Previous issue ·  Next issue ·  Most recent issue in the archive · All issues in the archive   

Journal of Operator Theory

Volume 86, Issue 1, Summer 2021  pp. 3-15.

A rigidity result for normalized subfactors

Authors:  Vadim Alekseev (1), Rahel Brugger (2)
Author institution: (1) Institut fuer Geometrie, Technische Universitaet Dresden, 01062 Dresden, Germany
(2) Institut fuer Geometrie, Technische Universitaet Dresden, 01062 Dresden, Germany


Summary: We show a rigidity result for subfactors that are normalized by a representation of a lattice $\Gamma$ in a higher rank simple Lie group with trivial center into a finite factor. This implies that every subfactor of $L\Gamma$ which is normalized by the natural copy of $\Gamma$ is trivial or of finite index.

DOI: http://dx.doi.org/10.7900/jot.2019dec19.2300
Keywords: von Neumann algebras, subfactors, rigidity


Contents    Full-Text PDF