Previous issue ·  Next issue ·  Most recent issue in the archive · All issues in the archive   

Journal of Operator Theory

Volume 86, Issue 2, Fall 2021  pp. 425-438.

Beurling type invariant subspaces of composition operators

Authors: Snehasish Bose (1), P. Muthukumar (2), Jaydeb Sarkar (3)
Author institution:(1) Indian Statistical Institute, Statistics and Mathematics Unit, 8th Mile, Mysore Road, Bangalore, 560059, India
(2) Indian Statistical Institute, Statistics and Mathematics Unit, 8th Mile, Mysore Road, Bangalore, 560059, India
(3) Indian Statistical Institute, Statistics and Mathematics Unit, 8th Mile, Mysore Road, Bangalore, 560059, India


Summary: The aim of this paper is to answer the following question concerning invariant subspaces of composition operators: characterize $\varphi$, holomorphic self maps of $\mathbb{D}$, and inner functions $\theta \in H^\infty(\mathbb{D})$ such that the Beurling type invariant subspace $\theta H^2$ is an invariant subspace for $C_{\varphi}$. We prove the following result: $C_{\varphi} (\theta H^2) \subseteq \theta H^2$ if and only if \[ \frac{\theta \circ \varphi}{\theta} \in \mathcal{S}(\mathbb{D}). \] This classification also allows us to recover or improve some known results on Beurling type invariant subspaces of composition operators.

DOI: http://dx.doi.org/10.7900/jot.2020may15.2286
Keywords: composition operators, invariant subspaces, inner functions, Blaschke products, Schur functions, singular inner functions, Hardy space


Contents    Full-Text PDF