Journal of Operator Theory
Volume 91, Issue 1, Winter 2024 pp. 203-238.
Smooth fields of operators, a smooth reduction theorem, and a derivation formula for constants of motion of the free HamiltonianAuthors: Fabian Belmonte 1, Harold Bustos 2, Sebastian Cuellar 3
Author institution:1 Departamento de Matematicas, Universidad Catolica del Norte, Antofagasta, 1240000, Chile
2 Centro de Docencia de Ciencias Basicas para Ingenieria, Universidad Austral de Chile, Valdivia, 5090000, Chile
3 Departamento de Matematicas, Universidad\break Catolica del Norte, Antofagasta, 1240000, Chile
Summary: We introduce a notion of smooth fields of operators following the notion of smooth fields of Hilbert spaces defined by L. Lempert and R. Szoke. We show that, if ∇ is the connection of a smooth field of Hilbert spaces, then ˆ∇=[∇,⋅] defines a connection on a suitable space of fields of operators. In order to provide examples, we prove a smooth version of the reduction theorem. We show under mild conditions that, if h(q,p)=‖ and \{u,h\}=0 then \mathfrak{Op}(u) is an operator commuting with \mathrm e^{-\mathrm it\Delta} and admitting a decomposition as a smooth field of operators over the open interval (0,\infty), where \mathfrak{Op} denotes the canonical quantization Weyl calculus and \Delta is the Laplace operator on L^2(\mathbb{R}^n). Moreover, we prove that we can compute derivatives using the formula \widehat\nabla_{X_0}(\mathfrak{Op}(u))=\mathfrak{Op}(\{h_0,u\}), where h_0(q,p)=\sum q_j p_j and X_0=2\lambda\frac{\partial}{\partial \lambda}. We also introduce a notion of smooth field of C^*-algebras and we give an example using Hilbert modules theory.
DOI: http://dx.doi.org/10.7900/jot.2022mar16.2385
Keywords: smooth fields of Hilbert spaces and operators, connections, reduction theorem, constant of motion, Weyl quantization
Contents Full-Text PDF