive contractive”).

Then there exists a v ∈ C(B) such that

ψ(a) = v∗φ(a)v

for all a ∈ A.

Proof. The proof is exactly the same as that of Theorem 3.4 in [13] except that
in the argument of Lemma 3.3 in [13] we replace Propositions 2.10 (and 2.9) in [13]
with Lemma 2.3 in our paper. (This allows us to remove the “no one-dimensional
hereditary C∗-subalgebras” condition from the hypothesis.) We further note that,
in the arguments, separability of B can be replaced with σ-unitality.

Recall that for a unital C∗-algebra A, the “unitization” A∼ =df A⊕C. Sup-
pose that A, C are unital C∗-algebras and ψ : A → C is a unital map. By the
“unitization” map ψ̃ : A∼ → C, we mean the unique ∗-homomorphism such that
ψ̃|A = ψ and ψ̃(C) = 0. When ψ or A is not unital, we have the usual definitions
of “unitization”.

COROLLARY 2.5. Let B be a nonunital simple σ-unital continuous scale C∗-
algebra, A be a separable nuclear C∗-algebra, and φ : A → C(B) be a nonunital ∗-
monomorphism.

Suppose that ψ : A → C(B) is a ∗-homomorphism.
Then there exists an isometry v ∈ C(B) such that

ψ(a) = v∗φ(a)v

for all a ∈ A.
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Proof. Let φ̃, ψ̃ : A∼ → C(B) be the unitizations of φ and ψ, respectively.
By the argument of Proposition 2.1, there exists a nonzero projection orthogonal
to φ(A). Then φ̃ is also a ∗-monomorphism. The result then follows from Theo-
rem 2.4. We note that v is an isometry since φ̃ and ψ̃ are unital.

PROPOSITION 2.6. Let B be a nonunital simple σ-unital continuous scale C∗-
algebra, with [1C(B)] = 0 in K0(C(B)). Let A be a unital separable nuclear C∗-
algebra, φ : A → C(B) a unital ∗-monomorphism, and ψ : A → C(B) is a unital
∗-homomorphism.

Then there exists a ∗-homomorphism σ : A → C(B) and isometries S, T ∈ C(B)
with SS∗ + TT∗ = 1 such that

φ(a) = Sψ(a)S∗ + Tσ(a)T∗

for all a ∈ A. Moreover, we can choose σ to be injective.

Proof. Since [1]K0(C(B)) = 0, let X, Y ∈ C(B) be isometries such that XX∗ +
YY∗ = 1. Consider the unital ∗-homomorphism ρ : A → C(B) given by ρ(a) =df
Xφ(a)X∗ + Yψ(a)Y∗ for all a ∈ A.

By Theorem 2.4, let v ∈ C(B) be such that v∗φ(a)v = ρ(a) for all a ∈ A.
Since φ and ρ are unital, v is an isometry.

Now for all a ∈ A+, v∗φ(a)vv∗φ(a)v = ρ(a)2 = ρ(a2) = v∗φ(a)2v. So for all
a ∈ A+, vv∗φ(a)(1− vv∗)φ(a)vv∗ = 0. Hence, the projection vv∗ commutes with
every element of φ(A).

Hence, for all a ∈ A, φ(a) = φ(a)(1− vv∗) + vρ(a)v∗ = φ(a)(1− vv∗) +
vXφ(a)X∗v∗ + vYψ(a)Y∗v∗.

Let T ∈ C(B) be an isometry such that TT∗ = (1 − vv∗) + vXX∗v∗, let
σ(a) =df T∗(φ(a)(1− vv∗) + vXφ(a)X∗v∗)T for all a ∈ A, and let S =df vY.

PROPOSITION 2.7. Let B be a nonunital simple σ-unital continuous scale C∗-
algebra, A be a separable nuclear C∗-algebra, φ : A → C(B) a nonunital ∗-monomor-
phism, and ψ : A → C(B) a ∗-homomorphism.

Then there exists a ∗-homomorphism σ : A → C(B) and isometries S, T ∈ C(B)
with SS∗ + TT∗ 6 1 such that

φ(a) = Sψ(a)S∗ + Tσ(a)T∗

for all a ∈ A. Moreover, we can choose σ to be injective and nonunital.

Proof. The proof is a modification of the proof of Proposition 2.6. Let X, Y ∈
C(B) be isometries with XX∗ + YY∗ 6 1. Consider the nonunital ∗-homomor-
phism ρ : A → C(B) given by ρ(a) =df Xφ(a)X∗ + Yψ(a)Y∗ for all a ∈ A.

By Corollary 2.5, let v ∈ C(B) be an isometry such that v∗φ(a)v = ρ(a) for
all a ∈ A.

By the same argument as that of Proposition 2.6, the projection vv∗ com-
mutes with every element of φ(A).
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So as in the proof of Propositon 2.6, for all a ∈ A, φ(a) = φ(a)(1− vv∗) +
vXφ(a)X∗v∗ + vYψ(a)Y∗v∗.

By the argument of Proposition 2.1, there is a nonzero subprojection of
vXX∗v∗ which is orthogonal to vXφ(A)X∗v∗. Hence, there exists a projection
p ∈ C(B) with p ∼ 1, p ⊥ vYY∗v∗, and p is strictly bigger than some local unit
for φ(A)(1− vv∗) + vXφ(A)X∗v∗. Let T ∈ C(B) be an isometry with TT∗ = p,
let σ(a) =df T∗(φ(a)(1− vv∗)+ vXφ(a)X∗v∗)T for all a ∈ A, and let S =df vY.

DEFINITION 2.8. Let A be a separable C∗-algebra, and let B be a nonunital
σ-unital simple continuous scale C∗-algebra.

Let Ext(A,B) denote the collection of all unitary equivalence classes of non-
unital essential extensions φ : A → C(B).

If, in addition A is unital, let Extu(A,B) denote the collection of all unitary
equivalence classes of unital essential extensions φ : A → C(B).

To simplify notation, for a compact metric space X, we will often write
“Extu(X,B)” for Extu(C(X),B).

Let A be a separable C∗-algebra, and let B be a nonunital σ-unital continu-
ous scale C∗-algebra. Let S, T ∈ C(B) be isometries such that SS∗ + TT∗ 6 1, and
let φ, ψ : A → C(B) be nonunital essential extensions. We define

φ(a)⊕ ψ(a) =df Sφ(a)S∗ + Tψ(a)T∗

for all a ∈ A. This sum is well-defined up to weak unitary equivalence. Thus,
by Proposition 2.1, this sum is well-defined up to unitary equivalence. Thus we
have the following proposition.

PROPOSITION 2.9. LetA be a separable nuclear C∗-algebra, and letB be a nonuni-
tal σ-unital continuous scale C∗-algebra.

Then Ext(A,B) is an abelian semigroup.

THEOREM 2.10. LetA be a separable nuclear C∗-algebra, and let B be a nonunital
σ-unital continuous scale C∗-algebra.

Then Ext(A,B) is an abelian group.

Proof. Firstly, we prove the existence of a neutral element. Let x ∈ Ext(A,B).
By Proposition 2.7, there exists a y ∈ Ext(A,B) such that x = x + y.

We claim that y is the identity for Ext(A,B). Let x′ ∈ Ext(A,B) be arbitrary.
By Proposition 2.7, there exists x′′ ∈ Ext(A,B) such that x′ = x′′ + x. Hence

x′ + y = x′′ + x + y = x′′ + x = x′.

Since x′ was arbitrary, y is the identity for Ext(A,B).
Finally, let x′ ∈ Ext(A,B) again be arbitrary. By Proposition 2.7, there exists

x′′ ∈ Ext(A,B) such that y = x′ + x′′. Thus x′′ is the inverse for x′.
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PROPOSITION 2.11. Let A be a unital separable nuclear C∗-algebra such that A
has a one-dimensional ∗-representation. Let B be a nonunital σ-unital simple continuous
scale C∗-algebra with [1C(B)] = 0 in K0(C(B)).

Suppose that φ, ψ : A → C(B) are two unital ∗-monomorphisms.
If φ and ψ are weakly unitarily equivalent then they are unitarily equivalent.

Proof. Let u ∈ U(C(B)) be such that φ(a) = uψ(a)u∗ for all a ∈ A. Let
σ : A → C(B) be a unital ∗-homomorphism with one-dimensional range. By
Proposition 2.6, let ρ : A → C(B) be a unital ∗-homomorphism, and let S, T ∈
C(B) be isometries with SS∗ + TT∗ = 1 such that

ψ(a) = Sσ(a)S∗ + Tρ(a)T∗

for all a ∈ A.
Let p =df SS∗. Since C(B) is simple purely infinite, we can find a unitary

v ∈ U(pC(B)p) such that w =df u(v + (1− p)) is in the connected component of
the identity of U(C(B)).

Then for all a ∈ A, wψ(a)w∗ = uψ(a)u∗ = φ(a).

We can now define an addition on Extu in a manner similar to that on Ext.
LetA be a unital separable nuclear C∗-algebra such thatA has a one-dimensional
∗-representation. Let B be a nonunital σ-unital continuous scale C∗-algebra with
[1C(B)] = 0 in K0(C(B)). Let S, T ∈ C(B) be isometries such that SS∗ + TT∗ = 1,
and let φ, ψ : A → C(B) be unital essential extensions. We define

φ(a)⊕ ψ(a) =df Sφ(a)S∗ + Tψ(a)T∗

for all a ∈ A. This sum is well-defined up to weak unitary equivalence, and thus,
by Proposition 2.11, this sum is well-defined up to unitary equivalence. Thus, we
have the following proposition.

PROPOSITION 2.12. Let A be a unital separable nuclear C∗-algebra such that A
has a one-dimensional ∗-representation. Let B be a nonunital σ-unital continuous scale
C∗-algebra with [1C(B)] = 0 in K0(C(B)).

Then Extu(A,B) is an abelian semigroup.

THEOREM 2.13. Let A be a unital separable nuclear C∗-algebra such that A has
a one-dimensional ∗-representation. Let B be a nonunital σ-unital continuous scale C∗-
algebra with [1C(B)] = 0 in K0(C(B)).

Then Extu(A,B) is an abelian group.

The proof is exactly the same as that of Theorem 2.10, except that we replace
every occurrence of Proposition 2.7 with Proposition 2.6.

COROLLARY 2.14. Let X be a locally compact second countable topological space,
and let B be a nonunital σ-unital continuous scale C∗-algebra.

Then Ext(C0(X),B) is an abelian group.
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If, in addition, X is compact and [1]K0(C(B)) = 0, then Extu(C(X),B) is an abelian
group.

3. NULL EXTENSIONS

The notion of a null extension (defined in Theorem 3.1) is due to Lin (e.g.,
see [16]), with precursors in the original BDF work ([3]). Some of what follows, in
this and the next section, have the flavour of operator theory. (E.g., see Halmos’
proof of the Weyl–von Neumann–Berg theorem; Theorem 5.3 of [3] and [8].)

THEOREM 3.1. Let X be a compact metric space and let B be a nonunital σ-unital
simple continuous scale C∗-algebra such that [1C(B)] = 0 in K0(C(B)). Then there exists
a null unital essential extension φ : C(X) → C(B). I.e., there exists a unital essential
extension φ : C(X) → C(B) and a unital commutative AF-subalgebra C ⊂ C(B) such
that Ran(φ) ⊆ C and [p] = 0 in K0(C(B)) for every projection p ∈ C.

Proof. Since C(B) is simple purely infinite with [1]K0(C(B)) = 0, this follows
immediately from standard results. (E.g., C(X) can easily be unitally embedded
into a commutative unital AF-algebra, and any commutative unital AF-algebra
can easily be unitally embedded into O2.)

THEOREM 3.2. Let B be a nonunital simple σ-unital continuous scale C∗-algebra
with [1C(B)] = 0 in K0(C(B)). Let X be a compact metric space and let φ : C(X) →
C(B) be a unital essential extension. Then the following statements are equivalent:

(i) φ is null;
(ii) φ is self-absorbing, i.e., φ⊕ φ ∼ φ, i.e., [φ] + [φ] = [φ] in Extu(C(X),B).

Proof. The proof is contained in Theorem 3.5 of [23]. Since this paper is not
yet published, for the convenience of the reader, we here sketch the argument of
the proof.

(i)⇒ (ii) The argument for this direction of the proof was pointed out to us
by Professor Huaxin Lin.

Since φ is null, let C ⊆ C(B) be a commutative unital AF-subalgebra such
that φ(C(X)) ⊆ C and [p]K0(C(B)) = 0 for all p ∈ Proj(C).

Let {pi1,i2,...,in}16n<∞,16ij6mj be a collection of projections in C such that

(1) 1 =
m1
∑

j=1
pj,

(2) for all i1, . . . , in, pi1,...,in =
mn+1

∑
j=1

pi1,...,in ,j, and

(3) the linear span of {pi1,i2,...,in}16n<∞,16ij6mj is norm dense in C.
Let b ∈ B be a strictly positive element. Let S, T ∈ C(B) be isometries such

that SS∗ + TT∗ = 1. For all i1, . . . , in, let qi1,...,in =df Spi1,...,in S∗ + Tpi1,...,in T∗.
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For each i1, . . . , in, we construct contractive positive elements Ai1,..,in , A′i1,...,in ,
Bi1,...,in , B′i1,...,in ∈ M(B) and a unitary Un ∈ U(M(B)). The construction is by in-
duction on n.

Let {A1, . . . , Am1} and {A′1, . . . , A′m1
} be two collections of pairwise orthog-

onal contractive positive elements ofM(B) such that π(Aj) = π(A′j) = pj and
A′j Aj = Aj for all j. Let V1 ∈ U(C(B)) such that V1 pjV∗1 = qj. Moreover, since
C(B) is simple purely infinite, we can choose V1 to be path-connected to 1. Hence,
there exists U1 ∈ U(M(B)) for which π(U1) = V1. Let Bj =df U1 AjU∗1 and
B′j =df U1 A′jU

∗
1 , for all j.

Suppose that Un, Ai1,...,in , A′i1,...,in , Bi1,...,in and B′i1,...,in have been constructed
for 16 ij6mj. We now construct Un+1, Ai1,...,in+1 , A′i1,...,in+1

, Bi1,...,in+1 and B′i1,...,in+1
,

for 1 6 ij 6 mj.
For all i1, i2, . . . , in, let Ai1,...,in ,j and A′i1,...,in ,j, 1 6 j 6 mn+1, be two collection

of contractive, pairwise orthogonal, positive elements of Her(Ai1,...,in) such that
π(Ai1,...,in ,j) = π(A′i1,...,in ,j) = pi1,...,in ,j and A′i1,...,in ,j Ai1,...,in ,j = Ai1,...,in ,j for all j.
Let W =df Un · · ·U1. By the induction hypothesis, WAi1,...,in W∗ ∈ Her(Bi1,...,in),
WA′i1,...,in W∗ ∈ Her(B′i1,...,in), A′i1,...,in Ai1,...,in = Ai1,...,in , B′i1,...,in Bi1,...,in = Bi1,...,in ,
and

π(W)π(Ai1,...,in)π(W∗) = π(W)π(A′i1,...,in)π(W∗) = π(W)pi1,...,in π(W∗)

= π(Bi1,...,in) = π(B′i1,...,in) = qi1,...,in .

Hence, WA′i1,...,in ,jW
∗ ∈ Her(Bi1,...,in) for all j. (Recall that A′i1,...,in ,j ∈ Her(Ai1,...,in).)

For all i1, . . . , in, let Vi1,...,in ∈ U(qi1,...,inC(B)qi1,...,in) be such that

Vi1,...,in π(W)pi1,...,in ,jπ(W∗)V∗i1,...,in = qi1,...,in ,j

for all j. Since qi1,...,inC(B)qi1,...,in is simple purely infinite, we may choose Vi1,...,in
to be homotopic to qi1,...,in . Hence, since C(B) is simple purely infinite, there exist
self-adjoint elements Ci1,...,in , C′i1,...,in ∈ qi1,...,inC(B)qi1,...,in , with norm at most 2π,
such that Vi1,...,in = exp(iCi1,...,in)exp(iC′i1,...,in).

Let Di1,...,in , D′i1,...,in ∈ Her(Bi1,...,in) be self-adjoint elements, with norm at
most 2π, such that π(Di1,...,in) = Ci1,...,in and π(D′i1,...,in) = C′i1,...,in . Let Ui1,...,in ∈
U(Her(Bi1,...,in))

∼ be given by Ui1,...,in =df exp(iDi1,...,in)exp(iD′i1,...,in). For each
i1, . . . , in, by replacing Di1,...,in and D′i1,...,in with (1 − c)Di1,...,in(1 − c) and (1 −
c)D′i1,...,in(1− c), respectively, where c ∈ her(Bi1,...,in)+ is an appropriate element,
we may assume that ‖Ui1,...,in Wb−Wb‖ < 1/2n2m1+···+mn and ‖bUi1,...,in − b‖ <
1/2n2m1+···+mn .

Finally, define

Bi1,...,in ,j =df Ui1,...,in WAi1,...,in ,jW∗U∗i1,...,in and

B′i1,...,in ,j =df Ui1,...,in WA′i1,...,in ,jW
∗U∗i1,...,in
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for all j. (Note that π(Bi1,...,in ,j) = π(B′i1,...,in ,j) = qi1,...,in ,j for all j.)
Let Un+1 =df ∏

16ij6mj

Ui1,...,in .

Then the sequence of products {Un · · ·U1}∞
n=1 converges in the strict topol-

ogy to a unitary U ∈ M(B). Moreover, for all f ∈ C(X), Uφ( f )U∗ = Sφ( f )S∗ +
Tφ( f )T∗.

(ii) ⇒ (i) From the previous direction ((i) ⇒ (ii)) and from Theorem 3.1,
we have proven that unital null essential extensions exist and are self-absorbing.
Hence, it suffices to prove that any two unital self-absorbing essential extensions
are unitarily equivalent.

Let φ1, φ2 : C(X) → C(B) be two unital essential self-absorbing extensions.
By Theorem 2.13, let ψ : C(X) → C(B) be a unital extension such that φ1 ∼
ψ⊕ φ2. Hence, φ1 ⊕ φ2 ∼ ψ⊕ φ2 ⊕ φ2 ∼ ψ⊕ φ2 ∼ φ1.

By a similar argument, φ1 ⊕ φ2 ∼ φ2. Hence, φ1 ∼ φ2.

Let B be a σ-unital nonunital simple continuous scale C∗-algebra such that
[1C(B)] = 0 in K0(C(B)).

Let X, Y be compact metric spaces and let ρ : X→Y be a continuous map.
Then ρ induces a group homomorphism ρ∗ : Extu(X,B) → Extu(Y,B) in the
following manner: say that φ : C(X)→M(B)/B is a unital essential extension.
Then ρ∗([φ])=df [(φ ◦φρ)⊕ψ] where ψ : C(Y)→M(B)/B is a null unital essential
extension. It is straightforward to check that the map ρ∗ is a well-defined group
homomorphism. (Recall that we often denote Extu(C(X),B) by Extu(X,B) etc.)

PROPOSITION 3.3. Extu(·,B) is a covariant functor from the category of compact
metrizable spaces to the category of abelian groups.

4. FUNCTORIAL PROPERTIES

In this section, we follow closely the ideas of [3] and [16].

LEMMA 4.1. Let B be a nonunital σ-unital simple real rank zero continuous scale
stably finite C∗-algebra. Suppose that {Pn} is a sequence of nonzero pairwise orthogonal
projections inM(B) such that ∑ Pn converges strictly inM(B).

Then there exists a sequence {P′n} of nonzero pairwise orthogonal projections in
M(B) such that:

(i) P′n 6 Pn for all n;
(ii) Pn − P′n ∈ B for all n; and

(iii) for all L, M > 1, there exists N > 1 such that Mτ(Pn) < τ(Pl − P′l ) for all
n > N, for all l 6 L and for all τ ∈ T(B).

Proof. This follows immediately from the facts that B has real rank zero, and
that since B has continuous scale, for all A ∈ M(B)+, Â is a continuous function
on T(B).
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LEMMA 4.2. Let B be a nonunital σ-unital simple real rank zero continuous scale
C∗-algebra with strict comparison.

If p ∈ Proj(C(B)) and [p]K0(B) = 0 then there exists a P ∈ Proj(M(B)) with
P̂ ∈ χ(K0(B)) such that π(P) = p.

Proof. Suppose that p is a nonzero proper subprojection of 1C(B). Let R ∈
Proj(M(B))−{0} be such that 1−R /∈B and R̂∈χ(K0(B)+). Then [π(R)]K0(C(B))
= 0 and there exists a unitary u ∈ U0(C(B)) such that uπ(R)u∗ = p. Let U ∈
U(M(B)) be such that π(U) = u. Then π(URU∗) = p.

LEMMA 4.3. Let B be a nonunital σ-unital simple real rank zero continuous scale
C∗-algebra with strict comparison. If {pn} is a sequence of nonzero pairwise orthogonal
projections in C(B) such that [pn]K0(C(B)) = 0 for all n, then there exists a sequence {Pn}
of pairwise orthogonal projections inM(B) with P̂n ∈ χ(K0(B)) such that π(Pn) = pn
for all n and ∑ Pn converges strictly to 1M(B)).

Proof. The proof is a variation on Lemma 1.1 of [18]. Let b ∈ B be a strictly
positive element. Suppose, for induction, that pairwise orthogonal P1, P2, . . . , Pn

have already been constructed. Let P =df
n
∑

j=1
Pj. Then (1− P)B(1− P) has con-

tinuous scale and [pn+1]K0(C((1−P)B(1−P))) = 0. So by Lemma 4.2, we can find
Pn+1 ∈ (1− P)M(B)(1− P) such that π(Pn+1) = pn+1. Since B has real rank
zero, by adding a projection in (1− Pn+1− P)B(1− Pn+1− P) to Pn+1 if necessary,
we may assume that

‖(Pn+1 + P)b− b‖ < 1
n + 1

.

The next lemma is an example of how real rank zero had a persistent (though
implicit) presence in the BDF arguments.

LEMMA 4.4. Let B be a nonunital σ-unital simple real rank zero continuous scale
C∗-algebra with strict comparison and cancellation. Let X be a compact metric space
and F ⊆ X a closed subset such that X is the disjoint union of F and clopen subsets
X1, X2, . . ..

Let φ : C(X) → C(B) be a ∗-homomorphism for which [φ(χn)]K0(C(B)) = 0 for
all n. (Here, χn =df χXn , the characteristic function of Xn, ∀n.)

Then there exists a sequence {Pn}∞
n=0 of pairwise orthogonal projections inM(B)

with
∞
∑

n=0
Pn converging strictly to 1 inM(B) such that π(Pn) = φ(χn) for all n and

for all g ∈ C(F),

φ(g ◦ r) = P0φ(g ◦ r)P0 + π
( ∞

∑
n=1

g(xn)Pn

)
where r : X� F is a retraction which brings each Xn to a nearest point xn ∈ F.



FUNCTORIAL PROPERTIES OF Extu(·,B) WHEN B IS SIMPLE WITH CONTINUOUS SCALE 493

Moreover, we can find a unital commutative AF-subalgebra C ⊂ (1− P0)C(B)(1−
P0) for which [p] = 0 in K0(C(B)) for all p ∈ Proj(C) and

φ(C0(X− F)) ∪
{

π
(

∑
n>1

g(xn)Pn

)
: g ∈ C(F)

}
⊆ C.

Proof. Let {gl}∞
l=1 be a dense sequence in the closed unit ball of C(F)+. Let

{g̃l}∞
l=1 be elements of the closed unit ball ofM(B)+ such that π(g̃l) = φ(gl ◦ r)

for all l.
Step 1. We will first construct a sequence {Qn} in Proj(M(B)) which sat-

isfies all the conditions except the statement about C. Moreover, we will addi-
tionally have that ‖Qn g̃l − gl(xn)Qn‖ < 1/10n and Qn g̃l − gl(xn)Qn ∈ B, for all
l 6 n.

By Lemma 4.3, let {Qn} be a sequence of pairwise orthogonal projections
in M(B) with Q̂n ∈ χ(K0(B)) such that π(Qn) = φ(χn) for all n and ∑ Qn
converges strictly. Note that for all n, l, φ((gl ◦ r)χn) = gl(xn)π(Qn). Hence,
since B has real rank zero, replacing each Qn by a subprojection (which differs by
a projection in B) if necessary, we may assume that ‖Qn g̃l − gl(xn)Qn‖ < 1/10n

and Qn g̃l − gl(xn)Qn ∈ B, for all l 6 n. Let Q0 =df 1−∑ Qn. Hence, for all l,

g̃l = g̃lQ0 + ∑ g̃lQn = g̃lQ0 + ∑ g(xn)Qn (mod B).

So for all l,

φ(gl ◦ r) = φ(gl ◦ r)π(Q0) + π
(

∑ g(xn)Qn

)
.

This completes Step 1.
Apply Lemma 4.1 to {Qn}∞

n=1 to get a sequence of subprojections {Q′n,1}∞
n=1.

Now let {Fl1,l2,...,lk}16lj6mj ,16j6k,16k<∞ be a collection of subsets of F such
that the following are true:

(i) Fl ∩ Fl′ = ∅ for all l 6= l′;
(ii) for all l1, . . . , lk−1, for all l 6= l′, Fl1,...,lk−1,l ∩ Fl1,...,lk−1,l′ = ∅;

(iii) F =
m1⋃
l=1

Fl ;

(iv) for all l1, . . . , lk−1; Fl1,...,lk−1
=

mk⋃
l=1

Fl1,...,lk−1,l ;

(v) for all l1, . . . , lk−1, for all 1 6 l 6 mk, diam(Fl1,...,lk−1,l) < 1/10k.
For all l1, . . . , lk, let Sl1,...,lk =df {n ∈ Z+ : xn ∈ Fl1,...,lk}.
For all k, we will now construct a sequence {Q′n,k}

∞
n=1 in Proj(M(B)) such

that:
(1) Q′n,k 6 Qn for all n, k;
(2) Qn −Q′n,k ∈ B for all n, k;
(3) Q′n,k = Q′n,l for all k, l > n; and

(4) for all j > k, for all l1, . . . , lk, ∑
n∈Sl1,...,lk

Q̂′n,j = ∑
n∈Sl1,...,lk

Q̂′n,k ∈ χ(K0(B)+).
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The construction is by induction on k.
Say that {Q′n,k}

∞
n=1 has been constructed. Let {

−→
l1 , . . . ,

−→
lL } = {(l1, . . . , lk) :

1 6 lj 6 mj, 1 6 j 6 k}.
Fix 1 6 j 6 L.
If for all 1 6 l 6 mk+1,

∑
n∈S

(
−→
lj ,l)

Q̂′n,k ∈ χ(K0(B)+)

then define, for all n ∈ S
(
−→
lj ,l)

and for all 1 6 l 6 mk+1,

Q′n,k+1 =df Q′n,k.

Suppose that there exists 1 6 l 6 mk+1 such that

∑
n∈S

(
−→
lj ,l)

Q̂′n,k /∈ χ(K0(B)+).

For simplicity, let us assume that for all 1 6 l 6 mk+1, S
(
−→
lj ,l)

is infinite. (The

proofs for the other cases are similar.)
For all 1 6 l 6 mk+1, let {n(l,s)}∞

s=1 be a subsequence of Z+ such that the
following are true:

(a) n(l,1) > 10k;
(b) n(l,s) ∈ S

(
−→
lj ,l)

for all s;

(c) if l 6 mk+1 − 1 then for all s, for all τ ∈ T(B), 10k+1τ(Q′n(l+1,s),k
) 6

τ(Qn(l,s) −Q′n(l,s),k
).

By an inductive construction, for 2 6 l 6 mk+1, there exists a sequence
{p′(l,s)}

∞
s=1 in Proj(B), and for 1 6 l 6 mk+1− 1, there exists a sequence {p(l,s)}∞

s=1
in Proj(B) such that the following are true:

(i) for all l, s,
⊕10k+1

p(l,s) 6 Qn(l,s) −Q′n(l,s),k
and

⊕10k+1
p′(l,s) 6 Q′n(l,s),k

;

(ii) for all 1 6 l 6 mk+1 − 1, p(l,s) ∼ p′(l+1,s);

(iii)
∞
∑

s=1
(Q′n(mk+1,s),k

− p′(mk+1,s) )̂ + ∑
n∈S−→

lj ,mk+1
,n 6=n(mk+1,s)∀s

Q̂′n,k ∈ χ(K0(B)+);

(iv)
∞
∑

s=1
(Q′n(1,s),k ⊕ p(1,s) )̂ + ∑

n∈S−→
lj ,1

,n 6=n(1,s)∀s
Q̂′n,k ∈ χ(K0(B)+);

(v) for all 2 6 l 6 mk+1− 1,
∞
∑

s=1
((Q′n(l,s),k− p′(l,s))⊕ p(l,s) )̂ + ∑

n∈S−→
lj ,l

,n 6=n(l,s)∀s
Q̂′n,k

∈ χ(K0(B)+).
For all s, define

Q′n(mk+1,s),k+1 =df Q′n(mk+1,s),k − p′mk+1,s, Q′n(1,s),k+1 =df Q′n(1,s),k ⊕ p1,s,
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and for all 2 6 l 6 mk+1 − 1,

Q′n(l,s),k+1 =df (Q′n(l,s),k − p′(l,s))⊕ p(l,s).

Finally, for all 1 6 l 6 mk+1, for all n ∈ S−→
lj ,l

, if

n 6= n(l, s)

for all s, then define
Q′n,k+1 =df Q′n,k.

This completes the inductive construction.
For all n, let

Pn =df Q′n,k

for all k > n. It follows that
(i.) for all l1, . . . , lk, ∑

n∈S(l1,...,lk)

P̂n ∈ χ(K0(B)+);

(ii.) Pn 6 Qn and Qn − Pn ∈ B for all n; and
(iii.) ‖Pn g̃l − gl(xn)Pn‖ < 1/10n for all n and for all l 6 n, and Pn g̃l − gl(xn)Pn ∈
B for all n and for all l, n.

As a consequence, for all l,

π
( ∞

∑
n=1

Pn

)
φ(gl ◦ r) = π

( ∞

∑
n=1

gl(xn)Pn

)
.

Let P0 =df 1−
∞
∑

n=1
Pn. Then for all g ∈ C(F),

φ(g ◦ r) = π(P0)φ(g ◦ r) + π
( ∞

∑
n=1

g(xn)Pn

)
.

For all l1, . . . , lk, let PS(l1,...,lk) =df ∑
n∈S(l1,...,lk)

Pn. Then PS(l1,...,lk) ∈ Proj(M(B))

and P̂S(l1,...,lk) ∈ χ(K0(B)+).
For all k, let C̃k be given by C̃k =df

⊕
16lj6mj ,16j6k

CPS(l1,...,lk).

Then Ck =df π(C̃k) is a finite dimensional C∗-subalgebra of C(B) and
[p]K0(C(B)) = 0 for all p ∈ Proj(Ck).

Note that for all k, we have a unital inclusion Ck ⊆ Ck+1. Then

C =df C∗
(

φ
(

C0(X− F) ∪
⋃
k

Ck

))
is a unital commutative AF C∗-subalgebra of C(B) for which [p]K0(C(B)) = 0 for
all p ∈ Proj(C), and moreover,

φ(C0(X− F)) ∪
{

π
( ∞

∑
n=1

g(xn)Pn

)
: g ∈ C(F)

}
⊆ C.
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We note that there is a slight gap in the proof of Theorem 5.2 in [16] (half
exactness of the functor). In particular, in Lemma 5.1 of [16] one cannot conclude
(from the argument of 3.2 in [16]) that the extension τX is null (in the notation
of Lemma 5.2 in [16]). This is remedied by our Lemma 4.4 (in particular, the last
paragraph in the statement of our Lemma 4.4).

THEOREM 4.5. Let X be a compact metric space and F ⊆ X a closed subset. Let
B be a nonunital simple σ-unital real rank zero continuous scale C∗-algebra with strict
comparison and cancellation such that [1C(B)]K0(C(B)) = 0.

Then

Extu(F,B)→ Extu(X,B)→ Extu(X/F,B)

is exact.

Proof. The proof is exactly the same as Theorem 5.2 of [16], except that we
replace Lemma 5.1 of [16] with Lemma 4.4 in our paper. Also, we use the ex-
istence and characterization of null extension from Theorems 3.1 and 3.2 in our
paper.

THEOREM 4.6. Let B be a nonunital σ-unital simple real rank zero continuous
scale C∗-algebra with strict comparison and cancellation such that [1C(B)]K0(C(B)) = 0.
For all n, let ρn : Xn+1 → Xn be a continuous map between compact metrizable spaces.
Suppose that X is a compact metrizable space which can be expressed as an inverse limit

X = lim
←

(Xn, ρn).

Then the map Φ : Extu(X,B)→ lim
←

Extu(Xn,B) is surjective.

Proof. The proof is exactly the same as that of Theorem 5.3 in [16] (which, in
turn, is essentially the same as Theorem 8.4 of [3]). The main (minor) differences
is that we replace Theorem 5.2 of [16] with Theorem 4.5 in our paper, and we use
the existence and characterization of null extensions from Theorems 3.1 and 3.2
in our paper.

COROLLARY 4.7. Assume the same hypotheses and notation as Theorem 4.6. As-
sume, in addition, that each ρn : Xn+1 → Xn is surjective and each Xn has only finitely
many points.

Then Φ is an isomorphism.

The (short) proof is exactly the same as that of Corollary 5.4 in [16].
Following the argument of [16], we have that the above results imply that

Extu(·,B) is homotopy invariant.

THEOREM 4.8. Let B be a nonunital σ-unital simple real rank zero continuous
scale C∗-algebra with strict comparison and cancellation such that [1C(B)]K0(C(B)) = 0.

Then Extu(·,B) is homotopy-invariant.
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The proof follows from the beginning of Section 2 of [4] and Theorem 4.5,
Theorem 4.6 and Corollary 4.7 in our paper.
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