Previous issue ·  Next issue ·  Most recent issue in the archive · All issues in the archive   

Journal of Operator Theory

Volume 83, Issue 1, Winter 2020  pp. 197-228.

A few observations on Weaver's quantum relations

Authors: Adrián M. González-Pérez
Author institution:LBBP, Univ. of Clermont Auvergne,
3 place Vasarely Aubière Cedex, 63178, France


Summary: Recently, a notion of quantum relation over a von Neumann algebra $\mathcal{M}$ has been introduced by Weaver. That definition generalizes the concept of a relation over a set. We prove that quantum relations over $\mathcal{M}$ are in bijective correspondence with weakly closed left ideals in $\mathcal{M} \otimes_\mathrm{e h} \mathcal{M}$, where $\otimes_\mathrm{e h}$ represents the extended Haagerup tensor product. The key step of the proof is showing a double annihilator relation between operator bimodules and the bimodular maps annihilating them. As an application, we study invariant quantum relations over a group von Neumann algebra.

DOI: http://dx.doi.org/10.7900/jot.2018sep20.2249
Keywords: operator spaces, von Neumann algebras, bimodules, tensor products, noncommutative geometry


Contents    Full-Text PDF