# Journal of Operator Theory

Volume 71, Issue 2, Spring 2014 pp. 341-379.

The kernel of the determinant map on certain simple $C^*$-algebras**Authors**: P.W. Ng

**Author institution:**Mathematics Department, Univ. of Louisiana at Lafayette, 217 Maxim D. Doucet Hall, P. O. Box 41010, Lafayette, LA, 70504-1010, U.S.A.

**Summary:**Let $\mathcal{A}$ be a unital separable simple $C^*$-algebra such that, either (1) $\mathcal{A}$ has real rank zero, strict comparison and cancellation of projections; or (2) $\mathcal{A}$ is TAI (tracially approximate interval). Let $\Delta_T : GL^0(\mathcal{A}) \rightarrow E_u/ T(K_0(\mathcal{A}))$ be the universal determinant of de la Harpe and Skandalis. Then for all $x \in GL^0(\mathcal{A})$, $\Delta_T(x) = 0$ if and only if $x$ is the product of $8$ multiplicative commutators in $GL^0(\mathcal{A})$. We also have results for the unitary case and other cases.

**DOI:**http://dx.doi.org/10.7900/jot.2012apr01.1953

**Keywords:**real rank zero, tracially approximate interval algebra

Contents Full-Text PDF