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ABSTRACT. We introduce a notion of smooth fields of operators following the
notion of smooth fields of Hilbert spaces defined by L. Lempert and R. Szőke.
We show that, if ∇ is the connection of a smooth field of Hilbert spaces, then
∇̂ = [∇, ·] defines a connection on a suitable space of fields of operators. We
prove a smooth version of the reduction theorem and we apply it to show
that, if h(q, p) = ∥p∥2 and {u, h} = 0 then Weyl quantization maps u into
an operator admitting a decomposition as a smooth field of operators over
the interval (0, ∞). Moreover, we prove an explicit formula to compute the
derivatives of those fields of operators. We also introduce a notion of smooth
field of C∗-algebras and we provide an explicit example.
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1. INTRODUCTION

Let p : H → Λ be a field of Hilbert spaces, i.e. p is a surjective map such
that H(λ) := p−1(λ) is a Hilbert space, and denote by ⟨·, ·⟩λ the corresponding
inner product. We denote by Γ the set of all sections of such field. For any pair of
sections φ, ψ ∈ Γ, we set the function

h(φ, ψ)(λ) = ⟨φ(λ), ψ(λ)⟩λ.

In order to obtain an interesting mathematical object, we should add further
assumptions on a given field of Hilbert spaces. For instance, the notions of mea-
surable and continuous field of Hilbert spaces were introduced by von Neumann
[15] and Godement [8], respectively (see the Appendix A for details), and they
were successfully studied and applied since then. However, a natural notion of
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smooth field of Hilbert spaces was introduced only few years ago [12]. In this arti-
cle, we are going to introduce a notion of smooth field of operators following [12],
and we will provide an interesting family of examples. Let us explain briefly how
we construct our examples. Recall that fields of operators appear naturally in op-
erator theory: given a fix self-adjoint operator H (regarded as a quantum Hamil-
tonian), every self-adjoint operator commuting with H (i.e. a quantum constant
of motion) admits a suitable decomposition as a (measurable) field of operators
over the spectrum of H (measurable reduction theory). We are going to show a
smooth version of the previous reduction theorem, and we are going to apply it
to show that, under rather mild conditions, (Weyl) canonical quantization maps
classical constant of motion of the classical free Hamiltonian h(q, p) = ∥p∥2 into
operators commuting with the one parameter group of the Laplace operator and
admitting a suitable decomposition as a smooth field of operators over the in-
terval (0, ∞). Moreover, we will also prove a remarkable formula to compute the
derivatives of such fields of operators involving a sort of Poisson connection. Fol-
lowing our results, we will also introduce a notion of smooth field of C∗-algebras
and we will give an example using Hilbert C∗-modules theory.

Let us provide a more detailed description of our constructions and results.
The notions of measurable and continuous field of Hilbert spaces are defined
in terms of certain space of sections Γ0 satisfying certain properties (see Defini-
tions A.1 and A.4). However, both notions can be described in terms of bundles
or in terms of Hilbert C∗-modules. For instance, if Λ is a locally compact Haus-
dorff space and p : H → Λ is a continuous field of Hilbert spaces, then there is a
unique suitable topology on H such that p : H → Λ is a continuous Hilbert bun-
dle and Γ0 is contained in the space of continuous sections Γ(Λ) of p : H → Λ.
Moreover, the space of continuous sections vanishing at the infinity Γ0(Λ) is a
Hilbert C0(Λ)-module, and conversely, every Hilbert C0(Λ)-module can be ob-
tained in this way. There are analogous results in the measurable framework. In
Appendix A we explain in more detail those equivalences in both cases.

A similar situation occurs in the C∗-algebraic framework. Indeed, upper
semi-continuous fields of C∗-algebras over Λ are in one to one correspondence
with upper semi-continuous C∗-bundles over Λ and with C0(Λ)-algebras, for any
locally compact Hausdorff space Λ (for instance, see Theorem C.26 in [27]).

In the smooth framework, the canonical notion of vector bundle is well de-
fined even if the fibers are Banach spaces (we call them Banach bundles, for in-
stance, see Chapter III in [11] or the brief discussion in Subsection I.2.1 in [12]).
However, we could not find in the literature a notion of smoothness for fields of
Banach spaces in terms of certain space of sections such that, under reasonable
conditions, it would determine a suitable underlying Banach bundle structure
(as in the continuous or measurable framework). Nevertheless, for Hermitian
bundles, the following notion of smooth field of Hilbert spaces was introduced
and studied in [12].
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DEFINITION 1.1. Let Λ be a finite dimensional smooth manifold and Vect(Λ)
the space of smooth vector fields on Λ. A smooth structure on a field of Hilbert
spaces H → Λ is given by specifying a set of sections Γ∞, closed under addition
and under multiplication by elements of C∞(Λ), and a map ∇ : Vect(Λ)× Γ∞ →
Γ∞ such that, for X, Y ∈ Vect(Λ), a ∈ C∞(Λ) and φ, ψ ∈ Γ∞:

(i) ∇X+Y = ∇X +∇Y, ∇aX = a∇X , ∇X(aφ) = X(a)φ + a∇X(φ);
(ii) h(φ, ψ) ∈ C∞(Λ) and Xh(φ, ψ) = h(∇X φ, ψ) + h(φ,∇Xψ);

(iii) H∞(λ) := {φ(λ) : φ ∈ Γ∞} is dense in H(λ), for all λ ∈ Λ.

Conditions (ii) and (iii) implies that every smooth field of Hilbert spaces is
continuous (see Definition A.4). Moreover, the corresponding space of continu-
ous sections Γ0(Λ) is the closure of Γ∞ with the Fréchet topology of local uniform
convergence. Similarly, we can complete Γ∞ to obtain the space of n-times differ-
entiable sections Γn(Λ) (using the seminorms given by equation (2.1)), for every
n ∈ N∪ {∞}.

Our first goal is to show that the previous notion of smooth field of Hilbert
spaces allows us to introduce a notion of smooth fields of operators and also to
define a connection ∇̂ on a suitable space of fields of operators satisfying prop-
erties analogous to (i) and (ii) in Definition 1.1. Formally, if such connection
is applied on a field of operators A = {A(λ)}, where A(λ) is an operator on
H(λ) (with suitable domain), then we would expect that the Leibniz’s identity
holds, i.e.

∇X(Aφ) = ∇̂X(A)φ + A∇X(φ), ∀φ ∈ Γ∞.

Hence, the natural definition for such connection is ∇̂(A) = [∇X , A] = ∇X A −
A∇X . The first part of Section 2 is meant to construct suitable spaces of fields of
operators A where such expression is well-defined, and ∇̂X(A) is once again a
field of operators. Precisely, we will prove that ∇̂X(A) ∈ An−1, for any vector
field X and A ∈ An, where the space of fields of operators An is introduced in
Definition 2.1, for any n ∈ N (see Theorem 2.3).

The simplest example of a smooth field of Hilbert spaces is the trivial case,
i.e. we take each fiber constant H(λ) = V, Γ∞(Λ) = C∞(Λ, V) and ∇X = X. A
more interesting case is when H → Λ admits a smooth trivialization.

DEFINITION 1.2. Let p : H → Λ be a smooth field of Hilbert spaces with
connection ∇. We say that p : H → Λ admits a smooth trivialization if there is
a Hilbert space V and a map T : H → V such that Tλ = T|H(λ) : H(λ) → V is
unitary, T(Γ∞) ⊆ C∞(Λ, V) and for each X ∈ Vect(Λ) we have that

T∇X φ = XTφ .

We say that T is full if in addition we have that T(Γ∞(Λ)) = C∞(Λ, V).

Since each Tλ is unitary, T is continuous with respect to the locally uni-
form convergence topology, hence T(Γn(Λ)) ⊆ Cn(Λ, V), for every n ∈ N∪ {∞}.
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Therefore, T is full if and only if T(Γ∞) is dense in C∞(Λ, V), and in such case we
have that T(Γn(Λ)) = Cn(Λ, V), for every n ∈ N∪ {∞}.

More generally, we may suppose that the map T satisfies the identity

(1.1) T∇X φ = XTφ + α(X)Tφ,

where α : Vect(Λ) → End(V) is a suitable map. For instance, if α is a 1-form
(in particular, α(X) ∈ C∞(Λ)), the couple (T, V) is called a projective trivializa-
tion (see Definition 2.4.1 in [12]). It turns out that every projective trivialization
can be transformed into a smooth trivialization by taking the tensor product of
the initial smooth field of Hilbert spaces with a suitable line bundle (see Subsec-
tion 2.4 in [12]).

Notice that, determining a Hermitian bundle structure will also require the
unitary operators T(λ) in Definition 1.2, but defined locally. In a forthcoming
article, we are going to find the conditions that a local trivialization of a smooth
field of Hilbert spaces must satisfy in order to determine a suitable Hermitian
bundle structure. Some of the techniques that we will develop in this article will
become useful for that purpose.

Regarding fields of operators, every trivialization (T, V) of p : H → Λ in-
duces a sort of trivialization T̂ for ∇̂ on An. Let us be more precise. Essentially,
T̂ is defined by T̂A(λ) = Â(λ) = Tλ A(λ)T∗

λ . Notice that each Â(λ) is an oper-
ator on V, but their corresponding domains might be different depending on λ.
In order to overcome that technical difficulty, we will define a common domain
V∞ (see Definition 2.4). It turns out that T̂ maps An into Cn(Λ, L(V∞, V)∗-s) and
T̂∇̂X = XT̂, where L(V∞, V)∗-s denotes the space of linear operators from V∞ to
V with the ∗-strong topology (see Theorem 2.5).

In Section 2, we will also consider the trivializable case to give an addi-
tional motivation for our construction. Notice that the unitary operators Uλ1,λ2 =
T∗

λ2
Tλ1 : H(λ1) → H(λ2) play the role of the parallel transport of the connection

∇. If A = {A(λ)} is a field of operators, we would like to compare A(λ) and
U∗

λ,λ0
A(λ0)Uλ,λ0 , for any λ0, λ ∈ Λ (both operators have domains in H(λ)). We

will show that those operators coincide if and only if we have that ∇̂X(A) = 0,
for any vector field X (see Proposition 2.8). In such case we say that A is a hor-
izontal field of operators. We will also give a weak estimation of the difference
between A(λ) and U∗

λ,λ0
A(λ0)Uλ,λ0 in the general case (see Proposition 2.7).

In Subsection 2.1, we will analyze fields of operators belonging to An as
single operators acting on the direct integral H =

∫
Λ

⊕H(λ)dη(λ), where dη is

a fix volume form on Λ. Since the fields of operators that we are considering
belong to some An, the natural domain in the direct integral is Γ∞

2 = Γ∞ ∩ H,
and we will assume that Γ∞

2 is dense in H. We will obtain a sort of reduction
theorem for our setting analogous to the well known result in the measurable
framework [3, 15, 17]. More precisely, we will prove that, if A : Γ∞

2 → Γ0(Λ) ∩
H is an operator such that A∗(Γ∞

2 ) ⊂ Γ0(Λ) ∩ H, then A can be decomposed
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through the direct integral if and only if f A = A f on Γ∞
2 , for every f ∈ C∞

c (Λ)
(see Theorem 2.10). We will also introduce a space of fields of operators An

2 such
that An

2 ⊆ An and ∇̂X1 · · · ∇̂Xk (A) is an operator on H (with domain Γ∞
2 ), for

every A ∈ An
2 and X1, . . . , Xk ∈ Vect(Λ), with 0 ⩽ k ⩽ n (see Definition 2.13).

In the trivializable case, we will obtain two further remarkable properties
that will become useful later. Let X ∈ Vect(Λ) and denote by rt the corresponding
flow on Λ. We will show that the operator −i(∇X + 1

2 div(X)) is self-adjoint on
H (see Proposition 2.15). If (T, V) is a trivialization, define Rt = T∗r∗t T. Notice
that, if A ∈ An, then the map t → ⟨Rt AR−t φ(λ), ψ(λ)⟩λ is differentiable for every
λ ∈ Λ, and

d
dt

⟨Rt AR−t φ(λ), ψ(λ)⟩λ|t=s = ⟨Rs∇̂X(A)R−s φ(λ), ψ(λ)⟩λ .

We will prove that if Γ∞
2 is invariant by Rt and A belongs A1, then for suit-

able φ, ψ ∈ Γ∞
2 , the map t → ⟨Rt AR−t φ, ψ⟩ is differentiable, and the previous

identity holds not only pointwise but also weakly (see Theorem 2.16).
In Section 3, we will study our main example. Let n > 1 and Q2 be the self-

adjoint operator on L2(Rn) given by [Q2 φ](q) = ∥q∥2 φ(q). It is well known that
the map T : L2(Rn)→

∫
(0,∞)

⊕L2(Sn−1)dλ given by Tφ(λ, z)=2−1/2λ(n−2)/4 φ(
√

λz)

is a spectral diagonalization of Q2. Moreover, T can be regarded as a trivialization
of the field of Hilbert spaces H(λ) = L2(Sn−1√

λ
, µλ), where µλ = 2−1/2

√
ληλ and

ηλ is the canonical measure on the sphere Sn−1√
λ

. Identifying φ ∈ C∞(Rn) with

the section given by φ(λ) = φ|Sn−1√
λ

and defining ∇X = T−1XT on C∞
c (Rn), we

obtain a smooth structure on the latter field of Hilbert spaces, and by construction
T is a full smooth trivialization. We will give an explicit expression of ∇X in
Proposition 3.1 applying a direct computation, and we will also obtain another
expression in equation (3.2) using a more geometrical argument.

Recall that canonical reduction theory [3, 17] implies that if A is a self-
adjoint operator A strongly commuting with Q2, then there is a field of self-
adjoint operators {A(λ)} such that TAφ(λ) = A(λ)Tφ(λ). The self-adjoint op-
erators strongly commuting with Q2 are sometimes called quantum constants of
motion of Q2. Abusing the notation, we will also call constants of motion of Q2

to the operators satisfying the condition ensuring decomposability according to
our reduction theorem (without assuming self-adjointness, see Theorem 2.10).

One of the most important manners to construct operators on L2(Rn) is the
so called canonical quantization Op (also called Weyl calculus or Weyl quanti-
zation, see [7, 26]). Op is meant to map classical observables (i.e. smooth func-
tions on R2n) into quantum observables (i.e. self-adjoint operators on L2(Rn)) in
a physically meaningful way, but in general we only know that Op(u) : S(Rn) →
S′(Rn), for any u ∈ S′(R2n). A classical constant of motion of h(q, p) = ∥q∥2 is a
smooth function u ∈ C∞(R2n) such that {h, u} = 0, where {·, ·} is the canonical
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Poisson bracket on R2n. Notice that Op(h) = Q2. Under mild conditions, we will
prove that Weyl quantization maps classical constants of motion of h(q, p) = ∥q∥2

into quantum constants of motion of Q2 (see Theorem 3.6). The latter result is in-
teresting on its own right and it does not depend on the smooth structure.

We will show that, if u is a classical constant of motion and Op(u) ∈ A1

then, in certain sense, the derivative ∇̂X(Op(u)) is also of the form Op(û) and the
function û is obtained in the following geometrical way. Let ϕ ∈ C∞(Rn) given
by ϕ(q) = ∥q∥2. Clearly, the map dϕ : T(Rn \ {0}) → T(0, ∞) is onto and at any
point q ∈ Rn \ {0} its kernel is TqSn−1

∥q∥2 . Therefore, for each X ∈ Vect(0, ∞) there

is a unique vector field X̃ on Rn \ {0} such that X̃(q) ∈ T⊥
q Sn−1

∥q∥2 and dϕ(X̃) = X.

Also, let X̂ be the Hamiltonian lift of X̃, i.e. X̂ is the Hamiltonian vector field on
R2n corresponding to the smooth function hX̃ given by hX̃(q, p) = ⟨X̃(q), p⟩. One
of our main results is the following derivation formula

∇̂X0(Op(u)) = Op(X̂0(u)),

where X0 is the vector field on (0, ∞) given by X0(λ) = λ ∂
∂λ (see Theorem 3.8). It

is straightforward to show that X̂0(u) is also a classical constant of motion. The
main reason why the previous formula holds at least for X0 is that the flow of X̂0
is linear (r̂0

t (q, p) = (etq, e−t p)). In fact, the proof of the previous formula essen-
tially follows from the relation between Weyl quantization and the metaplectic
representation, and Theorem 2.16 (the metaplectic representation is also key in
the proof of Theorem 3.6). Since ∇̂aX0 = a∇̂X0 and X0 is non-degenerate, we can
explicitly compute ∇̂X(Op(u)) for any vector field X. Moreover, the right-hand
side of the latter formula contains an interesting geometrical object. Indeed, the
map u → X̂(u) defines an abelian Poisson connection on the Poisson algebra
of classical constants of motion (see the discussion at the end of Subsection 3.1).
In other words, our formula asserts that Weyl quantization exchanges a classical
connection with a quantum connection at least for X = X0.

We will obtain analogous results if we replace T by the spectral diagonal-
ization T ◦ F of the Laplacian −∆, where F is the Fourier transform (see Corol-
lary 3.12).

In Subsection 3.2, we will use the results in Subsection 3.1 to provide im-
portant and explicit examples of horizontal fields of operators (recall that A ∈ A1

is horizontal if ∇̂X(A) = 0, for every X ∈ Vect(0, ∞)). Let li,j be the classical
angular momenta coordinates, i.e. li,j(q, p) = qi pj − qj pi with 1 ⩽ i < j ⩽ n. Also
let J : R2n → R(n−1)/2 be the map given by J(q, p) = (l1,2(q, p), . . . , ln−1,n(q, p)).
We will prove that a ◦ J is a classical constant motion of h(q, p) = ∥q∥2 and of
hX(q, p) = ⟨X̃(q), p⟩ as well, for all X ∈ Vect(0, ∞). It is not difficult to show
directly the latter result, but we prefer to show it interpreting J as a moment map
and applying a more general result (see Proposition 3.14). In particular, Corol-
lary 3.10 implies that Op(a ◦ J) is a horizontal field of operators under suitable
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conditions (see also Corollary 3.15). It is well known that the quantum angular
momenta coordinates Li,j = Qi

∂
∂qj

− Qj
∂

∂qi
and the total angular momentum op-

erator L2 = ∑ L2
i,j are horizontal fields of operators, hence our result is a wide

generalization of this fact.
In Section 4, we will study locally uniformly bounded fields of operators

and we will introduce a notion of smoothness for fields of C∗-algebras. We denote
by An

c the space of all maps A : Γ∞ → Γn(Λ) which are continuous with respect to
the Fréchet topology of Γn(Λ). In order to characterize A0

c , we recall that Γ0
0 (Λ) is

a Hilbert C0(Λ)-module and we consider the corresponding space of adjointable
operators A0

0 (see Proposition 4.2). In Proposition 4.5, we describe how ∇̂ relates
consecutive spaces An

c and An−1
c . That result will lead us to introduce the spaces

An
lb (Definition 4.6) in such a way that ∇̂ defines a sort of bounded connection

on it (see Corollary 4.8). If (T, V) is a full projective trivialization, then An
lb is

isomorphic with Cn
lb(Λ, B(V)∗−st) (Proposition 4.9).

Inspired by the results of Sections 2 and 4, in Subsection 4.1 we define the
notion of a smooth field of C∗-algebras (see Definition 4.12), but first we shall re-
call some facts of continuous fields of C∗-algebras. Reinterpreting some known
results found in the literature, we will show in Proposition 4.11 that the space
of compact operators K(Γ0) on a Hilbert C0(Λ)-module Γ0, corresponding to a
continuous field of Hilbert spaces p : H → Λ, defines a continuous structure on
the field of C∗-algebras A(λ) = K(H(λ)), and K(Γ0) coincides with the corre-
sponding spaces of continuous sections. That result will allow us to show that
there exists a smooth structure on the field of compact operators associated to a
smooth field of Hilbert spaces (Corollary 4.13).

Finally in Appendix A we summarize some well-known facts concerning
measurable and continuous fields of Hilbert spaces, emphasizing that both no-
tions have three equivalent ways to be introduced.

2. SMOOTH FIELDS OF OPERATORS

Throughout this article, we will denote by H → Λ a field of Hilbert spaces
omitting the map p .

For the sake of self-containedness, let us recall the definition of the space
Γn(Λ) given in Subsection 3.1 in [12], n ∈ N ∪ {∞}. The space Γ0(Λ) is the
C(Λ)-module of those sections of H that are locally uniform limits of a sequence
in Γ∞. The space Γ1(Λ) is the C1(Λ)-module of those φ ∈ Γ0(Λ) for which
there is a sequence φj ∈ Γ∞ such that φj → φ locally uniformly, and for every
X ∈ Vec(Λ), the sequence ∇X φj converges locally uniformly. For such φ, we
can define ∇X φ = lim∇X φj (Lemma 3.1.2 in [12]). The space Γn(Λ) is defined
inductively: φ ∈ Γn(Λ) if φ and ∇X φ belongs to Γn−1(Λ), for all X ∈ Vect(Λ).
Finally, Γ∞(Λ) =

⋂
Γn(Λ). The spaces Γn(Λ) and Γ∞(Λ) are Fréchet spaces with
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the seminorms defined by

(2.1) ∥φ∥C,X1,...,Xm = sup{∥∇X1 · · · ∇Xm φ(λ)∥ : λ ∈ C},

where C ⊆ Λ is compact, X1, . . . , Xm ∈ Vect(Λ) and m⩽n (we can take X1, . . . , Xm
∈ Ξ, where Ξ ⊂ Vect(Λ) is finite and generates the tangent plane at each λ ∈ Λ).

The space Γ0(Λ) is by construction the space of continuous sections of H →
Λ regarded as a continuous Hilbert bundle (recall that every smooth field of
Hilbert spaces is continuous). We denote by Γ0

0 (Λ) the space of continuous sec-
tions vanishing at infinity. As mentioned in the introduction, the map h : Γ0

0 (Λ)×
Γ0

0 (Λ) → C0(Λ) defines a Hilbert C0(Λ)-module structure on Γ0
0 (Λ), this fact will

become important in Section 4.
As we mentioned in the introduction, we will show that the commutator

∇̂X(A) = [∇X , A] defines a connection on a suitable space of fields of operators.
The main purpose of this article is to study ∇̂. We now introduce the basic sets of
fields of operators that we will consider.

DEFINITION 2.1. Let H → Λ a smooth field of Hilbert spaces with connec-
tion ∇ : Vect(Λ)× Γ∞ → Γ∞. We denote by An the space formed by the fields of
operators A = {A(λ)} such that:

(i) the domain of A(λ) and A∗(λ) contains H∞(λ) = {φ(λ) : φ ∈ Γ∞};
(ii) A(Γ∞) ⊆ Γn and A∗(Γ∞) ⊆ Γn.

We say that A = {A(λ)} is smooth if A ∈ An, for every n ∈ N. We denote
by A∞ the space formed by the smooth fields of operators. We say that A ∈ A1 is
a horizontal field of operators if ∇̂X(A) = 0, for every X ∈ Vect(Λ).

In particular, if A ∈ An then each A(λ) is closable. Moreover, it is clear that
∇̂X(A)(Γ∞) ⊆ Γn−1, but it is not so obvious that ∇̂X(A) is given by a field of
operators. The following result will be useful to show that claim.

LEMMA 2.2. Let H → Λ a smooth field of Hilbert spaces with connection ∇. The
following identification of quotient spaces holds:

(i) Γ∞/K∞(λ) ∼= H∞(λ), where K∞(λ) := {φ ∈ Γ∞ : φ(λ) = 0};
(ii) Γn(Λ)/Kn(λ) ∼= Hn(λ), where Kn(λ) = {φ ∈ Γn(Λ) : φ(λ) = 0} and

Hn(λ) := {φ(λ) : φ ∈ Γn(Λ)};
(iii) Γ0

0 (Λ)/K0(λ) ∼= H(λ), where K0(λ) := {φ ∈ Γ0
0 (Λ) : φ(λ) = 0} and

Γ0
0 (Λ)/K0(λ) is endowed with the canonical quotient norm.

Let A : Γ∞ → Γn(Λ) be a linear operator. There is a field of operators {A(λ)}
such that the domain of A(λ) contains H∞(λ) and Aφ(λ) = A(λ)φ(λ), for every
λ ∈ Λ and φ ∈ Γ∞, if and only if A(K∞(λ)) ⊆ Kn(λ), for every λ ∈ Λ.

Proof. For each λ ∈ Λ, define ρλ(φ) = φ(λ), for every section φ of H → Λ.
The restriction of ρλ defines an epimorphism from Γ∞ onto H∞(λ) and its kernel
is K∞(λ), and this implies (i). The same argument shows (ii). Let φ ∈ Γ0

0 (Λ) and
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λ ∈ Λ. Clearly,

∥φ(λ)∥ ⩽ inf
{

sup
µ∈Λ

∥(φ − ψ)(µ)∥ : ψ ∈ K0(λ)
}

.

In order to show that we actually have an equality, it is enough to prove that, for
each ε > 0, there is ψ ∈ K0(λ) such that sup

µ∈Λ

∥(φ − ψ)(µ)∥ < ∥φ(λ)∥+ ε. Let C

be the compact set given by

C = {µ ∈ Λ : ∥φ(µ)∥ ⩾ ∥φ(λ)∥+ ε}.

If f ∈ C0(Λ) is such that 0 ⩽ f ⩽ 1, f (λ) = 0 and f |C = 1, then ψ = f φ satisfies
the required inequality. In particular, the subspace H0(λ) = {φ(λ) : φ ∈ Γ0

0 (Λ)}
is closed in H(λ). Since H∞(λ) ⊂ H0(λ), condition (iii) in Definition 1.1 implies
(iii). The last claim of our lemma is a direct consequence of (i) and (ii).

THEOREM 2.3. Let H → Λ a smooth field of Hilbert spaces with connection ∇.
For each n ⩾ 1, the map ∇̂ : Vect(Λ)×An → An−1 given by

∇̂X(A) = [∇X , A]

is well-defined and satisfies the following properties for all X, Y ∈ Vect(Λ), a ∈ C∞(Λ):
(i) ∇̂X+Y(A) = ∇̂X(A) + ∇̂Y(A), ∇̂aX(A) = a∇̂X(A);

(ii) ∇̂X(aA) = X(a)A + a∇̂X(A);
(iii) h(∇̂X(A)φ, ψ) = h(φ, ∇̂X(A∗)ψ), for every φ, ψ ∈ Γ∞;
(iv) ∇̂X(A∗)(λ) ⊆ [∇̂X(A)(λ)]∗, for each λ ∈ Λ.

Proof. We will show first properties (i), (ii) and (iii) and later that ∇̂X(A)
is given by a field of operators satisfying condition (i) in the Definition 2.1. The
first equality in (i) is clear. Since A is given by a field of operators, we have that
aA = Aa and

∇̂aX(A) = [∇aX , A] = [a∇X , A] = a∇̂X(A).

A direct computation implies (ii). For (iii), a repeated application of (ii) in Defini-
tion 1.1. gives

Xh(Aφ, ψ) = h(∇X Aφ, ψ) + h(Aφ,∇Xψ),

Xh(φ, A∗ψ) = h(∇X φ, A∗ψ) + h(φ,∇X A∗ψ),

for any two sections φ, ψ ∈ Γ∞. Therefore,

h(A∇X φ, ψ) + h(φ,∇X A∗ψ) = h(∇X Aφ, ψ) + h(φ, A∗∇Xψ)

h(∇̂X(A)φ, ψ) = h(φ, ∇̂X(A∗)ψ).

The last identity implies that ∇̂X(A)(K∞(λ)) ⊆ Kn(λ), and therefore Lem-
ma 2.2 shows that ∇̂X is well-defined.

Clearly, identity (iii) also implies (iv).
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In order to obtain further properties of fields of operators belonging to An,
we should impose additional conditions. For instance, in Section 4 we will con-
sider locally uniformly bounded fields of operators belonging to An. In Subsec-
tion 2.1 we analyze a field of operators belonging to An as a single operator acting
on a direct integral.

Let us assume that our smooth field of Hilbert spaces admits a projective
trivialization T : H → V. In such case Â(λ) = Tλ A(λ)T∗

λ is a field of operators on
V. We would like to fix a common domain for those operators. A first candidate
might be the space formed by all the vectors f ∈ V such that T∗ f ∈ Γ∞. However,
that space may be trivial (for instance see the example in Section 3). Instead, we
will consider the space where such condition holds locally.

DEFINITION 2.4. Let T : H → V be a projective trivialization of the smooth
field of Hilbert spaces H → Λ. Also, let f ∈ V. We say that f ∈ V∞ if for every
λ0 ∈ Λ, there are U ⊆ Λ open and φ ∈ Γ∞ such that λ0 ∈ U and T∗

λ f = φ(λ), for
every λ ∈ U.

For instance, in the example of Section 3, we have that V = L2(Sn−1) and
V∞ = C∞(Sn−1).

By definition, if A ∈ An and f ∈ V∞, then A(T∗ f ) is well-defined and
belongs Γn(Λ); therefore Â f ∈ Cn(Λ, V). The same happens with A∗. In other
words, if A ∈ An then Â ∈ Cn(Λ, L(V∞, V)∗-s), where L(V∞, V)∗-s is the space of
linear operators from V∞ to V with the ∗-strong topology.

THEOREM 2.5. Let T : H → V be a projective trivialization of the smooth field of
Hilbert spaces H → Λ with connection ∇. The map T̂ : An → Cn(Λ, L(V∞, V)∗-s),
given by

T̂A(λ) = Â(λ) = Tλ A(λ)T∗
λ ,

defines a trivialization of An with respect to the connection ∇̂, i.e. the following identity
holds:

T̂(∇̂X A) = XT̂A.

Proof. Let A ∈ An, X ∈ Vect(Λ) and f ∈ V∞. Since Â f ∈ Cn(Λ, V) and
X f = 0, we have that

T̂(∇̂X A)(λ) f = (T∇X AT∗)(λ) f − (TA∇XT∗)(λ) f

= (XTAT∗ + α(X)TAT∗)(λ) f − (TAT∗)(T∇XT∗)(λ) f

= XT̂A(λ) f + α(X)T̂A(λ) f − T̂A(λ)(X f + α(X)(λ) f )

= XT̂A(λ) f + α(X)T̂A(λ) f − T̂Aα(X)(λ) f = XT̂A(λ) f .

REMARK 2.6. Notice that if T is a trivialization and V∞ is dense in V then T
is full. Indeed, in such case every constant section f ∈ V belongs to the closure of
T(Γ∞), and that implies that T(Γ∞) is dense in C∞(Λ, V).
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Let us recall one of our motivation to consider the projectively trivializable
case. The map Uλ1,λ2 = T∗

λ2
Tλ1 : H(λ1) → H(λ2) is unitary and plays the role of

the parallel transport of the connection ∇. Notice that Uλ2,λ3Uλ1,λ2 = Uλ1,λ3 .
If A = {A(λ)} is a field of operators, we would like to compare A(λ) and
U∗

λ,λ0
A(λ0)Uλ,λ0 , for any λ0, λ ∈ Λ (both operators have domains in H(λ)). As-

sume that A ∈ A1. Thus, the map λ → ⟨Â(λ) f , g⟩V belongs to C1(Λ), for every
f , g ∈ V∞. Let X ∈ Vect(Λ) and rt its one parameter flow (integral curve). There-
fore, if λ = rt(λ0)

⟨[A(λ)− U∗
λ,λ0

A(λ0)Uλ,λ0 ]T
∗
λ f , T∗

λ g⟩λ = ⟨[Â(λ)− Â(λ0)] f , g⟩V

=

t∫
0

⟨XÂ(rsλ0) f , g⟩V ds.

The following result is a direct consequence of the previous identity.

PROPOSITION 2.7. Let T : H → V be a projective trivialization of the smooth
field of Hilbert spaces H → Λ with connection ∇. Also, let X ∈ Vect(Λ) and rt its
one parameter flow. Fix λ0 ∈ Λ and λ1 = rt(λ0), for some t > 0. If A ∈ A1 and
v, w ∈ T∗

λ1
(V∞), then

|⟨[A(λ1)− U∗
λ1,λ0

A(λ0)Uλ1,λ0 ]v, w⟩λ1 | ⩽ t sup
λ∈γ[0,t]

|⟨∇̂X A(λ)(Uλ1,λv), Uλ1,λw⟩λ|,

where γ[0, t] = {rs(λ0) : s ∈ [0, t]} is the integral curve between λ0 and λ1.

Theorem 2.5 implies that, if A is a horizontal section, then Â is a constant
field of operators on V∞, or equivalently A(λ) = U∗

λ,λ0
A(λ0)Uλ,λ0 on T∗

λV∞. For
the converse, we need to insure that V∞ is large enough.

PROPOSITION 2.8. Let A ∈ A1. If V∞ is dense in V and Â is constant on V∞,
then A is a horizontal section.

Proof. Let us show first that ÂX(Tφ) = X(ÂTφ), for every φ ∈ Γ∞. No-
tice that, since X(Tφ) ∈ TΓ∞ and ÂTφ ∈ C1(Λ, V), both sides of the previous
identities are well-defined. Moreover, for each f ∈ V∞, we have that

⟨ÂX(Tφ), f ⟩ = ⟨X(Tφ), Â∗ f ⟩ = X⟨(Tφ), Â∗ f ⟩ = ⟨X(ÂTφ), f ⟩.

Finally, we have that

T(A∇X φ) = ÂT∇X φ = Â(X + α(X))Tφ = (X + α(X))ÂTφ = T(∇X Aφ) .

2.1. DIRECT INTEGRALS AND DECOMPOSABLE OPERATORS. Historically, fields of
Hilbert spaces and operators emerged during the development of the reduction
theory of von Neumann algebras [3, 15]. One key element of that theory was
the notion of direct integral of measurable fields of Hilbert spaces. The canonical
reduction theorem characterize bounded operators on the direct integral defined
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by bounded measurable fields of operators. Such result was extended for (un-
bounded) closed operators in [17]. A similar reduction theory was developed in
[22] in the continuous framework (but certain unnecessary topological condition
was assumed). An interesting approach for the unbounded case was recently de-
scribed in [16]. We will show an analogous reduction theorem within our smooth
framework, and we will use it to construct examples of smooth fields of operators
in Section 3.

In order to construct direct integrals, we need to endow H → Λ with a
measurable structure, or equivalently, to consider a measurable Hilbert bundle
structure on H → Λ (see Definition 2.4.8 in [25] and Appendix A). For the pur-
poses of this article, we shall assume the following stronger assumption.

DEFINITION 2.9. Let H → Λ be a smooth field of Hilbert spaces. A weak
smooth trivialization is a couple (V, T), where V is a Hilbert space and T : H → V
is a map such that T|H(λ) is unitary for any λ ∈ Λ and T(Γ∞) ⊆ C∞(Λ, V).

Let η be a Borel measure on Λ (for instance, we can fix a density on Λ

or a volume form dη). Recall that the direct integral H =
∫
Λ

⊕H(λ)dη(λ) is

the Hilbert space of all measurable sections φ such that
∫
Λ

∥φ(λ)∥2
λdη(λ) < ∞

(see Appendix A for details).
Clearly, L∞(Λ, η) can be represented faithfully in H (acting as constant op-

erators on each fiber) and every measurable essentially uniformly bounded field
of operators A = {A(λ)} defines a bounded operator in H given by Aφ(λ) :=
A(λ)φ(λ). Moreover, such operator belongs to the commutant of L∞(Λ, η). Con-
versely, every bounded operator on H belonging to the commutant of L∞(Λ, η)
can be decomposed as a measurable essentially uniformly bounded field of op-
erators (for instance, see [2] or [3]). The extensions of the later result given in
[17, 22] do not guarantee that the domain of each A(λ) contains H∞(λ). We will
overcome that issue in our framework. Let us consider the spaces:

Γ∞
2 = Γ∞ ∩H =

{
φ ∈ Γ∞ :

∫
Λ

∥φ(λ)∥2
λdη(λ) < ∞

}
,

Γ0
2 (Λ) = Γ0(Λ) ∩H =

{
φ ∈ Γ0(Λ) :

∫
Λ

∥φ(λ)∥2
λdη(λ) < ∞

}
.

Through the rest of this article we will assume that Γ∞
2 is dense in H (for instance,

this holds true if T is full). Using a suitable bump function, it is straightforward
to show that {φ(λ) : φ ∈ Γ∞

2 } = H∞(λ) and {φ(λ) : φ ∈ Γ0
2 (Λ)} = H(λ).

Therefore Γ∞
2 /K∞

2 (λ) = H∞(λ) and Γ0
2 (Λ)/K0

2(λ) = H(λ), where K∞
2 (λ) =

{φ ∈ Γ∞
2 : φ(λ) = 0} and K0

2(λ) = {φ ∈ Γ0
2 (Λ) : φ(λ) = 0}.

THEOREM 2.10. Let H → Λ be a smooth field of Hilbert spaces and A : Γ∞
2 →

Γ0
2 (Λ) be a linear operator. Assume that the domain of A∗ contains Γ∞

2 and A∗(Γ∞
2 ) ⊆
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Γ0
2 (Λ). There is a field of operators {A(λ)} such that the domain of A(λ) contains
H∞(λ) and Aφ(λ) = A(λ)φ(λ), for every φ ∈ Γ∞

2 and λ ∈ Λ, if and only if f A = A f
on Γ∞

2 , for every f ∈ C∞
c (Λ). In such case, A belongs to A0 and moreover, A is locally

uniformly bounded if and only if f A is bounded in H, for each f ∈ C∞
c (Λ).

Proof. Obviously if Aφ(λ) = A(λ)φ(λ), then clearly the required commu-
tation holds. Let us prove the converse. If f ∈ C∞

c (Λ), then∫
Λ

f h(Aφ, ψ)dη = ⟨ f Aφ, ψ⟩ = ⟨ f φ, A∗ψ⟩ =
∫
Λ

f h(φ, A∗ψ)dη.

Therefore h(Aφ, ψ) = h(φ, A∗ψ) almost everywhere. Since both functions are
continuous, the latter identity holds everywhere. Hence, AK∞

2 (λ) ⊆ K2(λ) and
we can repeat the argument of Lemma 2.2 to show that there is a field of operators
{A(λ)} such that the domain of A(λ) contains H∞(λ) and Aφ(λ) = A(λ)φ(λ),
for every φ ∈ Γ∞

2 and λ ∈ Λ. In particular, A is well-defined on Γ∞. Moreover,
if φ ∈ Γ∞, then φ locally coincides with sections belonging Γ∞

2 , and therefore
Aφ locally coincides with sections belonging to Γ0

2 (Λ). The latter implies that
A(Γ∞) ⊆ Γ0(Λ). The last claim is straightforward.

REMARK 2.11. The previous result depends only on the continuous struc-
ture of the field of Hilbert spaces. In other words, the same proof shows an anal-
ogous result if H → Λ is a continuous field of Hilbert spaces and Γ∞

2 is replaced
by any dense domain in H invariant by multiplications of functions belonging to
Cc(Λ).

Reduction theory implies the existence of a diagonalization for every self-
adjoint operator. More precisely, if H0 is a self-adjoint operator on a Hilbert
space H, then there is a measurable field of Hilbert spaces {H(λ)} over the spec-
trum σ(H0) of H0 and a unitary operator T : H →

∫
σ(H0)

⊕H(λ)dη(λ) such that

T f (H0)φ(λ) = f (λ)Tφ(λ) for every measurable function f on σ(H0), where
f (H0) denotes the operator defined by the functional calculus and η is the so
called scalar spectral measure of H0. Moreover, the self-adjoint operators A
strongly commuting with H0 (quantum constants of motion) admit a decompo-
sition through T. The examples of smooth fields of Hilbert spaces, direct integral
and smooth fields of operators that we will consider in Section 3 come from the
diagonalization of certain self-adjoint operator.

COROLLARY 2.12. Assume Λ ⊂ R is open and let H0 =
∫
Λ

⊕
λdη(λ). If A :

Γ∞
2 → Γ0

2 is essentially self-adjoint and its closure A strongly commutes with H0, then
A ∈ A0

2.

Let A = {A(λ)} be a field of operators such that the domain of each A(λ)
contains H∞(λ), A(Γ∞

2 ) ⊆ Γ1(Λ)∩H and the same properties hold for A∗. Since
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every section in Γ1(Λ) locally coincides with sections belonging Γ1(Λ) ∩ H, it
follows that A belongs to A1. Therefore ∇̂X(A)(Γ∞) ⊆ Γ0(Λ), for each X ∈
Vect(Λ). In order to show that the restriction of ∇̂X(A) to Γ∞

2 defines an operator
on H (i.e. ∇̂X(A)(Γ∞

2 ) ⊆ Γ0(Λ) ∩H), we need to make stronger assumptions.

DEFINITION 2.13. Assume that Γ∞
2 is invariant by ∇. We denote by Γn

2 (Λ)
the space formed by all the sections φ ∈ Γn(Λ) such that ∇X1 · · · ∇Xk φ ∈ H, for
every 0 ⩽ k ⩽ n and X1, . . . , Xk ∈ Vect(Λ). We denote by An

2 the space formed by
all the fields of operators A = {A(λ)} such that:

(i) the domain of A(λ) and A∗(λ) contains H∞(λ) = {φ(λ) : φ ∈ Γ∞};
(ii) A(Γ∞

2 ) ⊆ Γn
2 (Λ) and A∗(Γ∞

2 ) ⊆ Γn
2 (Λ).

REMARK 2.14. By definition we have the following properties:
(i) Γn

2 (Λ) ⊆ Γn(Λ), Γn
2 (Λ) ⊆ Γn−1

2 (Λ) and ∇X(Γn
2 (Λ)) ⊆ Γn−1

2 (Λ), for all
X ∈ Vect(Λ);

(ii) An
2 ⊆ An, An

2 ⊆ An−1
2 and ∇̂X(A

n
2 ) ⊆ An−1

2 , for all X ∈ Vect(Λ); compare
the latter inclusions with Corollary 4.8.

Let us return to the trivializable case and assume dη is a volume form. Let
X be a complete vector field on Λ and rt its flow (i.e. rt(λ) is the integral curve of
X passing through λ at t = 0). Also, let Jt be the Jacobian of rt with respect to dη.
Therefore, the map Wt : L2(Λ, V) → L2(Λ, V) given by

(2.2) Wt f (λ) =
√
|Jt| f (rtλ),

for f ∈ L2(Λ, V), is a unitary strongly continuous one parameter group. It is easy
to show that the infinitesimal generator of Wt is

HX = −i
(

X +
1
2

divX
)

acting on L2(Λ, V). The following result is a consequence of the latter fact.

PROPOSITION 2.15. Let dη be a volume form on Λ and H → Λ be a trivializable
smooth field of Hilbert spaces. If X is a complete vector field on Λ, then the operator

−i
(
∇X + 1

2 div(X)
)

is essentially self-adjoint on Γ∞
2 ⊆

∫
Λ

H(λ)dη(λ), where the di-

vergence is computed with respect to dη.

The domain of the self-adjoint extension of −i
(
∇X + 1

2 div(X)
)

is provided

by Stone’s theorem, more precisely, it is the space of sections φ ∈
∫
Λ

H(λ)dη(λ)

such that T∗WtTφ is strongly smooth (with respect to t).
Let r∗t : Cn(Λ, V) → Cn(Λ, V) given by [r∗t f ](λ) = f (rtλ), for each n ∈

N∪ {∞}. Define Rt = T∗r∗t T. If A ∈ A1, then

⟨Rt AR−t φ(λ), ψ(λ)⟩λ = ⟨Â(rtλ)Tφ(λ), Tψ(λ)⟩V .
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Therefore,

d
dt

⟨Rt AR−t φ(λ), ψ(λ)⟩λ|t=s = ⟨Rs∇̂X(A)R−s φ(λ), ψ(λ)⟩λ.

The following result asserts that under suitable conditions the previous pointwise
smoothness implies weakly smoothness in the direct integral. The latter turn to
be the main tool to explicitly compute ∇̂X(A) in the example of Section 3.

THEOREM 2.16. Let A ∈ A1, X ∈ Vect(Λ) and rt the one parameter flow of X.
Define Rt : Γ∞(Λ) → Γ∞(Λ) by Rt = T∗r∗t T, where [r∗t f ](λ) = f (rt(λ)). Assume
that Rt(Γ∞) ⊆ Γ∞ and let φ, ψ ∈ Γ∞ with compact support such that φ(λ) ∈ T∗

λ(V
∞),

for every λ ∈ Λ. Then the map t → ⟨Rt AR−t φ, ψ⟩ is differentiable and

d
dt

⟨Rt AR−t φ, ψ⟩|t=s = ⟨Rs∇̂X(A)R−s φ, ψ⟩.

Proof. It is enough to show that the map s → ⟨Rs∇̂X(A)R−s φ, ψ⟩ is contin-
uous and

⟨(Rt AR−t − A)φ, ψ⟩ =
t∫

0

⟨Rs∇̂X(A)R−s φ, ψ⟩ds.

Since A ∈ A1, the latter identity holds pointwise, i.e.

⟨(Rt AR−t − A)φ(λ), ψ(λ)⟩λ =

t∫
0

⟨Rs∇̂X(A)R−s φ(λ), ψ(λ)⟩ds.

For a fix λ, since rt is a diffeomorphism and φ(λ) ∈ T∗
λ(V

∞), the map

s → ⟨Rs∇̂X(A)R−s φ(λ), ψ(λ)⟩ = ⟨∇̂X(A)(rs(λ))φ(λ), ψ(λ)⟩

is continuous. For a fix s, since ∇̂X(A) ∈ A0, the section Rs∇̂X(A)R−s φ be-
longs to Γ0(Λ), thus the latter map is also continuous with respect to λ (so it
is continuous and compactly supported on [0, t] × Λ). In particular, the map
s → ⟨Rs∇̂X(A)R−s φ, ψ⟩ =

∫
Λ

⟨Rs∇̂X(A)R−s φ(λ), ψ(λ)⟩λdη(λ) is also continu-

ous. Moreover, Fubini’s theorem implies that:

⟨(Rt AR−t − A)φ, ψ⟩ =
∫
Λ

⟨(Rt AR−t − A)φ(λ), ψ(λ)⟩λdη(λ)

=
∫
Λ

t∫
0

⟨Rs∇̂X(A)R−s φ(λ), ψ(λ)⟩dsdη(λ)

=

t∫
0

∫
Λ

⟨Rs∇̂X(A)R−s φ(λ), ψ(λ)⟩dη(λ)ds
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=

t∫
0

⟨Rs∇̂X(A)R−s φ, ψ⟩ds.

3. AN IMPORTANT EXAMPLE AND CANONICAL QUANTIZATION

Let us consider the following simple but yet fundamental example: let Q2 be
the multiplication operator on L2(Rn) corresponding to the function ϕ(q) = ∥q∥2.
As we previously mentioned, every self-adjoint operator admits a diagonaliza-
tion. The map T : L2(Rn) →

∫
(0,∞)

⊕L2(Sn−1)dλ given by

(3.1) T f (λ, z) = 2−1/2λ(n−2)/4 f (
√

λz)

is a diagonalization of Q2 (for instance, see Lemma 3.6 in [24] for the more general
case ϕ(q) = α(∥q∥), and for an arbitrary submersion ϕ : Rn → Rk see Theorem 5.2
in [1]).

Moreover, T can be regarded as a smooth trivialization considering H(λ) =

L2(Sn−1√
λ

, µλ), where µλ = 2−1/2
√

ληλ and ηλ is the canonical measure on Sn−1√
λ

. In

particular, the restriction of T to H(λ) defines a unitary operator onto L2(Sn−1).
The latter fact allows to identify f ∈ C∞(Rn) with a section of the field of Hilbert
spaces {(0, ∞) ∋ λ → L2(Sn−1√

λ
, µλ)} through the restriction f (λ) = f |Sn−1√

λ

. Under

that identification, the action of any a ∈ C∞(Λ) on a section φ is given by aφ(q) =
a(ϕ(q))φ(q).

We will use T to pullback the trivial smooth structure on the trivial field of
Hilbert spaces Ĥ = (0, ∞)× L2(Sn−1) into the field of Hilbert spaces {(0, ∞) ∋
λ → L2(Sn−1√

λ
, µλ)}, i.e. we will consider ∇X = T−1XT. Taking derivatives in

equation (3.1) we obtain the following result.

PROPOSITION 3.1. The map ∇X : C∞
c (Rn) → C∞

c (Rn) given by

∇X(φ) = X̃(φ) +
n − 2

4
ϕ−1X̃(ϕ)φ

defines a smooth structure on the field of Hilbert spaces {(0, ∞) ∋ λ → L2(Sn−1√
λ

, µλ)},

where X̃ = DΨ(X) and Ψ : (0, ∞)× Sn−1 → Rn \ {0} is the diffeomorphism given by
Ψ(λ, z) =

√
λz. Moreover, the map T defined by equation (3.1) is a trivialization of the

latter smooth field.

REMARK 3.2. In the previous proposition one could define the connection
over the sections space C∞(Rn), but we prefer to take Γ∞ = C∞

c (Rn), because the
fields of operators that we will consider later are defined on C∞

c (Rn). Moreover,
we also have that Γ∞

2 = C∞
c (Rn) and C∞(Rn) ⊂ Γ∞(0, ∞).
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REMARK 3.3. Notice that dϕ(X̃) = X, and X̃ is the only vector field nor-
mal to each sphere satisfying that identity. Moreover, if r̃t is the flow of X̃, then
ϕ(r̃tq) = rtϕ(q).

Let us consider the operator Rt = T∗r∗t T. A direct computation shows that

Rt φ(q) = a(t, q)φ(r̃tq),

where

a(t, q) =
n − 2

4
ϕ(q)(2−n)/4(rt ◦ϕ(q))(n−2)/4 =

n − 2
4

ϕ(q)(2−n)/4(ϕ ◦ r̃t(q))(n−2)/4 .

Notice that, if Wt is the one-parameter unitary group defined by equation (2.2),
then T∗WtTφ(q) =

√
(|Jt| ◦ ϕ)a(t, q)φ ◦ r̃t(q). However, there is a unique one-

parameter unitary group of that form and it is given by W̃t φ =
√
| J̃t|φ ◦ r̃t, where

J̃t is the Jacobian of r̃t. Therefore,

a =
√
| J̃t J−t ◦ ϕ|.

Moreover, since d
dt Rt φ|t=0 = ∇X φ, we obtain the following (geometrical) expres-

sion for our connection:

(3.2) ∇X(φ) = X̃(φ) +
1
2
(div(X̃)− div(X) ◦ ϕ)φ.

The last expression defines a connection in a much general framework, but we
will address that problem in a forthcoming article (for instance, the latter expres-
sion defines a connection if ϕ : M → N is a submersion and X̃ is the unique
vector field normal to each Mλ = ϕ−1(λ) such that Dϕ(X̃) = X, where M and N
are Riemannian manifolds).

Note that the operator −i
(
∇X + 1

2 div(X) ◦ϕ
)

considered in Proposition 2.15

coincides with HX̃ = −i
(

X̃ + 1
2 div(X̃)

)
and it is the infinitesimal generator of W̃t.

In the next subsection we will compute ∇̂X(A) for suitable A ∈ A1 and to
do that we will need the following lemma.

LEMMA 3.4. Let X0 be the vector field given by X0(λ) = 2λ ∂
∂λ . Then X̃0(q) =

∑ qj
∂

∂qj
,

(3.3) R0
t φ(q) = e((n−2)/2)t φ(etq)

and

W̃0
t φ(q) = e(n/2)t φ(etq).

In particular, φ ∈ C∞(Rn) is a horizontal section if and only if

φ(λq) = λ−(n−2)/2 φ(q), ∀q ∈ Rn, q ̸= 0, ∀λ > 0.



220 FABIÁN BELMONTE, HAROLD BUSTOS, AND SEBASTIÁN CUELLAR

Proof. Since dϕ
(

∇ϕ

∥∇ϕ∥2

)
= 1 and dϕ ◦ DΨ = I, it follows that DΨ(X0) =

X̃0 := ∑ qj
∂

∂qj
. Clearly r0

t a(λ) = a(e2tλ), for every a ∈ C∞(0, ∞). The rest of the
proof is a straightforward computation.

3.1. SMOOTH FIELDS OF OPERATORS COMING FROM CANONICAL QUANTIZATION.
In this subsection we will construct fields of operators over the field of Hilbert
spaces {(0, ∞) ∋ λ 7→ L2(Sn−1√

λ
, µλ)} and look for conditions to guarantee that

such fields are smooth, or even horizontal.
Recall that the self-adjoint operators on L2(Rn) admitting a decomposition

through T are the operators that strongly commute with Q2 (i.e. the quantum
constant of motion of Q2). Such decomposition also holds for bounded (not nec-
essarily self-adjoint) operators strongly commuting with Q2. Moreover, Theo-
rem 2.10 also provides conditions to guarantee such decomposition within our
smooth framework.

The operators that we shall consider arise from canonical quantization, i.e.
they are of the form Op(u), where u is a “reasonable function” on R2n and Op

is the Weyl calculus (also called Weyl quantization) [7, 26]. Formally, Op(u) is
defined by

[Op(u)φ](x) =
∫
Rn

∫
Rn

u
( x + y

2
, ξ
)

e2πi(x−y)ξ̇ φ(y)dξdy.

In a certain sense, we will prove that Weyl calculus maps a classical constant
of motion of ϕ(q) = ∥q∥2 (where ϕ is seen as a function on R2n independent of
the momentum variable) into a quantum constant of motion of Q2, so in that way
we will obtain an important set of fields of operators where we might apply our
connection ∇̂.

A classical constant of motion of a classical Hamiltonian h ∈ C∞(R2n) is a
smooth function u ∈ C∞(R2n) such that {h, u} = 0, where {·, ·} is the canonical
Poisson bracket on R2n. It is well-known that u is a classical constant of motion if
and only if u ◦ αt = u, where αt is the Hamiltonian flow of h. It is straightforward
to check that, if h(q, p) = ϕ(q), then αt(q, p) = (q, p + t∇ϕ(q)) = (q, p + 2tq).
Note that in this case αt is linear.

Weyl calculus is meant to map real smooth functions on R2n into self-adjoint
operators on L2(Rn), but this is not always the case. Indeed, Weyl calculus is
a continuous isomorphism Op : S′(R2n) → B(S(Rn), S′(Rn)), where S(Rm) is
the Schwartz space endowed with its canonical locally convex topology, S′(Rm)
is the topological dual of S(Rm), i.e the space of tempered distributions and
B(S(Rn), S′(Rn)) is endowed with the strong operator topology.

One of the main properties of Weyl calculus is the following identity: if
φ, ψ ∈ S(Rn), then

⟨Op(u)φ, ψ⟩ = ⟨φ,Op(u)ψ⟩,



SMOOTH FIELDS OF OPERATORS AND APPLICATIONS 221

where the complex conjugation of distributions is defined by u(φ) = u(φ) (Propo-
sition 2.6 in [7]).

The following property of Op is our main tool in this section. Let Sp(2n) be
the symplectic group, i.e. the group of linear symplectomorphisms on R2n; there
is a map m : Sp(2n) → U (L2(Rn)) (called the metaplectic representation) such
that for any S ∈ Sp(2n) and every u ∈ S′(R2n), we have that

(3.4) Op(u ◦ S∗) = m(S)Op(u)m(S)−1.

For a detailed presentation of the metaplectic representation see Chapter 4
in [7]. In particular, see Theorem 2.15 for the previous identity.

Note that equation (3.4) makes sense because the pull back by S∗ maps
S(R2n) into itself and it can be extended to an isomorphism from S′(R2n) into
itself.

DEFINITION 3.5. Let h ∈ C∞(R2n) and assume that its Hamiltonian flow
αt is linear and defined for any t ∈ R. We say that u ∈ S′(R2n) is a tempered
constant of motion if α∗t u = u, for all t ∈ R.

THEOREM 3.6. Let u be a tempered constant of motion of h(q, p) = ∥q∥2.
(i) [Op(u), eitQ2

] = 0 on S(Rn), for all t ∈ R.
(ii) If Op(u) sends S(Rn) into itself, then [Op(u), Q2] = 0 on S(Rn).

(iii) If Op(u) is bounded or essentially self-adjoint on S(Rn), then it strongly com-
mutes with Q2.

(iv) Op(u) ∈ A0
2 if and only if Op(u)(C∞

c (Rn)) ⊆ Γ0
2 (0, ∞) and Op(u)(C∞

c (Rn)) ⊆
Γ0

2 (0, ∞).

Proof. Equation 4.25 in [7] implies that m(α∗t ) = e2itQ2
. Therefore, equation

(3.4) implies that

Op(u) = eitQ2
Op(u)e−itQ2

and this shows (i). When Op(u) sends S(Rn) into itself, taking strong deriva-
tives in the previous equality we obtain (ii). Clearly, (i) implies the bounded
case in (iii). If Op(u) is essentially self-adjoint on S(Rn), let D be the domain of
Op(u) (the closure of Op(u)). We will prove that eitQ2

D ⊆ D and eitQ2
Op(u) =

Op(u)eitQ2
on D. Let f ∈ D. Then, there is a sequence fn ∈ S(Rn) such that

fn → f and Op(u) fn → Op(u) f . Thus, eitQ2
fn → eitQ2

f and

Op(u)eitQ2
fn = eitQ2

Op(u) fn → eitQ2
Op(u) f .

Since Op(u) is closed and gn := eitQ2
fn is convergent in the graph topology, we

have that eitQ2
f ∈ D and

Op(u)eitQ2
f = eitQ2

Op(u) f .

This implies that Op(u) and Q2 strongly commute.
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Let us show (iv). According to Theorem 2.10, we only need to prove that
a(Q2)Op(u) = Op(u)a(Q2) on C∞

c (Rn), for every a ∈ C∞
c (0, ∞). Let â be the

Fourier transform of a. For each φ, ψ ∈ C∞
c (Rn), the Fubini’s theorem implies

that
∞∫

−∞

â(t)⟨eitQ2
Op(u)φ, ψ⟩dt =

∞∫
0

( ∞∫
−∞

â(t)eitλdt
)
⟨[Op(u)φ](λ), ψ(λ)⟩λdλ

= ⟨a(Q2)Op(u)φ, ψ⟩.

Using (i) and repeating the same argument, we obtain that

∞∫
−∞

â(t)⟨eitQ2
Op(u)φ, ψ⟩dt = ⟨a(Q2)φ,Op(u)ψ⟩ = ⟨Op(u)a(Q2)φ, ψ⟩.

REMARK 3.7. It is well-known that if u belongs to a global Hörmander class
Sm

ρ,δ(R
2n), then Op(u)(S(Rn)) ⊆ S(Rn) (for instance, see Theorem 2.21 in [7]).

Therefore, if u is a constant of motion of h(q, p) = ∥q∥2 belonging to a Hör-
mander class Sm

ρ,δ(R
2n), then Op(u) ∈ A0

2 ∩ A∞. Similarly, if u belongs to a lo-
cal Hörmander class (see Definition 1.1 in [23]), it is not difficult to prove that
Op(u)(C∞

c (Rn)) ⊆ S(Rn), for instance repeating the proof of Theorem 2.21 in [7].
Therefore, if u is a tempered constant of motion of h(q, p) = ∥q∥2 belonging to a
local Hörmander class, then Op(u) ∈ A0

2 ∩A∞.

The main result of this section is a formula to compute ∇̂XOp(u) (see The-
orem 3.8 below), but in order to understand it, we need to recall some well-
known construction in symplectic geometry. For X̃ ∈ Vect(Rn), we define hX̃ ∈
C∞(R2n) by

(3.5) hX̃(q, p) = ⟨X̃(q), p⟩,

where ⟨·, ·⟩ is the duality between the tangent and the cotangent plane at q. Equiv-

alently, if X̃ =
n
∑
j

aj(q) ∂
∂pj

, then hX̃(q, p) =
n
∑
j

aj(q)pj.

We will denote by X̂ the Hamiltonian vector field corresponding to hX̃ , i.e.
X̂(u) = {hX̃ , u}. Recall that the flow of X̃ is denoted by r̃t (see Remark 3.3). It is
easy to show the flow r̂t of X̂ is the canonical lift of r̃t, i.e. r̂t(q, p) = (r̃t(q), r̃∗−t(p)).

It is also well-known that Op(hX̃) = HX̃ = −i
(

X̃ + 1
2 div(X̃)

)
. In particular,

if X̃ = DΨ(X), then Op(hX̃) = −i
(
∇̂X + 1

2 div(X)
)

.

When X0(λ) = 2λ d
dλ , we have that h0(q, p) := hX̃0

(q, p) = ∑ qj pj and
r̂0

t (q, p) = (etq, e−t p). In particular, r̂0
t is linear. Moreover, equation (4.24) in

[7] implies that

m(r̂0
t ) = W̃0

t .
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The latter identity allows us to compute W̃0
t Op(u)W̃0

−t using the metaplectic rep-
resentation, and it is the main reason why we are considering the vector field X0.
Furthermore, since etR0

t = W̃0
t (Lemma 3.4), we obtain the identity

R0
tOp(u)R0

−t = Op((r̂0
t )

∗u).

Using a Taylor expansion, it is straightforward to show that the limit lim
t→0

1
t (u ◦

r̂0
t − u) = {h0, u} holds in S′(R2n). Since Op : S′(R2n) → B(S(Rn), S′(Rn)) is

continuous, Theorem 2.16 implies the following remarkable result.

THEOREM 3.8. If u is a tempered constant of motion of h(q, p) = ∥q∥2, X = aX0
and Op(u) ∈ A1, then

(3.6) ∇̂XOp(u) = a(Q2)Op(X̂0(u)).

In particular, if Op(u) and Op(X̂0(u)) belong to A0
2, then Op(u) ∈ A1

2.

REMARK 3.9. Since {h, h0} = 2h, the Jacobi identity implies that {h0, u} =

X̂0(u) is a tempered constant of motion of h.

COROLLARY 3.10. If u is a tempered constant of motion of h, then Op(u) is hori-
zontal if and only if u is also a tempered constant of motion of h0 and Op(u) ∈ A0

2.

Proof. If Op(u) is horizontal, Theorem 3.8 implies that Op(X̂0(u)) = 0. Since
Op is faithful, u is a constant of motion of h0. The converse is a direct consequence
of Lemma 5.1.1. in [12].

COROLLARY 3.11. If u is a tempered constant of motion of h(q, p) = ∥q∥2 be-
longing to a local Hörmander class Sm

ρ,δ(R
2n), then Op(u) belongs to A∞

2 .

Proof. We already note that Op(u) belongs to A0
2 ∩ A∞. Since {h0, u} ∈

Sm′
ρ,δ(R

2n) with m′ = m+max(1− ρ, δ), Theorems 3.6 and 3.8 imply our result.

The following result is analogue to Theorem 3.8, but taking h(q, p) = ∥p∥2.
The corresponding operator is the Laplacian H = −∆, which is fundamental for
physical applications, and its diagonalization T̃ is obtained after composing T
defined by equation (3.1) with the Fourier transform F . In order to make T̃ a triv-
ialization, we define the connection by ∇X = T̃∗XT̃. Also notice that the meta-
plectic representation m maps the symplectic matrix J into the Fourier transform
F . Moreover, h ◦ J = h̃ and h0 ◦ J = −h0, where h̃(q, p) = ∥q∥2. Since J is a sym-
plectomorphism, u is a constant of motion of h if and only if u ◦ J is a constant of
motion of h̃.

COROLLARY 3.12. If u is a tempered constant of motion of h(q, p) = ∥p∥2, X =
aX0 and Op(u) ∈ A1, then

∇̂XOp(u) = a(−∆)Op(X̂0(u)).

In particular, if Op(u) and Op(X̂0(u)) belong to A0
2, then Op(u) ∈ A1

2.
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REMARK 3.13. Through the rest of this article we will only consider fields
of operators coming from Weyl quantization. However, there are other ways to
construct operators admiting a decomposition through T̃. For example, if S is
the scattering operator corresponding to a suitable Schrödinger operator, then S
is unitary and it strongly commutes with −∆, therefore it can be decomposed
through T̃ (for instance, see [29]). For the moment, we do not know if our notion
of smooth fields of operators and our results can be applied in scattering theory,
and we look forward to study this problem in the future.

Let us return to the case H = Q2. When X = X0, formula (3.6) becomes

(3.7) ∇̂X0Op(u) = Op(X̂0(u)).

We do not know if the latter equation holds true when we replace X0 by an
arbitrary vector field X. Such identity is equivalent to

a(Q2)Op(X̂0(u)) = Op((a ◦ ϕ)X̂0(u)),

where ϕ(q) = ∥q∥2. It is well-known that Op is not a multiplicative homomor-
phism. However, because of the particular type of symbols that we are consid-
ering, the latter identity might still hold true. Notice that for an arbitrary vec-
tor field X, the Hamiltonian flow r̂t is not necessarily linear, so we cannot use
the metaplectic representation. Nevertheless, in order to estimate the difference
between the right and left hand of equation (3.7) for an arbitrary X, we might
use semi-classical theory, introducing Planck’s constant dependence and apply-
ing Egorov’s theorem (for instance, see Theorem 11.1 in [30]). We expect to ad-
dress the latter problem in the future.

The following observation relates our results and the problem discussed in
the previous paragraph with deformation quantization. Let A be the Poisson al-
gebra of constants of motion of h(p, q) = ∥q∥2. Then, the map ∇̃ : Vect((0, ∞))×
A 7→ A, given by ∇̃X(u) = X̂(u) satisfies the following properties:

(i) ∇̃X({u, v}) = {∇̃Xu, v}+ {u, ∇̃Xv};
(ii) ∇̃X∇̃Y − ∇̃Y∇̃X = ∇̃[X,Y].

In other words, ∇̃ defines a sort of abelian Poisson connection.
We can generalize the previous construction as follows. Let M be a Rie-

mannian manifold and ϕ ∈ C∞(M) regular. For each X ∈ Vect(ϕ(M)), let X̃ be
the unique vector field normal to each Mλ := ϕ−1(λ) such that Dϕ(X̃) = X, and
let X̂ be the Hamiltonian vector field of hX̃ on T∗M. If A is the Poisson algebra of
constants of motion of h(q, p) = ϕ(q), then the map ∇̃ : Vect((ϕ(M))×A 7→ A,
given by ∇̃X(u) = X̂(u) is well-defined and satisfies (i) and (ii) above as well.

Let αt be the Hamiltonian flow of h(q, p) = ϕ(q). For each λ ∈ ϕ(M), let
Σ̂λ = h−1(λ) be the constant energy submanifold (do not confuse it with Mλ

above) and denote by Σλ the orbit space Σ̂λ/α endowed with the symplectic
structure obtained after applying Marsden–Weinstein–Meyer reduction [13, 14]
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(one of the authors showed in [1] that Σλ = T∗Mλ). For each u ∈ A, we can de-
fine uλ ∈ C∞(Σλ) by uλ([σ]) = u(σ), where σ ∈ Σ̂λ and [σ] denotes the orbit σ.
Then, every u ∈ A can be regarded as a section of a field of Poisson algebras over
ϕ(M) with fibers C∞(Σλ). The relation between symplectic connections and de-
formation quantization has been successfully studied, specially since Fedosov’s
paper [6]. Fedosov showed that, if Σ is a symplectic manifold then the Pois-
son algebra C∞(Σ) admits a star product. In order to do so, Fedosov used an
abelian symplectic connection to glue the canonical Moyal product on each tan-
gent plane. In our framework, if a star product ⋆λ

h̄ is given on each C∞(Σλ), we
would like to adapt Fedosov’s ideas to use our Poisson connection to glue those
star products into a single one defined on A. If the latter construction works,
then we might wonder if there is a relation between such star product and the
canonical Moyal product restricted to A. An analogous question was formulated
within the framework of canonical quantization and Wigner transforms in [1].
Both questions can be interpreted as problems analogue to the commutation of
reduction and quantization problem in geometric quantization theory [9, 28]. We
shall leave the latter problem open as well.

3.2. FUNCTIONS OF ANGULAR MOMENTA AS HORIZONTAL CONSTANTS OF MO-
TION. Let us construct some examples of constants of motion. For future ref-
erence, we will assume for a while that ϕ is any smooth function on a smooth
manifold M.

Let G be a Lie group acting on M. Such action induces the Lie algebra ho-
momorphism ζ : g → Vect(M) given by

ζ(X)(q) =
d
dt

(exp(tX) · q)|t=0,

where g is the Lie algebra corresponding to G and X ∈ g. Also let J : T∗M → g∗

be the induced moment map given by

J ((q, p))(X) = ⟨ζ(X)(q), p⟩ = hζ(X)(q, p),

where ⟨· , ·⟩ implements the duality between Tq M and T∗
q M.

If we endow g∗ with the coadjoint action of G and the negative of the canon-
ical Lie–Poisson structure, and we lift the action of G to T∗M, then J turns to be
an equivariant Poisson map.

PROPOSITION 3.14. Let G be a Lie group acting on M and J be the moment map
defined above.

(i) If ϕ(g · q) = ϕ(q), for each q ∈ M and g ∈ G, then a ◦ J is constant of motion
of h(q, p) = ϕ(q), for any a ∈ C∞(g∗).

(ii) If Ỹ is a vector field on M such that [Ỹ, ζ(X)] = 0 for every X ∈ g, then a ◦ J is
constant of motion of hỸ, for any a ∈ C∞(g∗).

Proof. Suppose that ϕ(g · q) = ϕ(q), for each g ∈ G and q ∈ M. Thus, ζ(X)
is tangent to each Mλ. Moreover, for each t ∈ R and (q, p) ∈ T∗M, since ∇ϕ is
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normal to each Mλ, we have that

[J ◦ αt(q, p)](X) = [J (q, tdϕ(q) + p)](X) = ⟨ζ(X)(q), tdϕ(q) + p⟩

= ⟨ζ(X)(q), p⟩ = J (q, p)(X).

In other words J ◦ αt = J and this implies (i). For the second part, we shall
prove that J ◦ r̂t = J , where r̂t is the Hamiltonian flow of hỸ. Notice that [J ◦
r̂t(q, p)](X) = (hζ(X) ◦ r̂t)(q, p), therefore J ◦ r̂t = J if and only if each hζ(X) is
a constant of motion of hỸ. Our result follows from the identity {hỸ, hζ(X)} =
h[Ỹ,ζ(X)] (equation II 3.11 in [10]).

Let us return to our example ϕ(x) = ∥x∥2. Also, let G = O(n) be the orthog-
onal group acting canonically on Rn. Then clearly condition (i) in the previous
proposition is satisfied. Since r̃0

t (q) = etq and rotations commute with dilations,
condition (ii) is satisfied for Ỹ = X̃, for any X ∈ Vect(0, ∞).

COROLLARY 3.15. Let O(n) act on Rn canonically and J : R2n → so(n)∗ the
corresponding moment map. Then a ◦ J is a classical constant of motion of h(q, p) =
∥q∥2 and of hX̃ , for any X ∈ Vect(0, ∞) and a ∈ C∞(so(n)∗). In particular, if a ◦ J is
a tempered distribution belonging to some local Hörmander class Sm

ρ,δ(R
2n), then Op(a ◦

J ) is a horizontal field of operators.

REMARK 3.16. Let li,j(q, p) = qi pj − qj pi and Lij = Op(lij) = qi
∂

∂qj
− qj

∂
∂qi

.

Then lij = hζ(Xij)
, where Xij is the element of the canonical basis of so(n) cor-

responding to the infinitesimal generator of the clockwise rotation on the plane
in Rn generated by ei and ej. The functions li,j and the operator Lij are called
the classic and quantum angular momenta coordinates, respectively. Notice that
defining a polynomial of the family of operators Lij is not at all trivial, because
the operators Lij do not commute (they come from a representation of so(n), so
they satisfy the same commutation relations than the corresponding vectors Xij).
A similar situation occurs if we consider the canonical family of positions and
momenta operators Qj and Pj. For example, for the polynomial u(q, p) = qi pj,
one might choose to define u(Q, P) = QiPj or, instead one might choose to
define u(Q, P) = PjQi. This is sometimes called the canonical ordering prob-
lem. Weyl calculus provide a symmetric solution for this problem if we define
u(Q, P) = Op(u). For instance, if u(q, p) = qi pj, then u(Q, P) = 1

2 (QiPj + PjQi)
is symmetric (notice that neither QiPi or PiQi are symmetric). Our result suggest
that Weyl calculus is also a convenient solution for the angular momenta ordering
problem.

REMARK 3.17. The spectral analysis of the operators Lij and L2 = ∑
i<j

L2
ij

are usually presented in any course on quantum mechanics. L2 is called the to-
tal angular momentum operator. Using polar coordinates, one can show that
the spectra of those operators coincide with the spectra of their restrictions to
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C∞(Sn−1) ⊂ L2(Sn−1). Our previous result implies that the same conclusion
holds for a much larger class of operators. For instance, the same conclusion
holds if Op(a ◦ J ) is a horizontal field of operators and Op(a ◦ J ) is essentially
self-adjoint on C∞

c (Rn). Moreover, if Op(a ◦ J ) is a horizontal field of opera-
tors and the restriction of Op(a ◦ J ) to C∞(Sn−1) is essentially self-adjoint, then
Op(a ◦ J ) is essentially self-adjoint C∞

c (Rn). The previous claims follow from
Theorem 3 in [17].

4. LOCALLY UNIFORMLY BOUNDED SMOOTH FIELDS OF OPERATORS AND
SMOOTH FIELDS OF C∗-ALGEBRAS

In this section we will study how the smoothness of a field of operators
A ∈ An interacts with the continuity of A as an operator on Γn(Λ). The discussion
will lead us to introduce a notion of smoothness for fields of C∗-algebras.

It will be useful to consider the Hilbert C0(Λ)-module Γ0
0 (Λ). Recall that an

operator A : Γ0
0 (Λ) → Γ0

0 (Λ) is called adjointable if and only if there is another
operator A∗ : Γ0

0 (Λ) → Γ0
0 (Λ) such that h(Aφ, ψ) = h(φ, A∗ψ), for any φ, ψ ∈

Γ0
0 (Λ). It is well-known that, in contrast with operators on Hilbert spaces, the

continuity of A does not guarantee that A is adjointable. On the other hand, if A is
adjointable then A is continuous (for instance, see Lemma 2.18 in [20]). Moreover,
the space of all adjointable operators form a C∗-algebra [20, Proposition 2.21].

Another important property is that every adjointable operator is given by a
field of operators. Indeed, if A is an adjointable operator, then clearly A(K0(λ)) ⊆
K0(λ). Therefore, by Lemma 2.2 there is an operator A(λ) on H(λ) such that
Aφ(λ) = A(λ)φ(λ), for all φ ∈ Γ0

0 (Λ) and λ ∈ Λ.
Let us introduce one of the spaces of fields of operators that we will consider

in this subsection.

DEFINITION 4.1. For each n ∈ N∪ {∞}, we denote by An
c the space formed

by the fields of operators A ∈ An such that A : Γ∞ → Γn(Λ) is continuous
with respect to the Fréchet topology of Γn(Λ). We denote by A0

0 the space of
adjointable operators on Γ0

0 (Λ).

In particular, if A belongs to An
c , then A can be extended to Γn(Λ); we will

also denote by A such extension. Let us apply our previous discussion to charac-
terize A0

c .

PROPOSITION 4.2. Let A : Γ∞ → Γ0(Λ) be a linear operator. The following
statements are equivalent:

(i) A ∈ A0
c ;

(ii) A ∈ A0 and it is a locally uniformly bounded field of operators;
(iii) A extends to Γ0(Λ) and its extension is adjointable.
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REMARK 4.3. We are abusing the notation in part (iii) of the previous state-
ment, because we have defined adjointability on Γ0

0 (Λ), but the corresponding
definition is the same on Γ0(Λ).

Proof. Let us show that (i) implies (ii). Since A is a field of operators, A|Γ0(C)
is a well-defined and continuous operator on Γ0(C), for every compact set C ⊆ Λ.
Moreover, AK0(λ) ⊆ K0(λ) and Lemma 2.2 implies that

∥A(λ)φ(λ)∥λ = inf{∥Aφ − ψ∥ : ψ ∈ K0(λ)}
⩽ inf{∥A(φ − ψ)∥ : ψ ∈ K0(λ)} ⩽ ∥A∥∥φ(λ)∥λ,

for all φ ∈ Γ0(C). Since H(λ) = {φ(λ) : φ ∈ Γ0(C)}, the latter inequality
implies (ii).

Clearly (ii) implies (iii) and (ii) implies (i). In order to show that (iii) implies
(i), notice that since A is adjointable, φ|C = 0 implies that Aφ|C = 0, for every
compact C ⊆ Λ. Therefore the map A|C : Γ0(C) → Γ0(C) given by A|C(φ|C) =
A(φ)|C is well-defined and also adjointable. Since Γ0(C) is a Hilbert module, A|C
is a bounded field of operators and clearly this implies (i).

REMARK 4.4. Let A ∈ A0 and C ⊆ Λ compact. Even if A|C is not an uni-
formly bounded field of operators, it is a densely defined operator on Γ0(C).
Moreover, it is easy to show that A|C is closable on Γ0(C). Therefore A|C is a
semiregular operator on Γ0(C) as defined in [18] (i.e. a closable densely defined
operator on a Hilbert C∗-module with an adjoint also densely defined). We would
like to obtain conditions to guarantee that A|C is also regular and to study how
regularity is related with self-adjointseness of such operators but acting on a di-
rect integral, as explained in Subsection 2.1. However, we will not consider the
latter problems in this article.

Let us look for conditions to guarantee that a given field of operators A
belongs An

c . Let φj, φ ∈ Γ∞ such that φj → φ in Γn(Λ) . Then Aφj → Aφ in
Γn(Λ) if and only if

(i) Aφj → Aφ in Γn−1(Λ) ;
(ii) ∇X Aφj = A∇X φj + ∇̂X(A)φj → ∇X Aφ in Γn−1(Λ), for every X ∈

Vect(Λ).

Since φj → φ in Γn−1(Λ) and ∇X φj → ∇X φ in Γn−1(Λ), for every X ∈
Vect(Λ), we obtain the following result.

PROPOSITION 4.5. Let A ∈ An.
(i) Assume that A ∈ An−1

c . Then A ∈ An
c if and only if ∇̂X(A) : Γ∞ → Γn−1(Λ)

is continuous when Γ∞ is endowed with the Γn(Λ)-topology.
(ii) If A ∈ An−1

c and ∇̂X(A) ∈ An−1
c , then A ∈ An

c .
In particular, if ∇̂X1 · · · ∇̂Xk A ∈ A0

c , for every X1, . . . , Xk ∈ Vect(Λ) and 0 ⩽
k ⩽ n, then A ∈ An

c .
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Notice that An
c ⊈ An−1

c and ∇̂X(A
n
c ) ⊈ An−1

c , for any non-zero X ∈ Vect(Λ).
The previous result allows us to introduce the following subspace of An

c , where
the corresponding inclusions become true.

DEFINITION 4.6. For each n ∈ N∪ {∞}, we denote by An
lb the space formed

by the fields of operators A ∈ An such that the field of operators ∇̂X1 · · · ∇̂Xk A is
locally uniformly bounded, for any X1, . . . Xk ∈ Vect(Λ) and 0 ⩽ k ⩽ n.

We could use statements (i) or (iii) in Proposition 4.2 to define An
lb , instead

of (ii).
We can endow An

lb with a family of seminorms, just as it was done for Γn(Λ).
More precisely, we define

∥A∥C,X1,...,Xm = sup{∥∇̂X1 · · · ∇̂Xm A(λ)∥ : λ ∈ C},

where C ⊆ Λ is compact, X1, . . . , Xm ∈ Vect(Λ) and m ⩽ n. Clearly, An
lb becomes

a Fréchet space with the latter family of seminorms.

REMARK 4.7. We can also put the natural direct limit topology on the space
An

lb (or Γn(Λ)), but we will not consider it in this article.

COROLLARY 4.8. For any n ⩾ 1 and X ∈ Vect(Λ), An
lb ⊆ An−1

lb , ∇̂X(A
n
lb) ⊆

An−1
lb and the map ∇̂X : An

lb → An−1
lb is continuous.

Also notice that if A, B ∈ An
lb, then AB ∈ An

lb and the following identity
holds:

(4.1) ∇̂X(AB) = ∇̂X(A)B + A∇̂X(B).

In the full projectively trivializable case, we obtain stronger properties of
the map T̂, defined in Theorem 2.5, if we restrict it to An

lb. For instance, since each
operator Â(λ) = Tλ A(λ)T∗

λ is bounded and T∗ f ∈ Γ∞(Λ) ⊂ Γn(Λ), for any A ∈
An

lb and f ∈ V, we no longer need to consider the common domain V∞ defined in
Definition 2.4. Recall that B(V)∗-s denotes the space of bounded operators on V
endowed with the ∗-strong topology. We also denote by Cn

lb(Λ, B(V)∗-s) the space
of n-times differentiable functions from Λ to B(V)∗-s such that any derivative of
order lower or equal to n is continuous and locally bounded.

PROPOSITION 4.9. Let T : H → V be a full projective trivialization of the smooth
field of Hilbert spaces H → Λ. The map T̂, defined by T̂A(λ) = Tλ A(λ)T∗

λ , is a local
isometry of An

lb onto Cn
lb(Λ, B(V)∗-s).

Proof. The same proof of Theorem 2.5 and the previous comment show that
T̂ is a well-defined local isometry. It is enough to show that if Â∈Cn

lb(Λ, B(V)∗-s),
then A = T∗ ÂT ∈ An

lb. Equivalently, it is enough to prove that Â(C∞(Λ, V)) ⊆
Cn(Λ, V). The case n = 0 follows from the inequality

∥Âφ(λ)− Âφ(λ0)∥ ⩽ ∥[Â(λ)− Â(λ0)]φ(λ0)∥+ ∥Â(λ)∥∥φ(λ)− φ(λ0)∥.
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Similarly, we can use the canonical proof of Leibniz’s multiplication formula to
show that Âφ ∈ Cn(Λ, V), for n > 0 and every φ ∈ C∞(Λ, V) (or Lemma 5.1.1
in [12]).

4.1. SMOOTH FIELDS OF C∗-ALGEBRAS. Recall that one of our aims is to propose
a definition of a smooth field of C∗-algebras. Let us recall the definition of a
(upper semi-)continuous field of C∗-algebras.

DEFINITION 4.10. Let Λ be a locally compact Hausdorff space and p : A →
Λ be a field of C∗-algebras (i.e. p is a surjection such that A(λ) := p−1(λ) is a
C∗-algebra, for any λ ∈ Λ). A (upper semi-)continuous structure on p : A → Λ
is given by specifying a ∗-algebra of sections A, closed under multiplication by
elements of C(Λ), and such that:

(i) the map λ 7→ ∥A(λ)∥ is (upper semi-)continuous, for all A ∈ A ;
(ii) {A(λ) : A ∈ A} is dense in A(λ), for all λ ∈ Λ.

As we mentioned in the introduction, the previous definition of (upper
semi-)continuous field of C∗-algebras is equivalent to two other notions: the no-
tion of (upper semi-)continuous C∗-bundle (see Definition C.16 and Theorem C.25
in [27]), and the notion of C0(Λ)-algebra (see Definition C.1 in [27]). Both notions
are interesting and have their own advantages, but we will not require them in
what follows. The notion of (upper semi-)continuous field of C∗-algebras allows
to describe the continuous structure in terms of a space of sections, and this is the
perspective that we are following in this article (recall the definition of smooth
fields of Hilbert spaces and compare with the Definition 4.12 of smooth field of
C∗-algebras that we will propose latter).

If A ∈ A0
lb, by definition the maps λ 7→ ∥A(λ)φ(λ)∥ and λ 7→ ∥A∗(λ)φ(λ)∥

are continuous, for every φ ∈ Γ0(Λ). However, the map λ 7→ ∥A(λ)∥ is not
necessarily (upper semi-)continuous. Therefore, A0

lb does not define an (upper
semi-)continuous structure on the field of C∗-algebras A(λ) = {A(λ) : A ∈ A0

lb}.
Notice that A0

0 is a C0(Λ)-algebra, thus A0
lb defines an upper semi-continuous

structure but on the field of C∗-algebras Ã(λ) = A0
0/IλA

0
0 (and generically this

algebra does not coincide with A(λ)).
There are subalgebras A of A0

lb such that the map λ 7→ ∥A(λ)∥ is continu-
ous, for any A ∈ A. Indeed, we will show that the space of compact operators
K0(Λ) := K(Γ0

0 (Λ)) on the Hilbert module Γ0
0 (Λ) satisfies such property. Let us

recall the construction of the C∗-algebra K0(Λ). For each φ, ψ ∈ Γ0
0 (Λ), we define

the adjointable operator |φ⟩⟨ψ| by

|φ⟩⟨ψ|(λ)(ϕ(λ)) = ⟨ψ(λ), ϕ(λ)⟩φ(λ),

where the inner product is taken on H(λ). It is straightforward to show that
|φ⟩⟨ψ|∗ = |ψ⟩⟨φ| and ∥|φ⟩⟨ψ|(λ)∥ = ∥φ(λ)∥∥ψ(λ)∥. The space of compact op-
erators K0(Λ) is the closure span of the set of operators of the form |φ⟩⟨ψ| , with
φ, ψ ∈ Γ0

0 (Λ).
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The following proposition can be found in the discussion of Subsec-
tion 10.7.2 of [4], but we write it within the framework of Hilbert modules.

PROPOSITION 4.11. Let H → Λ be a smooth field of Hilbert spaces and let p :
K → Λ be the field of C∗-algebras with fibers K(H(λ)), where K(H(λ)) is the C∗-
algebra of compact operators on the Hilbert space H(λ). Identifying A ∈ K0(Λ) with the
section λ → A(λ) defines a continuous structure on p : K → Λ, and K0(Λ) becomes
the corresponding space of continuous sections vanishing at infinity. In particular, the
map λ → ∥A(λ)∥ is continuous and vanishing at infinity, for every A ∈ K0(Λ).

Proof. To prove this, we have to specify a ∗-algebra A of sections that satis-
fies (i) and (ii) in Definition 4.10. We take A to be the set of linear combinations of
operators of the form |φ⟩⟨ψ| , with φ, ψ ∈ Γ0

0 (Λ).
Let V be a Hilbert space and φ1, . . . φ2n : X → V be fields of vectors, where

X is some topological space. Assume that lim
x→x0

⟨φi(x), φj(x)⟩ = ⟨ψi, ψj⟩, where

ψ1, . . . , ψ2n ∈ V. Lemma 3.5.6 in [4] implies that

lim
x→x0

∥|φ1(x)⟩⟨φ2(x)|+· · ·+|φ2n−1(x)⟩⟨φ2n(x)|∥=∥|ψ1⟩⟨ψ2|+· · ·+|ψ2n−1⟩⟨ψ2n|∥.

In particular, if ⟨φi, φj⟩ = ⟨ψi, ψj⟩, then

∥|φ1⟩⟨φ2|+ · · ·+ |φ2n−1⟩⟨φ2n|∥ = ∥|ψ1⟩⟨ψ2|+ · · ·+ |ψ2n−1⟩⟨ψ2n|∥.

Therefore, the map V2n ∋ (ψ1, . . . , ψ2n) → ∥|ψ1⟩⟨ψ2| + · · · + |ψ2n−1⟩⟨ψ2n|∥ is
actually a continuous function on the inner products ⟨ψi, ψj⟩. Thus, A satisfies (i)
and clearly it also satisfies (ii). Moreover, since A is closed under multiplication
by elements of C0(Λ), the ∗-algebra A is dense in the set of continuous sections
vanishing at infinity of the corresponding C∗-bundle. By definition, the closure
of A is K0(Λ), and this finishes the proof.

In view of Theorem 2.3, Proposition 4.5 and equation (4.1), we define a
smooth field of C∗-algebras as follows.

DEFINITION 4.12. Let Λ be a smooth manifold and p : A → Λ be a field of
C∗-algebras. A smooth structure on A → Λ is given by specifying a ∗-algebra
of sections A∞ closed under multiplication by elements of C∞(Λ), and a map
∇̂ : Vect(Λ)×A∞ 7→ A∞ such that for X, Y ∈ Vect(Λ), A, B ∈ A∞ and a ∈ C∞(Λ)

(i) ∇̂X+Y(A) = ∇̂X(A) + ∇̂Y(A) and ∇̂aX(A) = a∇X(A);
(ii) ∇̂X(aA) = X(a)A + a∇̂X(A) and ∇̂X(AB) = ∇̂X(A)B + A∇̂X(B);

(iii) (∇̂X(A))∗ = ∇̂X(A∗);
(iv) for each m∈N and X1, . . . , Xm ∈Vect(Λ), the map λ 7→ ∥∇̂X1 · · ·∇̂Xm A(λ)∥

is continuous;
(v) A∞(λ) = {A(λ) : A ∈ A∞} is dense in A(λ), for all λ ∈ Λ.

Let us return to the smooth fields of Hilbert spaces framework. A straight-
forward computation shows that, if φ, ψ ∈ Γn(Λ) then |φ⟩⟨ψ| ∈ An

lb and the
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following natural identity holds:

∇̂X(|φ⟩⟨ψ|) = |∇X φ⟩⟨ψ|+ |φ⟩⟨∇Xψ|.
The latter fact and Proposition 4.11 implies the following result.

COROLLARY 4.13. Let H → Λ be a smooth field of Hilbert spaces with connection
∇ and let K → Λ be the field of C∗-algebras with fibers K(H(λ)) . The space of sections
K∞ = span{|φ⟩⟨ψ| : φ, ψ ∈ Γ∞} together with the connection ∇̂ = [∇, ·] makes
K → Λ a smooth field of C∗-algebras.

Let φ, ψ ∈ C0(Λ, V), where V is some Hilbert space. A straightforward
computation shows that

∥|φ⟩⟨ψ|(λ)− |φ⟩⟨ψ|(λ0)∥ ⩽ ∥φ(λ)− φ(λ0)∥∥ψ(λ)∥+ ∥ψ(λ)− ψ(λ0)∥∥φ(λ0)∥.

Therefore, any finite rank operator on Γ0 belongs to C0(Λ,K(V)), where K(V)
is endowed with the norm operator topology. The following result holds within
the more general framework of continuous fields of Hilbert spaces. We use the
notion of continuous trivialization of Dixmier and Douady (Definitions 2 and 3
in [5]).

PROPOSITION 4.14. Let H → Λ be a continuous field of Hilbert spaces and Γ0
be the corresponding space of continuous sections vanishing at infinity. Also, let T :
H → V be a continuous trivialization. The map T̂ : K(Γ0) → C0(Λ,K(V)) given by
T̂(A)(λ) = Tλ A(λ)T∗

λ is an isomorphism of C∗-algebras.

Proof. Notice that T̂(|φ⟩⟨ψ|)= |T(φ)⟩⟨T(ψ)|. Therefore T̂(A)∈C0(Λ,K(V)),
for any finite rank operator A on Γ0. Since T̂ is an isometry, T̂ is well-defined.
Moreover, since T(Γ0) = C0(Λ, V) (fullness is included in the definition of con-
tinuous trivialization), T̂(K(Γ0))(λ) = K(V). Therefore, Proposition C.24 in [27]
implies that T̂(K(Γ0(Λ))) is dense in C0(Λ,K(V)) and so T̂ is surjective.

APPENDIX A. MEASURABLE AND CONTINUOUS FIELDS OF HILBERT SPACES

In this appendix we recall the definitions of measurable and continuous
fields of Hilbert spaces over a space Λ. Each notion admits at least three equiva-
lent ways to introduce them. Let us discuss some of their main characteristics in
order to understand their relation.

The first (historic) definition of a measurable field of Hilbert spaces de-
scribes the measurable structure in terms of a space of sections. In fact, the latter
approach is used throughout this article.

DEFINITION A.1. Let Λ be a measurable space. A measurable structure on a
field of Hilbert spaces p : H → Λ is given by specifying a linear space of sections
Γ possessing the following properties:

(i) the function λ → ∥φ(λ)∥λ is measurable, for every φ ∈ Γ;
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(ii) if ψ is a section such that, for every φ ∈ Γ, the function λ → ⟨φ(λ), ψ(λ)⟩λ

is measurable, then ψ ∈ Γ;
(iii) there exists a sequence (φj) of elements of Γ such that span{φj(λ) : j ∈ N}

is dense in H(λ), for every λ ∈ Λ.
The elements of Γ are called measurable sections. The sequence (φ1, φ2, . . .)

is called a base of measurability or a measurable field of bases. The set {λ ∈ Λ :
H(λ) ̸= 0} is called the support of the field.

The second possible way to introduce measurability into fields of Hilbert
spaces is given by the notion of a measurable Hilbert bundle (Definition A.2 be-
low or Definition 2.4.8. in [25]). Let us explain how we meet that notion beginning
with a measurable field of Hilbert spaces.

Starting from the sequence (φj) we can obtain a local field of measurable

orthonormal bases. More precisely, there is a measurable partition Λ =
n=∞⋃
n=1

Λn

and a sequence ϕj : Λ → H such that, dim H(λ) = n for all λ ∈ Λn, ϕj(λ) = 0
for all j > dim H(λ) and {ϕj(λ) : 1 ⩽ j ⩽ dim H(λ)} is a orthogonal basis of
H(λ). Up to certain technicalities, the main idea is just to apply Gram–Schmidt
orthogonalization process. Details can be found in part II Chapter 1, Lemma 2.1
and Proposition 4.1 in [3]. Since choosing a pointwise orthonormal basis on the
fiber H(λ) is equivalent to fix an unitary operator from H(λ) to l2(N), then the
partition induces maps Tn : H|Λn → Hn such that Hn is a Hilbert space and
Tn|H(λ) is unitary for all λ ∈ Λn. Moreover, the map T : H → ⊔Hn defined by
T(x) = Tn(x), for every x ∈ H with p(x) ∈ Λn, can be interpreted as a sort of
measurable trivialization. Indeed, φ is measurable if and only if T(φ) is weakly
measurable. Therefore H is equivalent to the bundle

⋃
Λn ×Hn, and we have

met the following definition of measurable Hilbert bundle.

DEFINITION A.2. Let Λ be a measurable space. A (separable) measurable
Hilbert bundle (MHB) over Λ is a disjoint union H =

⋃
Λn ×Hn where {Λn}

is a measurable partition of Λ and Hn is a Hilbert space of dimension n, with
0 < n ⩽ ∞.

Conversely, if T is a trivialization T : H → ⊔Hn as before, we can define
the space Γ as the set of all the sections φ of H such that Tφ is weakly measurable.
Clearly, Γ satisfies (i), (ii) and (iii) of Definition A.1.

A much richer structure is obtained if a fixed measure η on Λ is considered.
Notice that the notion of measurable Hilbert bundle in [25] requires Λ to be a
σ-finite measure space. Moreover, the third way to describe measurable fields
of Hilbert spaces also requires the latter additional assumption and it is given
within the context of Hilbert modules over L∞(Λ, η). If E is such Hilbert module,
we can define the dual module E∗ in a canonical way, i.e. taking the bounded
linear maps from the module to L∞(Λ, η). When every element f ∈ E∗ admits
a representation of the form f (ϕ) = ⟨ϕ, ψ⟩ for some ψ ∈ E , the module is called
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self-dual. If Λ is a σ-finite measure space and H → Λ is a measurable Hilbert
bundle, it is not difficult to show that the space of weakly measurable essentially
bounded sections of a measurable bundle is a self-dual Hilbert L∞(Λ)-module
(Propositions 9.2.3 in [25]). Conversely, every self-dual weakly separable module
is obtained in the latter way (Theorem 9.2.4 in [25]). In summary, there are two
equivalent ways to introduce measurability for fields of Hilbert spaces over a
measurable space Λ:

(i) measurable fields of Hilbert spaces;
(ii) measurable Hilbert bundles.

If in addition we assume (Λ, η) is a σ-finite measure space the latter notions
are equivalent to the following:

(iii) self-dual weakly separable Hilbert L∞(Λ, η)-modules.

One of the main reasons to consider measurable fields of Hilbert spaces is
that it allow us to introduce direct integrals (we require them in Subsection 2.1).

DEFINITION A.3. Let (Λ, η) be a measure space and H → Λ be a measur-
able field of Hilbert spaces. Up to quotient by the space of measurable sections
vanishing almost everywhere, the direct integral

∫
Λ

⊕H(λ)dη(λ) is the space of

square integrable measurable vector fields, i.e.∫
Λ

⊕
H(λ)dη(λ) :=

{
φ ∈ Γ :

∫
Λ

∥φ(λ)∥2
λdη(λ) < ∞

}
.

It is well-known (for instance, see part II, Chapter I, Proposition 5 in [3]) that∫
Λ

⊕H(λ)dη(λ) is a Hilbert space with the inner product

⟨φ, ψ⟩ :=
∫
Λ

⟨φ(λ), ψ(λ)⟩λdη(λ).

In the topological framework there are also three equivalent ways to introduce
continuity for fields of Hilbert spaces. Assume that Λ is a Hausdorff locally com-
pact space. The first historical definition given by Godement [8] of a continuous
field of Hilbert spaces is the following.

DEFINITION A.4. Let Λ be a locally compact space and H → Λ a field of
Hilbert spaces. A continuous structure is given by specifying a linear space of
sections Γ possesing the following properties:

(i) the set {φ(λ) : φ ∈ Γ} is dense in H(λ), for every λ ∈ Λ;
(ii) the function λ → ∥φ(λ)∥ is continuous, for every φ ∈ Γ.

Latter Dixmier and Douady in [4, 5] added the following condition:
(iii) if φ is a section and for every λ0 ∈ Λ and every ε > 0 there exists φ′ ∈ Γ

such that ∥φ(λ)− φ′(λ)∥ ⩽ ε for every λ in some neighborhood (depending on
ε) of λ0, then φ ∈ Γ.
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They proved that if Γ satisfies conditions (i) and (ii) then there exists a
unique space of sections Γ̃ satisfying (i), (ii) and (iii) such that Γ ⊆ Γ̃ (Propo-
sition 3 in [5] or Proposition 10.2.3. in [4]). Moreover, they also show that if Γ
satisfies (i), (ii) and (iii) then the following properties hold:

(iv) Γ is a C(Λ)-module;
(v) the set {φ(λ) : φ ∈ Γ} equals H(λ), for every λ ∈ Λ.

Note that if Γ satisfies (i), (ii) and (iv) then Γ is dense in Γ̃ with respect to
the local uniform convergence topology.

Now we consider the definition of a continuous Hilbert bundle. The first
definition of this structure can be found in [21]. We follow [25] as reference as we
did in the measurable case.

DEFINITION A.5. Let Λ be a compact Hausdorff space. A covering space of
Λ is a topological space H together with a continuous open surjection p : H → Λ.
A continuous Hilbert bundle over Λ is then a covering space H such that H(λ) =
p−1(λ) is equipped with a Hilbert space structure for each λ ∈ Λ, and satisfying
the following conditions:

(i) the map x → ∥x∥ is continuous from H to R;
(ii) the map (x1, x2) → x1 + x2 is continuous from H × H to H;

(iii) the map x → ax is continuous from H to H for every a ∈ C; and
(iv) for any neighborhood O of the origin of H(λ) in H there exists a neighbor-

hood O′ of λ in Λ and an ε > 0 such that

{x ∈ H : p(x) ∈ O′ and ∥x∥ < ε} ⊂ O.

A section of H is a function φ : Λ → H such that φ(λ) ∈ H(λ), for all λ ∈ Λ.
The set of all continuous sections of H is denoted Γ(H).

Clearly, if H → Λ is a continuous Hilbert bundle, then Γ(H) satisfies the
conditions (i), (ii) and (iii) of Definition A.4. Conversely, if Γ satisfies (i) and (ii)
of Definition A.4 then there is a topology on H such that H → Λ is a continuous
Hilbert bundle and Γ ⊂ Γ(H) (in fact Γ̃ = Γ(H)).

The third way to describe continuous fields of Hilbert spaces is through
the notion of Hilbert C0(Λ)-module. In fact, the space of continuous sections
vanishing at infinity Γ0(H) of a continuous Hilbert bundle is clearly a Hilbert
C0(Λ)-module. Conversely, every Hilbert C0(Λ)-module Γ0 corresponds to the
space of continuous sections vanishing at infinity of a Hilbert bundle. Indeed,
for λ ∈ Λ, let Iλ = { f ∈ C0(Λ) : f (λ) = 0} . It is easy to show that the quotient
H(λ) = Γ0⧸IλΓ0

is a Hilbert space. Therefore, Γ0 can be regarded as a space of sec-

tions by defining φ(λ) = πλ(φ) for every φ ∈ Γ0, where πλ : Γ0 → Γ0⧸IλΓ0
is the

canonical projection. Moreover, the map λ → ∥φ(λ)∥ is clearly continuous, then
Γ0 defines a continuous field of Hilbert spaces (see Definition A.4). The latter
equivalence was first noticed in [21]. If we want to pass directly from Hilbert
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C0(Λ)-modules to continuous Hilbert bundles over Λ, we can apply Proposi-
tion 9.15 in [25] in the compact case. In the general case and use a one-point
compactification, as explained in [19].

Summarizing, there are three equivalent ways to introduce the notion of
continuity for fields of Hilbert spaces:

(i) continuous fields of Hilbert spaces;
(ii) continuous Hilbert bundles;

(iii) Hilbert C0(Λ)-modules.

The reader should notice the similarities between these three descriptions
and the analogous three descriptions given for the measurable framework.

In Section 4 a similar discussion can be found for the case of continuous
fields of C∗-algebras.
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