Loading [MathJax]/jax/output/CommonHTML/fonts/TeX/fontdata.js
Previous issue ·  Next issue ·  Most recent issue in the archive · All issues in the archive   

Journal of Operator Theory

Volume 90, Issue 1, Summer 2023  pp. 209-221.

An abstract approach to the Crouzeix conjecture

Authors:  Raphael Clouatre, Maleva Ostermann 2, and Thomas Ransford 3
Author institution: 1 Department of Mathematics, University of Manitoba, Winnipeg Manitoba, R3T 2N2, Canada
2 Departement de mathematiques et de statistique, Universite Laval, Quebec City Quebec, G1V 0A6, Canada
3 Departement de mathematiques et de statistique, Universite Laval, Quebec City Quebec, G1V 0A6, Canada


Summary:  Let A be a uniform algebra, θ:AMn(C) be a continuous homomorphism and α:AA be an antilinear contraction such that We show that \|\theta\|\leqslant 1+\sqrt{2}, and that 1+\sqrt2 is sharp. We conjecture that, if further \alpha(1)=1, then we may conclude that \|\theta\|\leqslant 2. This would yield a positive solution to the Crouzeix conjecture on numerical ranges. In support of our conjecture, we prove that it is true in two special cases. We also discuss a completely bounded version of our conjecture that brings into play ideas from dilation theory.

DOI: http://dx.doi.org/10.7900/jot.2021nov15.2364
Keywords:  Crouzeix conjecture, uniform algebra, homomorphism, completely bounded map.


Contents    Full-Text PDF